WBCHSE Class 12 Maths Solutions For Indefinite Integrals – Definition, Properties, Formulas

WBCHSE Class 12 Maths Solutions Indefinite Integral

Integration It is the inverse process of differentiation.

If the derivative of F(x) is f(x) then we say that the antiderivative or integral of f(x) is F(x) and we write,

\(\int f(x) d x=F(x) .\)

Thus, \(\frac{d}{d x}[F(x)]=f(x) \Rightarrow \int f(x) d x=F(x) .\)

Example Since \(\frac{d}{d x}(\sin x)=\cos x\), we have \(\int \cos x d x=\sin x.\)

Moreover, if C is any constant then \(\frac{d}{d x}(\sin x+C)=\cos x.\)

So, in general, \(\int \cos x d x=(\sin x+C) .\)

Different values of C will give different integrals.

Indefinite Integrals – Definition, Properties, Formulas

Indefinite Integral Examples And Solutions

Thus, a given function may have an indefinite number of integrals. Because of this property, we call these integrals indefinite integrals.

Thus, \(\frac{d}{d x}[F(x)]=f(x) \Rightarrow \int f(x) d x=F(x)+C\), where C is a constant, called the constant of integration. Any function to be integrated is known as an integrand.

The following two results are a direct consequence of the definition of an integral.

Result 1 \(\int x^n d x=\frac{x^{(n+1)}}{(n+1)}+C\), when n ≠ -1.

Proof

We have, \(\frac{d}{d x}\left(\frac{x^{n+1}}{n+1}\right)=\frac{(n+1) x^n}{(n+1)}=x^n\)

∴ \(\int x^n d x=\frac{x^{(n+1)}}{(n+1)}+\text { C. }\)

Thus, we have

Read and Learn More  Class 12 Math Solutions

(1) \(\int x^6 d x=\frac{x^{(6+1)}}{(6+1)}+C=\frac{x^7}{7}+C .\)

(2) \(\int x^{2 / 3} d x=\frac{x^{\left(\frac{2}{3}+1\right)}}{\left(\frac{2}{3}+1\right)}+C=\frac{3}{5} x^{5 / 3}+C\)

(3) \(\int x^{-3 / 4} d x=\frac{x^{\left(-\frac{3}{4}+1\right)}}{\left(-\frac{3}{4}+1\right)}=4 x^{1 / 4}+C\)

Result 2 \(\int \frac{1}{x} d x=\log |x|+C\), where x ≠ 0.

Proof

Either x > 0 or x < 0.

Case 1 When x > 0

In this case, | x | = x.

∴ \(\frac{d}{d x}[\log |x|]=\frac{d}{d x}(\log x)=\frac{1}{x}\)

Indefinite Integral Examples And Solutions

So, we have, \(\int \frac{1}{x} d x=\log |x|+C \text {. }\)

Case 2 When x < 0

In this case | x | = -x.

∴ \(\frac{d}{d x}[\log |x|]=\frac{d}{d x}[\log (-x)]=\frac{1}{(-x)} \cdot(-1)=\frac{1}{x}\)

So, we have \(\int \frac{1}{x} d x=\log |x|+C .\)

Thus, from both the cases, we have \(\int \frac{1}{x} d x=\log |x|+C\)

WBCHSE Class 12 Maths Solutions

Formulae

On the basis of differentiation and the definition of integration, we have the following results.

1. \(\frac{d}{d x}\left(\frac{x^{n+1}}{n+1}\right)=x^n, n \neq-1 \Rightarrow \int x^n d x=\frac{x^{n+1}}{(n+1)}+C\)

2. \(\frac{d}{d x}(\log |x|)=\frac{1}{x} \Rightarrow \int \frac{1}{x} d x=\log |x|+C\)

3. \(\frac{d}{d x}\left(e^x\right)=e^x \Rightarrow \int e^x d x=e^x+\mathrm{C}\)

4. \(\frac{d}{d x}\left(\frac{a^x}{\log a}\right)=a^x \Rightarrow \int a^x d x=\frac{a^x}{\log a}+C\)

5. \(\frac{d}{d x}(\sin x)=\cos x \Rightarrow \int \cos x d x=\sin x+C\)

Indefinite Integral Examples And Solutions

6. \(\frac{d}{d x}(-\cos x)=\sin x \Rightarrow \int \sin x d x=-\cos x+C\)

7. \(\frac{d}{d x}(\tan x)=\sec ^2 x \Rightarrow \int \sec ^2 x d x=\tan x+C\)

8. \(\frac{d}{d x}(-\cot x)={cosec}^2 x \Rightarrow \int {cosec}^2 x d x=-\cot x+C\)

9. \(\frac{d}{d x}(\sec x)=\sec x \tan x \Rightarrow \int \sec x \tan x d x=\sec x+C\)

10. \(\frac{d}{d x}(-{cosec} x)={cosec} x \cot x \Rightarrow \int {cosec} x \cot x d x=-{cosec} x+C\)

11. \(\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^2}} \Rightarrow \int \frac{1}{\sqrt{1-x^2}} d x=\sin ^{-1} x+C\)

12. \(\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{\left(1+x^2\right)} \Rightarrow \int \frac{1}{\left(1+x^2\right)} d x=\tan ^{-1} x+C\)

13. \(\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{x \sqrt{x^2-1}} \Rightarrow \int \frac{1}{x \sqrt{x^2-1}} d x=\sec ^{-1} x+C\)

With the help of the above formulae, it is easy to evaluate the following integrals.

Example 1 Evaluate:

(1) \(\int x^9 d x\)

(2) \(\int \sqrt[3]{x} d x\)

(3) \(\int d x\)

(4) \(\int \frac{1}{x^2} d x\)

(5) \(\int \frac{1}{x^{1 / 3}} d x\)

(6) \(\int 5^x d x\)

Solution

Using the standard formulae, we have

(1) \(\int x^9 d x=\frac{x^{(9+1)}}{(9+1)}+C=\frac{x^{10}}{10}+C\)

(2) \(\int \sqrt[3]{x} d x=\int x^{1 / 3} d x=\frac{x^{\left(\frac{1}{3}+1\right)}}{\left(\frac{1}{3}+1\right)}+\mathrm{C}=\frac{3}{4} x^{4 / 3}+\mathrm{C} .\)

Indefinite Integration All Formulas

(3) \(\int d x=\int x^0 d x=\frac{x^{(0+1)}}{(0+1)}+C=x+C\)

(4) \(\int \frac{1}{x^2} d x=\int x^{-2} d x=\frac{x^{(-2+1)}}{(-2+1)}+C=-\frac{1}{x}+C .\)

(5) \(\int \frac{1}{x^{1 / 3}} d x=\int x^{-1 / 3} d x=\frac{x^{\left(-\frac{1}{3}+1\right)}}{\left(-\frac{1}{3}+1\right)}+C=\frac{3}{2} x^{2 / 3}+C\)

(6) \(\int 5^x d x=\frac{5^x}{\log 5}+C\)

WBCHSE Class 12 Maths Solutions

Some Standard Results on Integration

Theorem 1 \(\frac{d}{d x}\left\{\int f(x) d x\right\}=f(x) .\)

Proof

Let \(\int f(x) d x=F(x)\) …(1)

Then, \(\frac{d}{d x}\{F(x)\}=f(x)\) [by def. of integral].

∴ \(\frac{d}{d x}\left\{\int f(x) d x\right\}=f(x)\) [using (1)]

Theorem 2 \(\int k \cdot f(x) d x=k \cdot \int f(x) d x\), where k is a constant.

Proof

Let \(\int f(x) d x=F(x)\) …(1)

Then, \(\frac{d}{d x}\{F(x)\}=f(x)\) …(2)

∴ \(\frac{d}{d x}\{k \cdot F(x)\}=k \cdot \frac{d}{d x}\{F(x)\}=k \cdot f(x)\) [using(2)]

So, by the definition of an integral, we have

\(\int\{k \cdot f(x)\} d x=k \cdot F(x)=k \cdot \int f(x) d x\) [using (1)].

Example 2 Evaluate:

(1) \(\int 3 x^2 d x\)

(2) \(\int 2^{(x+3)} d x\)

Solution

(1) \(\int 3 x^2 d x=3 \int x^2 d x=3 \cdot \frac{x^3}{3}+C=x^3+C .\)

Indefinite Integration All Formulas

(2) \(\int 2^{(x+3)} d x=\int 2^x \cdot 2^3 d x=8 \int 2^x d x=8 \cdot \frac{2^x}{\log 2}+C=\frac{2^{(x+3)}}{\log 2}+C .\)

Theorem 3

(1) \(\int\left\{f_1(x)+f_2(x)\right\} d x=\int f_1(x) d x+\int f_2(x) d x\)

(2) \(\int\left\{f_1(x)-f_2(x)\right\} d x=\int f_1(x) d x-\int f_2(x) d x\)

Proof

(1) Let \(\int f_1(x) d x=F_1(x) \text { and } \int f_2(x) d x=F_2(x)\) …(1)

Then, \(\frac{d}{d x}\left\{F_1(x)\right\}=f_1(x) \text { and } \frac{d}{d x}\left\{F_2(x)\right\}=f_2(x)\) …(2)

Now, \(\frac{d}{d x}\left\{F_1(x)+F_2(x)\right\}=\frac{d}{d x}\left\{F_1(x)\right\}+\frac{d}{d x}\left\{F_2(x)\right\}\)

= f1(x) + f2(x) [using(2)].

∴ \(\int\left\{f_1(x)+f_2(x)\right] d x=F_1(x)+F_2(x)\)

= \(\int f_1(x) d x+\int f_2(x) d x\) [using (1)].

Similarly, (2) can be proved.

Indefinite Integration All Formulas

Remark In general, we have

\(\int\left\{k_1 \cdot f_1(x) \pm k_2 \cdot f_2(x) \pm \ldots \pm k_n \cdot f_n(x)\right\} d x = k_1 \cdot \int f_1(x) d x \pm k_2 \cdot\) \(\int f_2(x) d x \pm \ldots \pm k_n \cdot \int f_n(x) d x\)

Solved Examples

Example 1 Evaluate:

(1) \(\int\left(5 x^3+2 x^{-5}-7 x+\frac{1}{\sqrt{x}}+\frac{5}{x}\right) d x\)

(2) \(\int\left(3 \sin x-4 \cos x+5 \sec ^2 x-2 {cosec}^2 x\right) d x\)

(3) \(\int(1-x)(2+3 x)(5-4 x) d x\)

(4) \(\int\left(\frac{3 x^4-5 x^3+4 x^2-x+2}{x^3}\right) d x\)

(5) \(\int\left(x^2+\frac{1}{x^2}\right)^3 d x\)

Solution

(1) \(\int\left(5 x^3+2 x^{-5}-7 x+\frac{1}{\sqrt{x}}+\frac{5}{x}\right) d x\)

= \(5 \int x^3 d x+2 \int x^{-5} d x-7 \int x d x+\int x^{-1 / 2} d x+5 \int \frac{1}{x} d x\)

= \(5 \cdot \frac{x^4}{4}+2 \cdot \frac{x^{-4}}{(-4)}-7 \cdot \frac{x^2}{2}+\frac{x^{1 / 2}}{(1 / 2)}+5 \log |x|+C\)

= \(\frac{5 x^4}{4}-\frac{1}{2 x^4}-\frac{7 x^2}{2}+2 \sqrt{x}+5 \log |x|+C\)

(2) \(\int\left(3 \sin x-4 \cos x+5 \sec ^2 x-2 {cosec}^2 x\right) d x\)

= \(3 \int \sin x d x-4 \int \cos x d x+5 \int \sec ^2 x d x-2 \int {cosec}^2 x d x\)

= 3(-cos x) – 4 sin x + 5 tan x – 2 (-cot x) + C

= (-3 cos x – 4 sin x + 5 tan x + 2 cot x + C).

WBCHSE Class 12 Maths Solutions

Indefinite Integration Properties

(3) \(\int(1-x)(2+3 x)(5-4 x) d x\)

= \(\int\left(10-3 x-19 x^2+12 x^3\right) d x\)

= \(10 \int d x-3 \int x d x-19 \int x^2 d x+12 \int x^3 d x\)

= \(10 x-3 \cdot \frac{x^2}{2}-19 \cdot \frac{x^3}{3}+12 \cdot \frac{x^4}{4}+C\)

= \(10 x-\frac{3 x^2}{2}-\frac{19 x^3}{3}+3 x^4+C\)

(4) \(\int\left(\frac{3 x^4-5 x^3+4 x^2-x+2}{x^3}\right) d x\)

= \(\int\left(3 x-5+\frac{4}{x}-\frac{1}{x^2}+\frac{2}{x^3}\right) d x\) [dividing each term by x3]

= \(3 \int x d x-5 \int d x+4 \int \frac{1}{x} d x-\int x^{-2} d x+2 \int x^{-3} d x\)

= \(3 \cdot \frac{x^2}{2}-5 x+4 \log |x|-\left(-\frac{1}{x}\right)+2\left(\frac{x^{-2}}{-2}\right)+C\)

= \(\frac{3 x^2}{2}-5 x+4 \log |x|+\frac{1}{x}-\frac{1}{x^2}+C\)

(5) \(\int\left(x^2+\frac{1}{x^2}\right)^3 d x\)

= \(\int\left(x^6+\frac{1}{x^6}+3 x^2+\frac{3}{x^2}\right) d x\)

= \(\int x^6 d x+\int x^{-6} d x+3 \int x^2 d x+3 \int \frac{1}{x^2} d x\)

= \(\frac{x^7}{7}+\frac{x^{-5}}{(-5)}+3 \cdot \frac{x^3}{3}+3 \cdot\left(-\frac{1}{x}\right)+C\)

= \(\frac{x^7}{7}-\frac{1}{5 x^5}+x^3-\frac{3}{x}+\mathrm{C} .\)

Example 2 Evaluate:

(1) \(\int \frac{\left(x^3+4 x^2-3 x-2\right)}{(x+2)} d x\)

(2) \(\int\left(\frac{x^4+1}{x^2+1}\right) d x\)

Indefinite Integration Properties

Solution

(1) On dividing (x3 + 4x2 – 3x – 2) by (x + 2), we get

\(\int \frac{\left(x^3+4 x^2-3 x-2\right)}{(x+2)} d x=\int\left\{x^2+2 x-7+\frac{12}{x+2}\right\} d x\)

= \(\int x^2 d x+2 \int x d x-7 \int d x+12 \int \frac{1}{x+2} d x\)

= \(\frac{x^3}{3}+2 \cdot \frac{x^2}{2}-7 x+12 \log |x+2|+C\)

= \(\frac{x^3}{3}+x^2-7 x+12 \log |x+2|+C\)

(2) On dividing (x4 + 1) by (x2 + 1), we get

\(\int\left(\frac{x^4+1}{x^2+1}\right) d x=\int\left[x^2-1+\frac{2}{\left(x^2+1\right)}\right] d x\)

= \(\int x^2 d x-\int d x+2 \int \frac{1}{x^2+1} d x=\frac{x^3}{3}-x+2 \tan ^{-1} x+\mathrm{C} .\)

Example 3 Evaluate:

(1) \(\int \tan ^2 x d x\)

(2) \(\int \cot ^2 x d x\)

(3) \(\int \sin ^2 \frac{x}{2} d x\)

Solution

(1) \(\int \tan ^2 x d x=\int\left(\sec ^2 x-1\right) d x\)

= \(\int \sec ^2 x d x-\int d x=\tan x-x+C\)

(2) \(\int \cot ^2 x d x=\int\left({cosec}^2 x-1\right) d x\)

= \(\int {cosec}^2 x d x-\int d x=-\cot x-x+C\)

(3) We know that \(2 \sin ^2 \frac{x}{2}=(1-\cos x)\)

∴ \(\int \sin ^2 \frac{x}{2} d x=\frac{1}{2} \int(1-\cos x) d x\)

= \(\frac{1}{2}\left[\int d x-\int \cos x d x\right]=\frac{1}{2} x-\frac{1}{2} \sin x+C .\)

Example 4 Evaluate \(\int \sqrt{1-\sin 2 x} d x\)

Solution

\(\int \sqrt{1-\sin 2 x} d x=\int\left(\cos ^2 x+\sin ^2 x-2 \sin x \cos x\right)^{1 / 2} d x\)

= \(\int \sqrt{(\cos x-\sin x)^2} d x\)

= \(\int(\cos x-\sin x) d x=\int \cos x d x-\int \sin x d x\)

= sin x – (- cos x) + C = sin x + cos x + C.

\(\int \sqrt{1-\sin 2 x} d x\) = sin x – (- cos x) + C = sin x + cos x + C.

WBCHSE Class 12 Maths Solutions

Indefinite Integration Properties

Example 5 Evaluate:

(1) \(\int \frac{d x}{1+\sin x}\)

(2) \(\int\left(\frac{\sin x}{1+\sin x}\right) d x\)

Solution

(1) \(\int \frac{d x}{(1+\sin x)}=\int \frac{1}{(1+\sin x)} \times \frac{(1-\sin x)}{(1-\sin x)} d x\)

= \(\int \frac{(1-\sin x)}{\left(1-\sin ^2 x\right)} d x=\int \frac{(1-\sin x)}{\cos ^2 x} d x\)

= \(\int\left(\frac{1}{\cos ^2 x}-\frac{\sin x}{\cos ^2 x}\right) d x=\int\left(\sec ^2 x-\sec x \tan x\right) d x\)

= \(\int \sec ^2 x d x-\int \sec x \tan x d x=\tan x-\sec x+C\)

(2) \(\int\left(\frac{\sin x}{1+\sin x}\right) d x=\int \frac{(1+\sin x)-1}{(1+\sin x)} d x\)

= \(\int\left(1-\frac{1}{1+\sin x}\right) d x=\int d x-\int \frac{1}{(1+\sin x)} d x\)

= \(\int d x-\int \frac{1}{(1+\sin x)} \times \frac{(1-\sin x)}{(1-\sin x)} d x\)

= \(\int d x-\int \frac{(1-\sin x)}{\cos ^2 x} d x=\int d x-\int\left(\frac{1}{\cos ^2 x}-\frac{\sin x}{\cos ^2 x}\right) d x\)

= \(\int d x-\int \sec ^2 x d x+\int \sec x \tan x d x=x-\tan x+\sec x+C \text {. }\)

Example 6 Evaluate \(\int \frac{\sec x}{(\sec x+\tan x)} d x\)

Solution

Given

\(\int \frac{\sec x}{(\sec x+\tan x)} d x\) \(\int \frac{\sec x}{(\sec x+\tan x)} d x=\int \frac{\sec x}{(\sec x+\tan x)} \times \frac{(\sec x-\tan x)}{(\sec x-\tan x)} d x\)

= \(\int \frac{\left(\sec ^2 x-\sec x \tan x\right)}{\left(\sec ^2 x-\tan ^2 x\right)} d x\)

= \(\int\left(\sec ^2 x-\sec x \tan x\right) d x\)

Indefinite Integration Properties

= \(\int \sec ^2 x d x-\int \sec x \tan x d x=\tan x-\sec x+C\)

\(\int \frac{\sec x}{(\sec x+\tan x)} d x\) = \(\int \sec ^2 x d x-\int \sec x \tan x d x=\tan x-\sec x+C\)

Example 7 Evaluate:

(1) \(\int\left(\frac{4-5 \cos x}{\sin ^2 x}\right) d x\)

(2) \(\int\left(\frac{1-\cos 2 x}{1+\cos 2 x}\right) d x\)

(3) \(\int \frac{1}{\sin ^2 x \cos ^2 x} d x\)

(4) \(\int \frac{\cos 2 x}{\cos ^2 x \sin ^2 x} d x\)

Solution

(1) \(\int\left(\frac{4-5 \cos x}{\sin ^2 x}\right) d x=\int\left(\frac{4}{\sin ^2 x}-\frac{5 \cos x}{\sin ^2 x}\right) d x\)

= \(\int\left(4 {cosec}^2 x-5 {cosec} x \cot x\right) d x\)

= \(4 \int {cosec}^2 x d x-5 \int {cosec} x \cot x d x\)

= 4(-cot x) – 5(- cosec x) + C

= -4 cot x + 5 cosec x + C.

(2) \(\int\left(\frac{1-\cos 2 x}{1+\cos 2 x}\right) d x=\int \frac{2 \sin ^2 x}{2 \cos ^2 x} d x=\int \tan ^2 x d x\)

= \(\int\left(\sec ^2 x-1\right) d x=\int \sec ^2 x d x-\int d x\)

= tan x – x + C.

(3) \(\int \frac{1}{\sin ^2 x \cos ^2 x} d x=\int\left(\frac{\sin ^2 x+\cos ^2 x}{\sin ^2 x \cos ^2 x}\right) d x\)

= \(\int\left(\frac{1}{\cos ^2 x}+\frac{1}{\sin ^2 x}\right) d x\)

= \(\int \sec ^2 x d x+\int {cosec}^2 x d x=\tan x-\cot x+C\)

(4) \(\int \frac{\cos 2 x}{\cos ^2 x \sin ^2 x} d x=\int\left(\frac{\cos ^2 x-\sin ^2 x}{\cos ^2 x \sin ^2 x}\right) d x\)

= \(\int\left(\frac{1}{\sin ^2 x}-\frac{1}{\cos ^2 x}\right) d x\)

= \(\int {cosec}^2 x d x-\int \sec ^2 x d x=-\cot x-\tan x+C\)

Example 8 Evaluate \(\int\left(\frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha}\right) d x\)

Solution

Given:

\(\int\left(\frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha}\right) d x\) \(\int\left(\frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha}\right) d x=\int \frac{\left(2 \cos ^2 x-1\right)-\left(2 \cos ^2 \alpha-1\right)}{(\cos x-\cos \alpha)} d x\)

= \(2 \int \frac{\left(\cos ^2 x-\cos ^2 \alpha\right)}{(\cos x-\cos \alpha)} d x=2 \int(\cos x+\cos \alpha) d x\)

= \(2 \int \cos x d x+2 \cos \alpha \cdot \int d x=2 \sin x+2 x \cos \alpha+C \text {. }\)

\(\int\left(\frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha}\right) d x\) = \(2 \int \cos x d x+2 \cos \alpha \cdot \int d x=2 \sin x+2 x \cos \alpha+C \text {. }\)

Example 9 Evaluate \(\int \tan ^{-1}\left\{\sqrt{\frac{1-\cos 2 x}{1+\cos 2 x}}\right\} d x\)

Solution

Given

\(\int \tan ^{-1}\left\{\sqrt{\frac{1-\cos 2 x}{1+\cos 2 x}}\right\} d x\) \(\int \tan ^{-1}\left\{\sqrt{\frac{1-\cos 2 x}{1+\cos 2 x}}\right\} d x=\int \tan ^{-1}\left\{\sqrt{\frac{2 \sin ^2 x}{2 \cos ^2 x}}\right\} d x\)

= \(\int \tan ^{-1}(\tan x) d x=\int x d x=\frac{x^2}{2}+C\)

\(\int \tan ^{-1}\left\{\sqrt{\frac{1-\cos 2 x}{1+\cos 2 x}}\right\} d x\) = \(\int \tan ^{-1}(\tan x) d x=\int x d x=\frac{x^2}{2}+C\)

Example 10 Evaluate \(\int \sin ^{-1}(\cos x) d x\)

Solution

Given

\(\int \sin ^{-1}(\cos x) d x\) \(\int \sin ^{-1}(\cos x) d x=\int \sin ^{-1}\left\{\sin \left(\frac{\pi}{2}-x\right)\right\} d x\)

= \(\int\left(\frac{\pi}{2}-x\right) d x=\frac{\pi}{2} \cdot \int d x-\int x d x=\frac{\pi x}{2}-\frac{x^2}{2}+C\)

\(\int \sin ^{-1}(\cos x) d x\) = \(\int\left(\frac{\pi}{2}-x\right) d x=\frac{\pi}{2} \cdot \int d x-\int x d x=\frac{\pi x}{2}-\frac{x^2}{2}+C\)

Example 11 Evaluate \(\int \tan ^{-1}(\sec x+\tan x) d x\)

Solution

Given

\(\int \tan ^{-1}(\sec x+\tan x) d x\) \(\int \tan ^{-1}(\sec x+\tan x) d x=\int \tan ^{-1}\left(\frac{1}{\cos x}+\frac{\sin x}{\cos x}\right) d x\)

= \(\int \tan ^{-1}\left(\frac{1+\sin x}{\cos x}\right) d x=\int \tan ^{-1}\left\{\frac{1-\cos \left(\frac{\pi}{2}+x\right)}{\sin \left(\frac{\pi}{2}+x\right)}\right\} d x\)

= \(\int \tan ^{-1}\left\{\frac{2 \sin ^2\left(\frac{\pi}{4}+\frac{x}{2}\right)}{2 \sin \left(\frac{\pi}{4}+\frac{x}{2}\right) \cos \left(\frac{\pi}{4}+\frac{x}{2}\right)}\right\} d x\)

= \(\int \tan ^{-1}\left\{\tan \left(\frac{\pi}{4}+\frac{x}{2}\right)\right\} d x=\int\left(\frac{\pi}{4}+\frac{x}{2}\right) d x\)

= \(\frac{\pi}{4} \cdot \int d x+\frac{1}{2} \int x d x=\frac{\pi x}{4}+\frac{1}{4} x^2+C .\)

\(\int \tan ^{-1}(\sec x+\tan x) d x\) = \(\frac{\pi}{4} \cdot \int d x+\frac{1}{2} \int x d x=\frac{\pi x}{4}+\frac{1}{4} x^2+C .\)

Example 12 Evaluate \(\int\left(\frac{1+\sin x}{1-\sin x}\right) d x\)

Solution

Given

\(\int\left(\frac{1+\sin x}{1-\sin x}\right) d x\)

I = \(\int \frac{(1+\sin x)}{(1-\sin x)} \times \frac{(1+\sin x)}{(1+\sin x)} d x\)

= \(\int \frac{(1+\sin x)^2}{\left(1-\sin ^2 x\right)} d x=\int \frac{\left(1+\sin ^2 x+2 \sin x\right)}{\cos ^2 x} d x\)

= \(\int\left(\frac{1}{\cos ^2 x}+\frac{\sin ^2 x}{\cos ^2 x}+\frac{2 \sin x}{\cos ^2 x}\right) d x=\int\left(\sec ^2 x+\tan ^2 x+2 \sec x \tan x\right) d x\)

= \(\int\left(2 \sec ^2 x-1+2 \sec x \tan x\right) d x\)

= \(2 \int \sec ^2 x d x-\int d x+2 \int \sec x \tan x d x\)

= 2 tan x – x + 2 sec x + C.

\(\int\left(\frac{1+\sin x}{1-\sin x}\right) d x\) = 2 tan x – x + 2 sec x + C.

Leave a Comment