WBCHSE Class 12 Maths Solutions Vector Algebra

Class 12 Maths Solutions Vector Algebra

In our daily life, we generally come across two types of quantities, namely scalars and vectors.

Scalars A quantity that has magnitude only is known as a scalar.

Examples Each of the quantities mass, length, time, temperature, density, speed, etc., is a scalar.

Vectors A quantity that has magnitude as well as direction is called a vector.

Examples Each of the quantities force, velocity, acceleration and momentum is a vector.

However, we define a vector as given below.

‘A directed line segment is called a vector’.

A directed line segment with initial point A and the terminal point B, is the vector denoted by \(\overrightarrow{A B}\).

The magnitude of \(\overrightarrow{A B}\) is denoted by |\(\overrightarrow{A B}\)|.

Remark We usually denote a vector by a single letter with an arrow on it and its magnitude is denoted by this letter only.

Thus, \(\overrightarrow{A B}\) = \(\vec{a}\) and |\(\overrightarrow{A B}\)| = |\(\vec{a}\)| = a.

Unit Vector A vector \(\vec{a}\) is called a unit vector if |\(\vec{a}\)| = 1 and it is denoted by \(\hat{a}\) .

Read and Learn More  Class 12 Math Solutions

Equal Vectors Two vectors \(\vec{a}\) and \(\vec{b}\) are said to be equal if they have the same magnitude and the same direction regardless of the positions of their initial points.

Negative Of A Vector A vector having the same magnitude as that of a given vector \(\vec{a}\) and the direction opposite to that of \(\vec{a}\) is called the negative of \(\vec{a}\), to be denoted by –\(\vec{a}\).

Thus, if \(\overrightarrow{A B}\) = \(\vec{a}\), then \(\overrightarrow{B A}\) = –\(\vec{a}\).

Zero Or Null Vector A vector whose initial and terminal points coincide is called a zero vector, denoted by \(\overrightarrow{0}\).

Clearly, the magnitude of a zero vector is 0 but it cannot be assigned a definite direction.

Thus, \(\overrightarrow{A A}\) = \(\overrightarrow{0}\).

Coinitial Vectors Two or more vectors having the same initial point are called coinitial vectors.

\(\overrightarrow{O A}\) and \(\overrightarrow{O B}\) are the two coinitial vectors having the same initial point O.

Collinear Vectors Vectors having the same or parallel supports are known as collinear vectors.

In the given figure \(\overrightarrow{A B}\), \(\overrightarrow{B C}\) and \(\overrightarrow{A C}\) are collinear vectors.

Like Vectors Collinear vectors having the same direction are called like vectors.

Thus, \(\overrightarrow{A B}\), \(\overrightarrow{B C}\) and \(\overrightarrow{A C}\) shown above are like vectors.

Unlike Vectors Collinear vectors having opposite directions are known as unlike vectors.

In the given figure PQ ∥ RS.

∴ \(\overrightarrow{P Q}\) and \(\overrightarrow{S R}\) are unlike vectors.

Free Vectors If the initial point of a vector is not specified then it is said to be a free vector.

Localised Vectors A vector drawn parallel to a given vector through a specified point as the initial point is called a localised vector.

Coplanar Vectors Three or more nonzero vectors lying in the same plane or parallel to the same plane are said to be coplanar, otherwise they are called noncoplanar.

Position Vector Of A Point Let O be the origin and let A be a point such that \(\overrightarrow{O A}\) = \(\vec{a}\), then we say that the position vector of A is \(\vec{a}\).

WBCHSE Class 12 Maths Solutions Vector Algebra

Solved Examples

Example 1 Classify the following measures as scalars and vectors:

(1) 30 seconds

(2) 100 m2

(3) 50 km/hr

(4) 20 gm/cm3

(5) 26 m/s towards south

Solution

(1) 30 seconds represents time, which is scalar.

(2) 100 m2 represents an area, which is scalar.

(3) 50 km/hr represents speed, which is scalar.

(4) 20 gm/cm3 represents density, which is scalar.

(5) 26 m/s towards south represents velocity, which is a vector.

Example 2 Represent graphically a displacement of 50 km, 60° west of north.

Solution

The vector \(\overrightarrow{O A}\) given below represents a displacement of 50 km, 60° west of north.

Vector Addition

Let \(\vec{a}\) and \(\vec{b}\) be any two vectors. Take any point O and draw segments \(\overrightarrow{O A}\) and \(\overrightarrow{A B}\) such that \(\overrightarrow{O A}\) = \(\vec{a}\) and \(\overrightarrow{A B}\) = \(\vec{b}\). Join OB. Then, \(\overrightarrow{O B}\) is called the sum or resultant of \(\vec{a}\) and \(\vec{b}\).

∴ \((\vec{a}+\vec{b})=\overrightarrow{O A}+\overrightarrow{A B}=\overrightarrow{O B}\)

Triangle Law Of Addition Of Forces

In a △OAB, if \(\overrightarrow{O A}\) and \(\overrightarrow{A B}\) represent \(\vec{a}\) and \(\vec{b}\) respectively, then \(\overrightarrow{O B}\) represents \((\vec{a}+\vec{b})\).

This is known as Triangle Law of Addition of Forces.

Parallelogram Law Of Addition Of Forces In a ∥gm OABC, if \(\overrightarrow{O A}\) and \(\overrightarrow{A B}\) represent \(\vec{a}\) and \(\vec{b}\) respectively, then \(\overrightarrow{O B}\) represents \((\vec{a}+\vec{b})\).

This is known as Parallelogram Law of Addition of Forces.

Laws of Addition of Vectors

Theorem 1 (Commutative Law) Vector addition is commutative, i.e., \(\vec{a}+\vec{b}=\vec{b}+\vec{a} .\)

Proof

Let \(\vec{a}\) and \(\vec{b}\) be the given vectors represented by \(\overrightarrow{O A}\) and \(\overrightarrow{A B}\) respectively. Complete the parallelogram OABC.

Then, \(\overrightarrow{O C}=\overrightarrow{A B}=\vec{b}\)

and \(\overrightarrow{C B}=\overrightarrow{O A}=\vec{a}\)

∴ \(\vec{a}+\vec{b}=\overrightarrow{O A}+\overrightarrow{A B}=\overrightarrow{O B}\)

and \(\vec{b}+\vec{a}=\overrightarrow{O C}+\overrightarrow{C B}=\overrightarrow{O B}\).

Hence, \(\vec{a}+\vec{b}=\vec{b}+\vec{a} .\)

WBBSE Class 12 Vector Algebra Solutions

Theorem 2 (Associative Law) Vector addition is associative, i.e., \((\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})\).

Proof

Let \(\overrightarrow{O A}\) = \(\vec{a}\), \(\overrightarrow{A B}\) = \(\vec{b}\) and \(\overrightarrow{B C}\) = \(\vec{c}\).

Join OB, OC and AC.

\((\vec{a}+\vec{b})+\vec{c}=(\overrightarrow{O A}+\overrightarrow{A B})+\overrightarrow{B C}\)

= \((\overrightarrow{O B}+\overrightarrow{B C})\) [∵ \(\overrightarrow{O A}\) + \(\overrightarrow{A B}\) = \(\overrightarrow{O B}\)]

= \(\overrightarrow{O C}\)

\(\vec{a}+(\vec{b}+\vec{c})=\overrightarrow{O A}+(\overrightarrow{A B}+\overrightarrow{B C})\)

= \((\overrightarrow{O A}+\overrightarrow{A C})\) [∵ \(\overrightarrow{A B}\) + \(\overrightarrow{B C}\) = \(\overrightarrow{A C}\)]

= \(\overrightarrow{O C}\)

∴ \((\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})\).

Class 11 Physics Class 12 Maths Class 11 Chemistry
NEET Foundation Class 12 Physics NEET Physics

Theorem 3 (Existence of Additive Identity) For any vector \(\vec{a}\), prove that \(\vec{a}+\overrightarrow{0}=\overrightarrow{0}+\vec{a}=\vec{a} .\)

Proof

Let \(\overrightarrow{O A}\) = \(\vec{a}\). Then, \(\vec{a}+\overrightarrow{0}=\overrightarrow{O A}+\overrightarrow{A A}=\overrightarrow{O A}=\vec{a}\)

and, \(\overrightarrow{0}+\vec{a}=\overrightarrow{O O}+\overrightarrow{O A}=\overrightarrow{O A}=\vec{a} .\)

∴ \(\vec{a}+\overrightarrow{0}=\overrightarrow{0}+\vec{a}=\vec{a} .\)

Remark The vector \(\overrightarrow{0}\) is called the additive identity for vectors.

Theorem 4 (Existence of Additive Inverse) For any vector \(\vec{a}\), prove that \(\vec{a}+(-\vec{a})=(-\vec{a})+\vec{a}=\overrightarrow{0}\).

Proof

Let \(\overrightarrow{O A}\) = \(\vec{a}\). Then, \(\overrightarrow{A o}\) = –\(\vec{a}\).

∴ \(\vec{a}+(-\vec{a})=\overrightarrow{O A}+\overrightarrow{A O}=\overrightarrow{O O}=\overrightarrow{0}\)

and, \((-\vec{a})+\vec{a}=\overrightarrow{A O}+\overrightarrow{O A}=\overrightarrow{A A}=\overrightarrow{0}\)

Hence, \(\vec{a}+(-\vec{a})=(-\vec{a})+\vec{a}=\overrightarrow{0}\).

Remark The vector –\(\vec{a}\) is called the additive inverse of \(\vec{a}\).

Difference Of Two Vectors For any two vectors \(\vec{a}\) and \(\vec{b}\), we define \(\vec{a}-\vec{b}=\vec{a}+(-\vec{b})\).

Let \(\overrightarrow{O A}\) = \(\vec{a}\) and \(\overrightarrow{O B}\) = \(\vec{b}\). Then, \(\overrightarrow{B O}\) = –\(\vec{b}\).

∴ \((\vec{a}-\vec{b})=\vec{a}+(-\vec{b})\)

= \(\overrightarrow{O A}+\overrightarrow{B O}=\overrightarrow{B O}+\overrightarrow{O A}=\overrightarrow{B A}\)

Thus, (\(\overrightarrow{O A}\) – \(\overrightarrow{O B}\)) = \(\overrightarrow{B A}\).

Similarly, (\(\overrightarrow{O B}\) – \(\overrightarrow{O A}\)) = \(\overrightarrow{A B}\).

Scalar Multiplication of a Vector

The scalar multiple of \(\vec{a}\) by a scalar k is the vector k \(\vec{a}\) such that

(1) \(|k \vec{a}|=|k||\vec{a}|\)

(2) direction of k \(\vec{a}\) is the same as that of \(\vec{a}\), when k > 0 and opposite to that of \(\vec{a}\) when k < 0.

Examples (1) 5 \(\vec{a}\) is the vector whose magnitude is 5 times the magnitude of \(\vec{a}\) and whose direction is the same as that of \(\vec{a}\).

(2) -2 \(\vec{a}\) is the vector whose magnitude is 2 times the magnitude of \(\vec{a}\) and whose direction is opposite to that of \(\vec{a}\).

Components of a Vector

Let O be the origin and let P(x,y,z) be any point in space. Let \(\hat{i}\), \(\hat{j}\), \(\hat{k}\) be unit vectors along the x-axis, y-axis and z-axis respectively. Let the position vector of P be \(\vec{r}\).

Then, \(\vec{r}\) = \((x \hat{i}+y \hat{j}+z \hat{k}) .\)

This form of a vector is called its component form.

Here x, y, z are called the scalar components of \(\vec{r}\) and \(x \hat{i}, y \hat{j}, z \hat{k}\) are called its vector components.

Also, \(|\vec{r}\ = |x \hat{i}+y \hat{j}+z \hat{k}| = \sqrt{x^2+y^2+z^2}\).

Direction Ratios and Direction Cosines of a vector

Consider a vector \(\vec{r} = a \hat{i}+b \hat{j}+c \hat{k}\).

Then, the numbers a, b, c are called the direction ratios of \(\vec{r}\).

Direction cosines of \(\vec{r}\) are given by

\(\frac{a}{\sqrt{a^2+b^2+c^2}} \frac{b}{\sqrt{a^2+b^2+c^2}} \text { and } \frac{c}{\sqrt{a^2+b^2+c^2}} \text {. }\)

Note If l, m, n are the direction cosines of a vector then we always have (l2 + m2 + n2) = 1.

Remark If A(x1, y1, z1) and B(x2, y2, z2) be any two points in space, then direction ratios of \(\overrightarrow{A B}\) are (x2 – x1), (y2 – y1), (z2 – z1) and direction cosines of \(\overrightarrow{A B}\) are:

\(\frac{\left(x_2-x_1\right)}{r}, \frac{\left(y_2-y_1\right)}{r}, \frac{\left(z_2-z_1\right)}{r}\),

where r = \(\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2+\left(z_2-z_1\right)^2} .\)

Solved Examples

Example 1 Let \(\vec{a} = a_1 \hat{i}+3 \hat{j}+a_3 \hat{k}\) and \(\vec{b} = 2 \hat{i}+b_2 \hat{j}+\hat{k}\). If \(\vec{a}\) = \(\vec{b}\), find the values of a1, b2 and a3.

Solution

\(\vec{a}\) = \(\vec{b}\) ⇔ \(a_1 \hat{i}+3 \hat{j}+a_3 \hat{k}=2 \hat{i}+b_2 \hat{j}+\hat{k}\)

⇔ a1 = 2, b2 = 3, a3 = 1.

The values of a1, b2 and a3 are 2,3,1.

Example 2 Let \(\vec{a}\) = \(3 \hat{i}+2 \hat{j}\) and \(\vec{b}\) = \(2 \hat{i}+3 \hat{j}\). Is |\(\vec{a}\)| = |\(\vec{b}\)|? Is \(\vec{a}\) = \(\vec{b}\)?

Solution

We have

\(|\vec{a}|=\sqrt{3^2+2^2}=\sqrt{13} \text { and }|\vec{b}|=\sqrt{2^2+3^2}=\sqrt{13} \text {. }\)

∴ |\(\vec{a}\)| = |\(\vec{b}\)|.

But, \(3 \hat{i}+2 \hat{j}\) ≠ \(2 \hat{i}+3 \hat{j}\) and therefore, \(\vec{a}\) ≠ \(\vec{b}\).

Example 3 Find a unit vector in the direction of the vector \(\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}\)

Solution

\(\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}\) ⇒ \(|\vec{a}|=\sqrt{1^2+2^2+3^2}=\sqrt{14} \text {. }\)

Unit vector in the direction of \(\vec{a}\) is given by

\(\hat{a}=\frac{\vec{a}}{|\vec{a}|}=\frac{(\hat{i}+2 \hat{j}+3 \hat{k})}{\sqrt{14}}=\left(\frac{1}{\sqrt{14}} \hat{i}+\frac{2}{\sqrt{14}} \hat{j}+\frac{3}{\sqrt{14}} \hat{k}\right) .\)

Example 4 Find a unit vector in the direction of \(\overrightarrow{A B}\), where A(1,2,3) and B(4, 5, 6) are the given points.

Solution

We have

p.v. of A = \((\hat{i}+2 \hat{j}+3 \hat{k})\) and p.v. of B = \((4 \hat{i}+5 \hat{j}+6 \hat{k})\)

∴ \(\overrightarrow{A B}\) = (p.v. of B) – (p.v. of A)

= \((4 \hat{i}+5 \hat{j}+6 \hat{k})-(\hat{i}+2 \hat{j}+3 \hat{k})=(3 \hat{i}+3 \hat{j}+3 \hat{k})\), and

\(|\overrightarrow{A B}| = \sqrt{3^2+3^2+3^2}=\sqrt{27}\)

∴ unit vector in the direction of \(\overrightarrow{A B}=\frac{\overrightarrow{A B}}{|\overrightarrow{A B}|}\)

= \(\frac{(3 \hat{i}+3 \hat{j}+3 \hat{k})}{\sqrt{27}}=\frac{3(\hat{i}+\hat{j}+\hat{k})}{3 \sqrt{3}}=\frac{(\hat{i}+\hat{j}+\hat{k})}{\sqrt{3}}\)

= \(\left(\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}+\frac{1}{\sqrt{3}} \hat{k}\right) .\)

Example 5 Find a vector in the direction of the vector \(\vec{a}=(3 \hat{i}+\hat{j})\) that has magnitude 5 units.

Solution

\(\vec{a}=(3 \hat{i}+\hat{j})\) ⇒ \(|\vec{a}| = \sqrt{3^2+1^2}=\sqrt{10}\)

Unit vector in the direction of \vec{a} is given by

\(\hat{a}=\frac{\vec{a}}{|\vec{a}|}=\frac{(3 \hat{i}+\hat{j})}{\sqrt{10}}=\left(\frac{3}{\sqrt{10}} \hat{i}+\frac{1}{\sqrt{10}} \hat{j}\right) .\)

Hence, the required vector, 5 \(\hat{a}\) = \(\left(\frac{15}{\sqrt{10}} \hat{i}+\frac{5}{\sqrt{10}} \hat{j}\right)\)

Example 6 Find a vector in the direction of the vector \(3 \hat{i}-\hat{j}+4 \hat{k}\), which has magnitude 6 units.

Solution

Let \(\vec{a}\) = \((3 \hat{i}-\hat{j}+4 \hat{k})\). Then,

|\(\vec{a}\)| = \(\sqrt{3^2+(-1)^2+4^2}=\sqrt{26}\)

∴ unit vector, \(\hat{a}=\left\{\frac{3}{\sqrt{26}} \hat{i}-\frac{1}{\sqrt{26}} \hat{j}+\frac{4}{\sqrt{26}} \hat{k}\right\}\)

Hence, the required vector, \(6 \hat{a}=\left\{\frac{18}{\sqrt{26}} \hat{i}-\frac{6}{\sqrt{26}} \hat{j}+\frac{24}{\sqrt{26}} \hat{k}\right\}\).

Step-by-Step Solutions to Vector Algebra Problems

Example 7 If \(\vec{a}=(\hat{i}+2 \hat{j}-3 \hat{k}) \text { and } \vec{b}=(2 \hat{i}+3 \hat{j}+\hat{k})\), find a unit vector in the direction of \((\vec{a}+\vec{b})\).

Solution

Let \(\vec{c}=(\vec{a}+\vec{b})\). Then,

\(\vec{c}=(\vec{a}+\vec{b})\)

= \((\hat{i}+2 \hat{j}-3 \hat{k})+(2 \hat{i}+3 \hat{j}+\hat{k})\)

= \((3 \hat{i}+5 \hat{j}-2 \hat{k})\)

∴ \(|\vec{c}|=\sqrt{3^2+5^2+(-2)^2}=\sqrt{38} .\)

Hence, the required vector is given by

\(\hat{c}=\frac{\vec{c}}{|\vec{c}|}=\frac{(3 \hat{i}+5 \hat{j}-2 \hat{k})}{\sqrt{38}}=\left(\frac{3}{\sqrt{38}} \hat{i}+\frac{5}{\sqrt{38}} \hat{j}-\frac{2}{\sqrt{38}} \hat{k}\right) .\)

Example 8 Write two different vectors having same magnitude.

Solution

Consider the vectors \(\vec{a}=2 \hat{i}+3 \hat{j}-4 \hat{k} \text { and } \vec{b}=4 \hat{i}+2 \hat{j}+3 \hat{k}\)

Clearly, \(\vec{a}\) ≠ \(\vec{b}\).

But, \(|\vec{a}|=\sqrt{2^2+3^2+(-4)^2}=\sqrt{29} \text { and }|\vec{b}|=\sqrt{4^2+2^2+3^2}=\sqrt{29} \text {. }\)

Thus, |\(\vec{a}\)| = |\(\vec{b}\)| and \(\vec{a}\) ≠ \(\vec{b}\).

Example 9 Write two different vectors having same direction.

Solution

Clearly, 3 \(\overrightarrow{A B}\) and 5 \(\overrightarrow{A B}\) are two different vectors having the same direction.

Example 10 Find the scalar and vector components of the vector with initial point A(3,2) and terminal point B(-5,7).

Solution

Given vector is \(\overrightarrow{A B}\) = (p.v. of B) – (p.v. of A)

= \((-5 \hat{i}+7 \hat{j})-(3 \hat{i}+2 \hat{j})=(-8 \hat{i}+5 \hat{j})\)

Vector components of \(\overrightarrow{A B}\) are \(-8 \hat{i} and 5 \hat{j}\).

Scalar components of \(\overrightarrow{A B}\) are -8 and 5.

Example 11 If A(1,2,-3) and B(-1,-2,1) are two given points in space then find (1) the direction ratios of \(\overrightarrow{A B}\) and (2) the direction cosines of \(\overrightarrow{A B}\).

Solution

(1) DRs of \(\overrightarrow{A B}\) are (-1-1), (-2-2), (1+3), i.e., -1, -4, 4.

(2) r2 = {(-2)2 + (-4)2 + 42} = 36 ⇒ r = √36 = 6.

Hence, DCs of \(\overrightarrow{A B}\) are \(\frac{-2}{6}, \frac{-4}{6}, \frac{4}{6} \text {, i.e., } \frac{-1}{3}, \frac{-2}{3}, \frac{2}{3} \text {. }\)

Example 12 Find the direction ratios and the direction cosines of the vector \(\vec{r}=2 \hat{i}+3 \hat{j}+\hat{k}\).

Solution

Given vector is \(\vec{r}=2 \hat{i}+3 \hat{j}+\hat{k}\).

DRs of \(\vec{r}\) are 2, 3, 1.

Also, \(|\vec{r}|=\sqrt{2^2+3^2+1^2}=\sqrt{14} \text {. }\)

So, DCs of \(\vec{r}\) are \(\frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}}\)

Secion Formulae

Theorem 1 (Section Formula for Internal Division) Let A and B be two points with position vectors \(\vec{a}\) and \(\vec{b}\) respectively and let P be a point dividing AB internally in the ratio m:n. Let \(\overrightarrow{O P}\) = \(\vec{r}\). Then, prove that

\(\vec{r}=\frac{(m \vec{b}+n \vec{a})}{(m+n)}\)

Proof

Let O be the origin. Then, \(\overrightarrow{O A}\) = \(\vec{a}\) and \(\overrightarrow{O B}\) = \(\vec{b}\).

Let P be a point on AB such that \(\frac{A P}{P B}=\frac{m}{n}\). Then,

\(\frac{A P}{P B}=\frac{m}{n}\)

⇒ n.AP = m.PB

⇒ \(n(\overrightarrow{A P})=m(\overrightarrow{P B})\)

⇒ \(n(\overrightarrow{O P}-\overrightarrow{O A})=m(\overrightarrow{O B}-\overrightarrow{O P})\)

⇒ \((m+n) \overrightarrow{O P}=m \overrightarrow{O B}+n \overrightarrow{O A}=m \vec{b}+n \vec{a}\)

⇒ \(\overrightarrow{O P}=\frac{m \vec{b}+n \vec{a}}{(m+n)} ⇒ \vec{r}=\frac{(m \vec{b}+n \vec{a})}{(m+n)}\)

Corollary The position vector of the midpoint of the join of two points with position vectors \(\vec{a}\) and \(\vec{b}\) is \(\frac{1}{2}(\vec{a}+\vec{b}) .\)

Proof

Let A and B be two points with position vectors \(\vec{a}\) and \(\vec{b}\) respectively.

Let P be the midpoint of AB.

Then, P divides AB in the ratio 1:1.

∴ \(\overrightarrow{O P}=\frac{(1 \cdot \vec{b}+1 \cdot \vec{a})}{(1+1)}=\frac{1}{2}(\vec{a}+\vec{b})\)

Theorem 2 (Section Formula for External Division) Let A and B be two points with position vectors \(\vec{a}\) and \(\vec{b}\) respectively and let P be a point dividing AB externally in the ratio m:n. Let \(\overrightarrow{O P}\) = \(\vec{r}\). Then, prove that

\(\vec{r}=\frac{(m \vec{b}-n \vec{a})}{(m-n)}\)

Proof

Let O be the origin. Then, \(\overrightarrow{O A}\) = \(\vec{a}\) and \(\overrightarrow{O B}\) = \(\vec{b}\).

Let AB be produced to P such that AP:BP = m:n.

Now, \(\frac{A P}{B P}=\frac{m}{n}\)

⇒ n.AP = m.BP ⇒ n.\(\overrightarrow{A P}\) = m.\(\overrightarrow{B P}\)

⇒ \(n(\overrightarrow{O P}-\overrightarrow{O A})=m(\overrightarrow{O P}-\overrightarrow{O B})\)

⇒ \((m-n) \overrightarrow{O P}=(m \overrightarrow{O B}-n \overrightarrow{O A})=(m \vec{b}-n \vec{a})\)

⇒ \(\overrightarrow{O P}=\frac{(m \vec{b}-n \vec{a})}{(m-n)} ⇒ \vec{r}=\frac{(m \vec{b}-n \vec{a})}{(m-n)}\)

Real-Life Applications of Vector Algebra Concepts

Example 13 Find the position vector of a point R which divides the line joining the points \(P(\hat{i}+2 \hat{j}-\hat{k}) \text { and } Q(-\hat{i}+\hat{j}+\hat{k})\) in the ratio 2:1 (1) internally and (2) externally.

Solution

Here \(\vec{a}=(\hat{i}+2 \hat{j}-\hat{k}) \text { and } \vec{b}=(-\hat{i}+\hat{j}+\hat{k})\). Also, m = 2, n = 1.

(1) When R divides PQ internally in the ratio 2:1

Then, p.v. of R = \(\frac{(m \vec{b}+n \vec{a})}{(m+n)}\)

= \(\frac{2(-\hat{i}+\hat{j}+\hat{k})+1 \cdot(\hat{i}+2 \hat{j}-\hat{k})}{(2+1)}=\frac{(-\hat{i}+4 \hat{j}+\hat{k})}{3} .\)

(2) When R divides PQ externally in the ratio 2:1

Then, p.v. of R = \(\frac{(m \vec{b}-n \vec{a})}{(m-n)}\)

= \(\frac{2(-\hat{i}+\hat{j}+\hat{k})-1 \cdot(\hat{i}+2 \hat{j}-\hat{k})}{(2-1)}=(-3 \hat{i}+3 \hat{k})\)

Example 14 Find the position vector of the midpoint of the vector joining the point \(A(2 \hat{i}+3 \hat{j}+4 \hat{k}) \text { and } B(4 \hat{i}+\hat{j}-2 \hat{k})\)

Solution

The position vectors of A and B are given by

\(\vec{a}=(2 \hat{i}+3 \hat{j}+4 \hat{k}) \text { and } \vec{b}=(4 \hat{i}+\hat{j}-2 \hat{k})\)

∴ p.v. of midpoint of AB

= \(\frac{1}{2}(\vec{a}+\vec{b})\)

= \(\frac{1}{2}\{(2 \hat{i}+3 \hat{j}+4 \hat{k})+(4 \hat{i}+\hat{j}-2 \hat{k})\}\)

= \((3 \hat{i}+2 \hat{j}+\hat{k})\).

The position vector of the midpoint of the vector joining the point = \((3 \hat{i}+2 \hat{j}+\hat{k})\).

Example 15 Show that the points A, B, C with position vectors \(\vec{a}=(3 \hat{i}-4 \hat{j}-4 \hat{k}), \vec{b}=(2 \hat{i}-\hat{j}+\hat{k}) \text { and } \vec{c}=(\hat{i}-3 \hat{j}-5 \hat{k})\) respectively, from the vertices of a right-angled triangle.

Solution

We have

\(\overrightarrow{A B}\) = (p.v. of B) – (p.v. of A) = \((\vec{b}-\vec{a})\)

= \((2 \hat{i}-\hat{j}+\hat{k})-(3 \hat{i}-4 \hat{j}-4 \hat{k})=(-\hat{i}+3 \hat{j}+5 \hat{k})\);

\(\overrightarrow{B C}\) = (p.v. of C)-(p.v. of B) = \((\vec{c}-\vec{b})\)

= \((\hat{i}-3 \hat{j}-5 \hat{k})-(2 \hat{i}-\hat{j}+\hat{k})=(-\hat{i}-2 \hat{j}-6 \hat{k})\);

\(\overrightarrow{C A}\) = (p.v. of A)-(p.v. of C) = \((\hat{a}-\hat{c})\)

= \((3 \hat{i}-4 \hat{j}-4 \hat{k})-(\hat{i}-3 \hat{j}-5 \hat{k})=(2 \hat{i}-\hat{j}+\hat{k})\)

∴ \(|\overrightarrow{A B}|^2=\left\{(-1)^2+3^2+5^2\right\}=35\)

\(|\overrightarrow{A B}|^2=\left\{(-1)^2+3^2+5^2\right\}=35\)

and \(|\overrightarrow{C A}|^2=\left\{2^2+(-1)^2+1^2\right\}=6\)

Thus, \(|\overrightarrow{A B}|^2+|\overrightarrow{C A}|^2=|\overrightarrow{B C}|^2\), i.e., AB2 + CA2 = BC2.

Hence, △ABC is right angled at A.

Scalar Product of Vectors

Angle Between Two Vectors Let \(\overrightarrow{P Q}\) and \(\overrightarrow{R S}\) be two given vectors. Take any point O, draw OA ∥ PQ and OB ∥ RS. Then, ∠AOB = θ is called the angle between \(\overrightarrow{P Q}\) and \(\overrightarrow{R S}\), provided 0 ≤ θ ≤ π.

If θ = 0 or θ = π then \(\overrightarrow{P Q}\) ∥ \(\overrightarrow{R S}\).

If θ = \(\frac{\pi}{2}\) then \(\overrightarrow{P Q}\) and \(\overrightarrow{R S}\) are called perpendicular or orthogonal vectors.

Scalar Product Or Dot Product Of Two Vectors Let \(\vec{a}\) and \(\vec{b}\) be two vectors and let θ be the angle between them. Then, the scalar product, or dot product, of \(\vec{a}\) and \(\vec{b}\), denoted by \(\vec{a}\).\(\vec{b}\), is defined as \(\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}|\) cos θ = ab cos θ.

Clearly, the scalar product of two vectors is a scalar.

Types of Vectors Explained

Angle Between Two Vectors In Terms Of Scalar Product Let θ be the angle between two nonzero vectors \(\vec{a}\) and \(\vec{b}\). Then,

\(\vec{a}\).\(\vec{b}\) = \(|\vec{a}||\vec{b}| \cos \theta \text {. }\)

∴ \(\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} \Rightarrow \theta=\cos ^{-1}\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}\right) .\)

Length Of A Vector Let \(\vec{a}\) be any vector.

Then, \(\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} \Rightarrow \theta=\cos ^{-1}\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}\right) .\)

∴ \(|\vec{a}|=\sqrt{\vec{a} \cdot \vec{a}} .\)

Remarks (1) If \(\vec{a}\) = \(\overrightarrow{0}\) or \(\vec{b}\) = \(\overrightarrow{0}\), we define \(\vec{a}\).\(\vec{b}\) = 0.

(2) If \(\vec{a}\) and \(\vec{b}\) are like vectors, we have θ = 0.

∴ \(\vec{a} \cdot \vec{b}=a b \cos 0^{\circ}=a b .\)

(3) If \(\vec{a}\) and \(\vec{b}\) are unlike vectors, we have θ = π.

∴ \(\vec{a} \cdot \vec{b}=a b \cos \pi=-a b .\)

(4) If \(\vec{a}\) and \(\vec{b}\) are orthogonal vectors, we have θ = \(\frac{\pi}{2}\).

∴ \(\vec{a} \cdot \vec{b}=a b \cos \frac{\pi}{2}=0 .\)

Example 1 Let \(\vec{a}\) and \(\vec{b}\) be two given vectors such that |\(\vec{a}\)| = 3, |\(\vec{b}\)| = 4 and the angle between them is 60°. Find \(\vec{a}\).\(\vec{b}\).

Solution

Clearly, we have

\(\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos 60^{\circ}=\left(3 \times 4 \times \frac{1}{2}\right)=6 \text {. }\)

Example 2 Let \(\vec{a}\) and \(\vec{b}\) be two given vectors such that |\(\vec{a}\)| = 2, |\(\vec{b}\)| = 1 and \(\vec{a}\).\(\vec{b}\) = 1. Find the angle between \(\vec{a}\) and \(\vec{b}\).

Solution

Let θ be the angle between \(\vec{a}\) and \(\vec{b}\). Then,

\(\vec{a} \cdot \vec{b}=1 \Rightarrow|\vec{a}||\vec{b}| \cos \theta=1\)

⇒ (2 x 1)cos θ = 1 [∵ |\(\vec{a}\)| = 2 and |\(\vec{b}\)| = 1]

⇒ \(\cos \theta=\frac{1}{2} \Rightarrow \theta=\cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}\)

Hence, the angle between \(\vec{a}\) and \(\vec{b}\) is \(\frac{\pi}{3}\).

Orthonormal Vector Triad Let \(\hat{i}, \hat{j}, \hat{k}\) be unit vectors along three mutually perpendicular coordinate axes, the x-axis, y-axis and z-axis respectively. Then, these vectors are said to form an orthonormal triad of vectors.

Clearly, we have

(1) \(\hat{i} \cdot \hat{i}=|\hat{i}||\hat{i}| \cos 0^{\circ}=1\)

Similarly, \(\hat{j} \cdot \hat{j}=1 \text { and } \hat{k} \cdot \hat{k}=1 \text {. }\)

Thus, \(\hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1\).

(2) \(\hat{i} \cdot \hat{j}=|\hat{i}||\hat{j}| \cos \frac{\pi}{2}=0 \text {. }\)

Similarly, \(\hat{i} \cdot \hat{k}=0, \hat{j} \cdot \hat{k}=0, \hat{j} \cdot \hat{i}=0, \hat{k} \cdot \hat{i}=0 \text { and } \hat{k} \cdot \hat{j}=0\)

∴ \(\hat{i} \cdot \hat{j}=\hat{i} \cdot \hat{k}=\hat{j} \cdot \hat{i}=\hat{j} \cdot \hat{k}=\hat{k} \cdot \hat{i}=\hat{k} \cdot \hat{j}=0\)

Projection Of \(\vec{b}\) on \(\vec{a}\) Let \(\overrightarrow{O A}=\vec{a}\), \(\overrightarrow{O B}=\vec{b}\) and ∠AOB = θ. Draw BM ⊥ OA. Then, OM is projection of \(\vec{b}\) on \(\vec{a}\).

OM = projection of \(\vec{b}\) on \(\vec{a}\) = \(\frac{(\vec{a} \cdot \vec{b})}{|\vec{a}|}\)

Properties of Scalar Product

Theorem 1 (Commutative Law) Prove that \(\vec{a}\).\(\vec{b}\) = \(\vec{b}\).\(\vec{a}\)

Proof

If \(\vec{a}\) or \(\vec{b}\) is a zero vector then \(\vec{a}\).\(\vec{b}\) = 0 and \(\vec{b}\).\(\vec{a}\) = 0.

So, in this case, \(\vec{a}\).\(\vec{b}\) = \(\vec{b}\).\(\vec{a}\)

Now, let \(\vec{a}\) and \(\vec{b}\) be any two nonzero vectors, and let θ be the angle between them. Then,

\(\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta=a b \cos \theta \text {, }\) and

\(\vec{b} \cdot \vec{a}=|\vec{b}||\vec{a}| \cos (-\theta)=b a \cos \theta=a b \cos \theta\)

So, in this case also, \(\vec{a}\).\(\vec{b}\) = \(\vec{b}\).\(\vec{a}\)

Hence, \(\vec{a}\).\(\vec{b}\) = \(\vec{b}\).\(\vec{a}\)

Theorem 2 Prove that \(\vec{a}\).\(\vec{b}\) = 0 \(\vec{a}\) = \(\overrightarrow{0}\) or \(\vec{b}\) = \(\overrightarrow{0}\) or \(\vec{a}\) ⊥ \(\vec{b}\).

Proof

Let \(\vec{a}\).\(\vec{b}\) = 0.

Then, \(\vec{a}\).\(\vec{b}\) = 0 ⇒ ab cos θ = 0

⇒ a = 0 or b = 0 or cos θ = 0

⇒ a = 0 or b = 0 or θ = \(\frac{\pi}{2}\)

⇒ \(\vec{a}\) = \(\overrightarrow{0}\) or \(\vec{b}\) = \(\overrightarrow{0}\) or \(\vec{a}\) ⊥ \(\vec{b}\).

Thus, \(\vec{a}\).\(\vec{b}\) = 0 ⇒ \(\vec{a}\) = \(\overrightarrow{0}\) or \(\vec{b}\) = \(\overrightarrow{0}\) or \(\vec{a}\) ⊥ \(\vec{b}\)

Conversely, let \(\vec{a}\) = \(\overrightarrow{0}\) or \(\vec{b}\) = \(\overrightarrow{0}\) or \(\vec{a}\) ⊥ \(\vec{b}\).

If \(\vec{a}\) = \(\overrightarrow{0}\) or \(\vec{b}\) = \(\overrightarrow{0}\) then by definition, \(\vec{a}\).\(\vec{b}\) = 0

If \(\vec{a}\) ⊥ \(\vec{b}\) then \(\vec{a}\).\(\vec{b}\) = ab cos \(\frac{\pi}{2}\) = 0.

∴ \(\vec{a}\) = \(\overrightarrow{0}\) or \(\vec{b}\) = \(\overrightarrow{0}\) ⇔ \(\vec{a}\) ⊥ \(\vec{b}\) ⇒ \(\vec{a}\).\(\vec{b}\) = 0.

Hence, \(\vec{a}\).\(\vec{b}\) = 0. ⇔ \(\vec{a}\) = \(\overrightarrow{0}\) or \(\vec{b}\) = \(\overrightarrow{0}\) or \(\vec{a}\) ⊥ \(\vec{b}\).

Theorem 3 (Cauch Schwartz Inequality) Prove that \(|\vec{a} \cdot \vec{b}| \leq|\vec{a}||\vec{b}|\).

Proof

When \(\vec{a}\) = \(\overrightarrow{0}\) or \(\vec{b}\) = \(\overrightarrow{0}\), then

\(|\vec{a} \cdot \vec{b}|=0=|\vec{a}||\vec{b}| \text {. }\)

So, let us assume that \(\vec{a}\) ≠ \(\overrightarrow{0}\) and \(\vec{b}\) ≠ \(\overrightarrow{0}\). Then,

\((\vec{a} \cdot \vec{b})=|\vec{a}||\vec{b}| \cos \theta\)

⇒ \(|\vec{a} \cdot \vec{b}|=|\vec{a}||\vec{b}||\cos \theta|\)

⇒ \(\frac{|\vec{a} \cdot \vec{b}|}{|\vec{a}||\vec{b}|}=|\cos \theta| \leq 1\)

⇒ \(|\vec{a} \cdot \vec{b}| \leq|\vec{a}||\vec{b}| .\)

Hence, \(|\vec{a} \cdot \vec{b}| \leq|\vec{a}||\vec{b}| .\)

Theorem 4 (Triangle Inequality) Prove that \(|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}| \text {. }\)

Proof

When \(\vec{a}\) = \(\overrightarrow{0}\), then |\(\vec{a}\)| = 0.

∴ \(|\vec{a}+\vec{b}|=|\overrightarrow{0}+\vec{b}|=|\vec{b}| \text { and }|\vec{a}|+|\vec{b}|=0+|\vec{b}|=|\vec{b}| \text {. }\)

So, in this case, \(|\vec{a}+\vec{b}|=|\vec{a}|+|\vec{b}|\)

Similarly, when \(\vec{b}\) = \(\overrightarrow{0}\), we have \(|\vec{a}+\vec{b}|=|\vec{a}|+|\vec{b}|\)

Let us consider the case when \(\vec{a}\) ≠ \(\overrightarrow{0}\) and \(\vec{b}\) ≠ \(\overrightarrow{0}\).

Now, \(|\vec{a}+\vec{b}|^2=(\vec{a}+\vec{b})^2\)

= \((\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})\)

= \(\vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b}\)

= \(|\vec{a}|^2+2(\vec{a} \cdot \vec{b})+|\vec{b}|^2\) [∵ \(\vec{b} \cdot \vec{a}=\vec{a} \cdot \vec{b}\)]

≤ \(|\vec{a}|^2+2|\vec{a} \cdot \vec{b}|+|\vec{b}|^2 \) [∵ α ≤ |α| ∀ α ∈ R]

≤ \(|\vec{a}|^2+2|\vec{a}| \cdot|\vec{b}|+|\vec{b}|^2\) [∵ \(|\vec{a} \cdot \vec{b}| \leq|\vec{a}| \cdot|\vec{b}|\)]

= \(\{|\vec{a}|+|\vec{b}|\}^2\)

∴ \(|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}| \text {. }\)

Common Questions on Vector Algebra and Their Solutions

Theorem 5 (Distributive Law) Prove that \(\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c} .\)

Proof

Let O be the origin, \(\overrightarrow{O A}\) = \(\vec{a}\), \(\overrightarrow{O B}\) = \(\vec{b}\) and \(\overrightarrow{B C}\) = \(\vec{c}\). Then,

\(\overrightarrow{O C}=(\overrightarrow{O B}+\overrightarrow{B C})=(\vec{b}+\vec{c})\)

Draw BM ⊥ OA and CN ⊥ OA. Then,

\(\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \overrightarrow{O C}\)

= \(\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \overrightarrow{O C}\), where ∠AOC = θ.

= a x ON [∵ (OC)cos θ = ON]

= a(OM + MN)

= a(OM) + a(MN)

= a(projection of \(\vec{v}\) on \(\vec{a}\)) + a(projection of \(\vec{c}\) on \(\vec{a}\))

= \((\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c})\)

Hence, \(\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c} .\)

Theorem 6 For any two vectors \(\vec{a}\) and \(\vec{b}\),

(1) \(\vec{a} \cdot(-\vec{b})=-(\vec{a} \cdot \vec{b})=(-\vec{a}) \cdot \vec{b}\)

(2) \((-\vec{a}) \cdot(-\vec{b})=\vec{a} \cdot \vec{b}\)

Proof

Let \(\overrightarrow{O A}\) = \(\vec{a}\) and \(\overrightarrow{O B}\) = \(\vec{b}\). Produce AO and BO to A’ and B’ respectively, such that OA’ = OA and OB’ = OB.

Then, \(\overrightarrow{O A^{\prime}}=-\vec{a} \text { and } \overrightarrow{O B^{\prime}}=-\vec{b}\)

Let ∠AOB = θ.

Then, ∠AOB’ = π – θ.

(1) \(\vec{a} \cdot(-\vec{b})=|\vec{a}||-\vec{b}| \cos (\pi-\theta)\)

= \(|\vec{a}||\vec{b}| \cdot(-\cos \theta)\)

= \(-a b \cos \theta=-(\vec{a} \cdot \vec{b}) .\)

∴ \(\vec{a} \cdot(-\vec{b})=-(\vec{a} \cdot \vec{b}) .\)

Similarly, \((-\vec{a}) \cdot \vec{b}=-(\vec{a} \cdot \vec{b}) .\)

Hence, \(\vec{a} \cdot(-\vec{b})=(-\vec{a}) \cdot \vec{b}=-(\vec{a} \cdot \vec{b})\)

(2) \((-\vec{a}) \cdot(-\vec{b})=|-\vec{a}||-\vec{b}| \cos \angle A^{\prime} O B^{\prime}\)

= \(|\vec{a}||\vec{b}| \cos \theta\) [∵ ∠A’OB’ = θ]

= \(a b \cos \theta=\vec{a} \cdot \vec{b} .\)

Hence, \((-\vec{a}) \cdot(-\vec{b})=\vec{a} \cdot \vec{b}\).

Theorem 7 If \(\vec{a}=a_1 \hat{i}+a_2 \hat{j}+a_3 \hat{k} \quad \text { and } \quad \vec{b}=b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k}\), prove that \((\vec{a} \cdot \vec{b})=\left(a_1 b_1+a_2 b_2+a_3 b_3\right) .\)

Proof

We have

\(\vec{a} \cdot \vec{b}=\left(a_1 \hat{i}+a_2 \hat{j}+a_3 \hat{k}\right) \cdot\left(b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k}\right)\)

= \(a_1 \hat{i} \cdot\left(b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k}\right)+a_2 \hat{j} \cdot\left(b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k}\right)+a_3 \hat{k} \cdot\left(b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k}\right)\)

= \(\left(a_1 b_1\right)(\hat{i} \cdot \hat{i})+\left(a_1 b_2\right)(\hat{i} \cdot \hat{j})+\left(a_1 b_3\right)(\hat{i} \cdot \hat{k})+\left(a_2 b_1\right)(\hat{j} \cdot \hat{i})\)
\(+\left(a_2 b_2\right)(\hat{j} \cdot \hat{j})+\left(a_2 b_3\right)(\hat{j} \cdot \hat{k})+\left(a_3 b_1\right)(\hat{k} \cdot \hat{i})+\left(a_3 b_2\right)(\hat{k} \cdot \hat{j})+\left(a_3 b_3\right)(\hat{k} \cdot \hat{k})\)

= \(\left(a_1 b_1+a_2 b_2+a_3 b_3\right)\)

[∵ \(\hat{i} \cdot \hat{i}=\hat{j} \cdot \hat{j}=\hat{k} \cdot \hat{k}=1, \hat{i} \cdot \hat{j}=\hat{i} \cdot \hat{k}=\hat{j} \cdot \hat{i}\) = … = 0].

Hence, \(\left(a_1 \hat{i}+a_2 \hat{j}+a_3 \hat{k}\right) \cdot\left(b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k}\right)=\left(a_1 b_1+a_2 b_2+a_3 b_3\right)\)

Condition Of Perpendicularity

Let \(\vec{a}=a_1 \hat{i}+a_2 \hat{j}+a_3 \hat{k} \quad \text { and } \quad \vec{b}=b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k}\)

Then, \(\vec{a}\) ⊥ \(\vec{b}\) ⇔ \(\vec{a}\).\(\vec{b}\) = 0 ⇔ \(a_1 b_1+a_2 b_2+a_3 b_3=0 .\)

Thus, \(\vec{a}\) ⊥ \(\vec{b}\) ⇔ \(a_1 b_1+a_2 b_2+a_3 b_3=0 .\)

Angle Between Two Vectors

Let \(\vec{a}=a_1 \hat{i}+a_2 \hat{j}+a_3 \hat{k} \quad \text { and } \quad \vec{b}=b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k}\), let θ be the angle between them. Then,

\(\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta\)

⇔ \(a_1 b_1+a_2 b_2+a_3 b_3=|\vec{a}||\vec{b}| \cos \theta\)

⇔ \(\cos \theta=\frac{a_1 b_1+a_2 b_2+a_3 b_3}{|\vec{a}||\vec{b}|}\)

⇔ \(\theta=\cos ^{-1}\left\{\frac{a_1 b_1+a_2 b_2+a_3 b_3}{\left(\sqrt{a_1^2+a_2^2+a_3^2}\right)\left(\sqrt{b_1^2+b_2^2+b_3^2}\right)}\right\}\)

Solved Examples

Example 1 Let \(\vec{a}\) and \(\vec{b}\) be two given vectors such that \(|\vec{a}|=\sqrt{3},|\vec{b}|=2\) and \(\vec{a} \cdot \vec{b}=\sqrt{6}\). Find the angle between \(\vec{a}\) and \(\vec{b}\).

Solution

Let θ be the angle between \(\vec{a}\) and \(\vec{b}\). Then,

\(\vec{a} \cdot \vec{b}=\sqrt{6}\) ⇒ \(|\vec{a}||\vec{b}| \cos \theta=\sqrt{6}\)

⇒ \((\sqrt{3})(2) \cos \theta=\sqrt{6}\)

⇒ \(\cos \theta=\frac{\sqrt{6}}{2 \sqrt{3}}=\frac{1}{\sqrt{2}} ⇒ \theta=\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\frac{\pi}{4}\)

Hence, the required angle is \(\frac{\pi}{4}\).

Example 2 If \(\vec{a}\) and \(\vec{b}\) are two vectors such that \(|\vec{a}|=|\vec{b}|=\sqrt{2}\) and \(\vec{a}\).\(\vec{b}\) = -1, find the angle between \(\vec{a}\) and \(\vec{b}\).

Solution

Let θ be the angle between \(\vec{a}\) and \(\vec{b}\). Then,

\(\vec{a}\).\(\vec{b}\) = -1

⇔ \(|\vec{a}| \cdot|\vec{b}| \cdot \cos \theta=-1\)

⇔ \(\sqrt{2} \times \sqrt{2} \times \cos \theta=-1\)

⇔ \(\cos \theta=\frac{-1}{2}\)

⇔ \(\theta=\frac{2 \pi}{3}\) [∵ 0 ≤ θ ≤ 2π].

Hence, the angle between \(\vec{a}\) and \(\vec{b}\) is \(\frac{2 \pi}{3}\).

Example 3 Find the angle between the vectors \(\vec{a}=(3 \hat{i}-2 \hat{j}+\hat{k}) \text { and } \vec{b}=(\hat{i}-2 \hat{j}-3 \hat{k}) \text {. }\)

Solution

Let θ be the angle between \(\vec{a}\) and \(\vec{b}\).

Now, \(|\vec{a}|=\sqrt{3^2+(-2)^2+1^2}=\sqrt{14} \text {. }\)

And, \(|\vec{b}|=\sqrt{1^2+(-2)^2+(-3)^2}=\sqrt{14}\)

Now, \(\vec{a} \cdot \vec{b}=(3 \hat{i}-2 \hat{j}+\hat{k}) \cdot(\hat{i}-2 \hat{j}+3 \hat{k})\)

= [(3×1)+(-2)(-2)+(1×3)] = (3+4+3) = 10

⇒ \(|\vec{a}||\vec{b}| \cos \theta=10\)

⇒ \((\sqrt{14} \cdot \sqrt{14}) \cos \theta=10\) ⇒ \(\cos \theta=\frac{10}{14}=\frac{5}{7}\)

⇒ \(\theta=\cos ^{-1}\left(\frac{5}{7}\right) .\)

Hence, the required angle is cos-1(5/7).

Applications of Vector Algebra in Real Life

Example 4 If \(\vec{a}=\hat{i}+\hat{j}+2 \hat{k} \text { and } \vec{b}=3 \hat{i}+2 \hat{j}-\hat{k}\), find the value of \((\vec{a}+3 \vec{b}) \cdot(2 \vec{a}-\vec{b}) .\)

Solution

We have

\((\vec{a}+3 \vec{b})=(\hat{i}+\hat{j}+2 \hat{k})+3(3 \hat{i}+2 \hat{j}-\hat{k})\)

= \((\vec{a}+3 \vec{b})=(\hat{i}+\hat{j}+2 \hat{k})+3(3 \hat{i}+2 \hat{j}-\hat{k})\)

= \((10 \hat{i}+7 \hat{j}-\hat{k})\), and

\((2 \vec{a}-\vec{b})=2(\hat{i}+\hat{j}+2 \hat{k})-(3 \hat{i}+2 \hat{j}-\hat{k})\)

= \((2 \hat{i}+2 \hat{j}+4 \hat{k})-(3 \hat{i}+2 \hat{j}-\hat{k})=(-\hat{i}+5 \hat{k})\)

∴ \((\vec{a}+3 \vec{b}) \cdot(2 \vec{a}-\vec{b})=(10 \hat{i}+7 \hat{j}-\hat{k}) \cdot(-\hat{i}+0 \hat{j}+5 \hat{k})\)

= [10 x (-1) + 7 x 0 + (-1) x 5] = -15.

Hence, \((\vec{a}+3 \vec{b}) \cdot(2 \vec{a}-\vec{b})=-15\).

Example 5 Find the value of λ for which the vectors \(\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k} \text { and } \vec{b}=\hat{i}+\lambda \hat{j}-3 \hat{k}\) are perpendicular to each other.

Solution

\(\vec{a}\) ⊥ \(\vec{b}\) ⇔ \(\vec{a}\).\(\vec{b}\) = 0

⇔ \((3 \hat{i}+\hat{j}-2 \hat{k}) \cdot(\hat{i}+\lambda \hat{j}-3 \hat{k})=0\)

⇔ 3 x 1 + 1 x λ + (-2) x (-3) = 0

⇔ λ = -9.

Hence, the required value of λ is -9.

Example 5 If \(\vec{a}=(5 \hat{i}-\hat{j}-3 \hat{k}) \text { and } \vec{b}=(\hat{i}+3 \hat{j}-5 \hat{k})\), then show that \((\vec{a}+\vec{b})\) and \((\vec{a}-\vec{b})\) are perpendicular to each other.

Solution

We have

\((\vec{a}+\vec{b})=(5 \hat{i}-\hat{j}-3 \hat{k})+(\hat{i}+3 \hat{j}-5 \hat{k})=(6 \hat{i}+2 \hat{j}-8 \hat{k})\), and

\((\vec{a}-\vec{b})=(5 \hat{i}-\hat{j}-3 \hat{k})-(\hat{i}+3 \hat{j}-5 \hat{k})=(4 \hat{i}-4 \hat{j}+2 \hat{k}) .\)

∴ \((\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=(6 \hat{i}+2 \hat{j}-8 \hat{k}) \cdot(4 \hat{i}-4 \hat{j}+2 \hat{k})\)

= (24 – 8 – 16) = 0.

Hence, \((\vec{a}+\vec{b})\) and \((\vec{a}-\vec{b})\) are perpendicular to each other.

Example 7 If \(\overrightarrow{A B}\) = \((2 \hat{i}+\hat{j}-3 \hat{k})\), A(1,2,-1) is the given point then find the coordinates of B.

Solution

Let O be the origin. Then, \(\overrightarrow{O A}\) = \((\hat{i}+2 \hat{j}-\hat{k})\)

∴ \(\overrightarrow{A B}=(\overrightarrow{O B}-\overrightarrow{O A})\)

⇒ \(\overrightarrow{O B}=\overrightarrow{A B}+\overrightarrow{O A}\)

⇒ \(\overrightarrow{O B}=(2 \hat{i}+\hat{j}-3 \hat{k})+(\hat{i}+2 \hat{j}-\hat{k})=(3 \hat{i}+3 \hat{j}-4 \hat{k})\)

Hence, the coordinates of B are (3,3,-4).

Example 8 Find the projection of \(\vec{a}=2 \hat{i}-\hat{j}+\hat{k} \text { on } \vec{b}=\hat{i}-2 \hat{j}+\hat{k}\)

Solution

Projection of \(\vec{a}\) on \(\vec{b}\) = \(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}\)

= \(\frac{(2 \hat{i}-\hat{j}+\hat{k}) \cdot(\hat{i}-2 \hat{j}+\hat{k})}{\sqrt{1^2+(-2)^2+1^2}}=\frac{(2+2+1)}{\sqrt{6}}=\frac{5}{\sqrt{6}} .\)

Example 9 If \(\hat{a}\) is a unit vector such that \((\vec{x}-\hat{a}) \cdot(\vec{x}+\hat{a})\) = 3, then find |\(\vec{x}\)|.

Solution

Since \(\hat{a}\) is a unit vector, we have |\(\hat{a}\)| = 1.

Now, \((\vec{x}-\hat{a}) \cdot(\vec{x}+\hat{a})\) = 3

⇒ \(\vec{x} \cdot \vec{x}+\vec{x} \cdot \hat{a}-\hat{a} \cdot \vec{x}-\hat{a} \cdot \hat{a}=3\)

⇒ \(|\vec{x}|^2+\vec{x} \cdot \hat{a}-\vec{x} \cdot \hat{a}-|\hat{a}|^2=3\) [∵ \(\hat{a}\).\(\vec{x}\) = \(\vec{x}\).\(\hat{a}\)]

⇒ \(|\vec{x}|^2-1=3\) [∵ \(|\hat{a} \cdot|^2=1\)]

⇒ \(|\vec{x}|^2=4\)

⇒ \(|\vec{x}|=2\) [∵ |\(\vec{x}\)| ≥ 0].

Example 10 If \(\vec{a}\) and \(\vec{b}\) are vectors such that |\(\vec{a}\)| = 2, |\(\vec{b}\)| = 3 and \(\vec{a}\).\(\vec{b}\) = 4, find \(|\vec{a}-\vec{b}|\).

Solution

We have

\(|\vec{a}-\vec{b}|^2=(\vec{a}-\vec{b}) \cdot(\vec{a}-\vec{b})\)

= \(\vec{a} \cdot \vec{a}-\vec{a} \cdot \vec{b}-\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b}\) (by distributive law)

= \(|\vec{a}|^2-2 \vec{a} \cdot \vec{b}+|\vec{b}|^2\) [∵ \(\vec{a}\).\(\vec{b}\) = \(\vec{b}\).\(\vec{a}\)]

= (22 – 2 x 4 + 32) = 5.

Hence, \(|\vec{a}-\vec{b}|\) = √5.

Example 11 Find a vector whose magnitude is 3 units and which is perpendicular to each of the vectors \(\vec{a}=3 \hat{i}+\hat{j}-4 \hat{k} \text { and } \vec{b}=6 \hat{i}+5 \hat{j}-2 \hat{k} \text {. }\)

Solution

Let the required vector be \(\vec{c}=c_1 \hat{i}+c_2 \hat{j}+c_3 \hat{k}\)

Then, \(|\vec{c}|=3 \Leftrightarrow \sqrt{c_1^2+c_2^2+c_3^2}=3 \Leftrightarrow c_1^2+c_2^2+c_3^2=9\) …(1)

Also, \(\vec{c}\) ⊥ \(\vec{a}\) ⇒ \(\vec{c}\).\(\vec{a}\) = 0

⇒ \(\left(c_1 \hat{i}+c_2 \hat{j}+c_3 \hat{k}\right) \cdot(6 \hat{i}+5 \hat{j}-2 \hat{k})=0\)

⇒ 3c1 + c2 – 4c3 = 0 …(2)

And, \(\vec{c}\) ⊥ \(\vec{b}\) ⇒ \(\vec{c}\).\(\vec{b}\) = 0

⇒ \(\left(c_1 \hat{i}+c_2 \hat{j}+c_3 \hat{k}\right) \cdot(6 \hat{i}+5 \hat{j}-2 \hat{k})=0\)

⇒ 6c1 + 5c2 – 2c3 = 0 …(3)

From (2) and (3), by cross multiplication, we get

\(\frac{c_1}{(-2+20)}=\frac{c_2}{(-24+6)}=\frac{c_3}{(15-6)}=k \text { (say) }\)

⇒ \(\frac{c_1}{18}=\frac{c_2}{-18}=\frac{c_3}{9}=k \Rightarrow \frac{c_1}{2}=\frac{c_2}{-2}=\frac{c_3}{1}=k\)

⇒ c1 = 2k, c2 = -2 and c3 = 1.

Hence, \(\vec{c}=(2 \hat{i}-2 \hat{j}+\hat{k})\) is the required vector.

Example 12 If \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) be three vectors such that \(\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}\) and |\(\vec{a}\)| = 3, |\(\vec{b}\)| = 5, |\(\vec{c}\)| = 7, find the angle between \(\vec{a}\) and \(\vec{b}\).

Solution

Let θ be the angle between \(\vec{a}\) and \(\vec{b}\).

Now, \(\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}\)

⇒ \((\vec{a}+\vec{b})=-\vec{c}\)

⇒ \((\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=(-\vec{c}) \cdot(-\vec{c})\)

⇒ \(\vec{a} \cdot \vec{a}+\vec{b} \cdot \vec{b}+2 \vec{a} \cdot \vec{b}=\vec{c} \cdot \vec{c}\) [∵ \(\vec{b}\).\(\vec{a}\) = \(\vec{a}\).\(\vec{b}\)]

⇒ \(|\vec{a}|^2+|\vec{b}|^2+2|\vec{a}||\vec{b}| \cos \theta=|\vec{c}|^2\)

⇒ 9 + 25 + 2 x 3 x 5 x cos θ = 49 [∵ |\(\vec{a}\)| = 3, |\(\vec{b}\)| = 5, |\(\vec{c}\)| = 7]

⇒ cos θ = \(\frac{1}{2}\)

⇒ θ = 60°.

Hence, the angle between \(\vec{a}\) and \(\vec{b}\) is 60°.

Example 13 If \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) are vectors such that |\(\vec{a}\)| = 5, |\(\vec{b}\)| = 4, |\(\vec{c}\)| = 3 and each is perpendicular to the sum of the other two, find \(|\vec{a}+\vec{b}+\vec{c}|\).

Solution

As given, we have

\(\vec{a} \perp(\vec{b}+\vec{c}), \vec{b} \perp(\vec{c}+\vec{a}) \text { and } \vec{c} \perp(\vec{a}+\vec{b})\)

⇒ \(\vec{a} \cdot(\vec{b}+\vec{c})=0, \vec{b} \cdot(\vec{c}+\vec{a})=0 \text { and } \vec{c} \cdot(\vec{a}+\vec{b})=0\)

⇒ \(\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}=0, \vec{b} \cdot \vec{c}+\vec{b} \cdot \vec{a}=0 \text { and } \vec{c} \cdot \vec{a}+\vec{c} \cdot \vec{b}=0\) [by the distributive law]

⇒ \(2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=0\) …(1)

[using \(\vec{b}\).\(\vec{a}\) = \(\vec{a}\).\(\vec{b}\), etc., and adding]

∴ \(|\vec{a}+\vec{b}+\vec{c}|^2=(\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{a}+\vec{b}+\vec{c})\)

= \((\vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c})+(\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b}+\vec{b} \cdot \vec{c})+(\vec{c} \cdot \vec{a}+\vec{c} \cdot \vec{b}+\vec{c} \cdot \vec{c})\)

= \(|\vec{a}|^2+|\vec{b}|^2+|\vec{c}|^2+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})\) [using \(\vec{b}\).\(\vec{a}\) = \(\vec{a}\).\(\vec{b}\), etc.]

= (25 + 16 + 9 + 0) = 50

[using (1), and |\(\vec{a}\)| = 3, |\(\vec{b}\)| = 4 and |\(\vec{c}\)| = 5]

⇒ \(|\vec{a}+\vec{b}+\vec{c}|=\sqrt{50}=5 \sqrt{2}\)

Hence, \(|\vec{a}+\vec{b}+\vec{c}|=5 \sqrt{2}\).

Example 14 If \(\hat{a}\) and \(\hat{b}\) are unit vectors and θ is the angle between them, prove that \(\sin \frac{\theta}{2}=\frac{1}{2}|\hat{a}-\hat{b}| .\)

Solution

We have

\(|\hat{a}-\hat{b}|^2=(\hat{a}-\hat{b}) \cdot(\hat{a}-\hat{b})\)

= \(\hat{a} \cdot \hat{a}+\hat{b} \cdot \hat{b}-2 \hat{a} \cdot \hat{b}\) [∵ \(\vec{b}\).\(\vec{a}\) = \(\vec{a}\).\(\vec{b}\)]

= (1 + 1 – 2 x 1 x 1 x cosθ) [∵ \(\hat{a} \cdot \hat{a}=1 \text { and } \hat{b} \cdot \hat{b}=1\)]

= \(2(1-\cos \theta)=4 \sin ^2 \frac{\theta}{2}\)

∴ \(\sin ^2 \frac{\theta}{2}=\frac{1}{4} \cdot|\hat{a}-\hat{b}|^2 \Rightarrow \sin \frac{\theta}{2}=\frac{1}{2}|\hat{a}-\hat{b}| .\)

Example 15 Let \(\vec{a}\) and \(\vec{b}\) be two nonzero vectors. Prove that \(\vec{a} \perp \vec{b} \Leftrightarrow|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}| .\)

Solution

Let \(\vec{a}\) ⊥ \(\vec{b}\). Then, \((\vec{a} \cdot \vec{b})=0\) …(1)

Now, \(|\vec{a}+\vec{b}|^2=(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})\)

= \(\vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b}\)

= \(|\vec{a}|^2+|\vec{b}|^2\) {∵ \(\vec{a}\).\(\vec{b}\) = 0 and \(\vec{b}\).\(\vec{a}\) = \(\vec{a}\).\(\vec{b}\) = 0}.

Also, \(|\vec{a}-\vec{b}|^2=(\vec{a}-\vec{b}) \cdot(\vec{a}-\vec{b})\)

= \(\vec{a} \cdot \vec{a}-\vec{a} \cdot \vec{b}-\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b}\)

= \(|\vec{a}|^2+|\vec{b}|^2\) {∵ \(\vec{a}\).\(\vec{b}\) = 0 and \(\vec{b}\).\(\vec{a}\) = \(\vec{a}\).\(\vec{b}\) = 0}.

Thus, \(|\vec{a}+\vec{b}|^2=|\vec{a}-\vec{b}|^2\), and therefore, \(|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}| \text {. }\)

∴ \(\vec{a} \perp \vec{b} \Rightarrow|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}| .\)

Conversely, suppose that \(|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}| .\) Then,

\(|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}| \Rightarrow|\vec{a}+\vec{b}|^2=|\vec{a}-\vec{b}|^2\)

⇒ \((\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=(\vec{a}-\vec{b}) \cdot(\vec{a}-\vec{b})\)

⇒ \((\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=(\vec{a}-\vec{b}) \cdot(\vec{a}-\vec{b})\)

⇒ \(\vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b}=\vec{a} \cdot \vec{a}-\vec{a} \cdot \vec{b}-\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b}\)

⇒ \(2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{a})=0\)

⇒ \(4(\vec{a} \cdot \vec{b})=0\) [∵ \(\vec{b}\).\(\vec{a}\) = \(\vec{a}\).\(\vec{b}\)]

⇒ \(\vec{a}\).\(\vec{b}\) = 0

⇒ \(\vec{a}\) ⊥ \(\vec{b}\).

Thus, \(|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}| \Rightarrow \vec{a} \perp \vec{b} .\)

Hence, \(|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}| ⇔ \vec{a} \perp \vec{b} .\)

Example 16 If \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) are unit vectors such that \(\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}\) then find the value of \((\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})\).

Solution

Since \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) are unit vectors, we have

|\(\vec{a}\)| = 1, |\(\vec{b}\)| = 1 and |\(\vec{c}\)| = 1.

Now, \(\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}\)

⇒ \((\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{a}+\vec{b}+\vec{c})=0\) [∵ \(\overrightarrow{0}\).\(\overrightarrow{0}\) = 0]

⇒ \(\vec{a} \cdot \vec{a}+\vec{b} \cdot \vec{b}+\vec{c} \cdot \vec{c}+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=0\)

⇒ \(|\vec{a}|^2+|\vec{b}|^2+|\vec{c}|^2+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=0\)

⇒ \((\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=-\frac{3}{2}\) [∵ \(|\vec{a}|^2=1,|\vec{b}|^2=1,|\vec{c}|^2=1\)].

Hence, \((\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=-\frac{3}{2}\)

Example 17 If \(\vec{a}\).\(\vec{b}\) = \(\vec{a}\).\(\vec{c}\), show that \(\vec{a}\) = \(\overrightarrow{0}\) or \(\vec{b}\) = \(\vec{c}\) or \(\vec{a}\) ⊥ \((\vec{b}-\vec{c})\).

Solution

\(\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c} \Rightarrow \vec{a} \cdot \vec{b}-\vec{a} \cdot \vec{c}=0\)

⇒ \(\vec{a} \cdot(\vec{b}-\vec{c})=0\)

⇒ \(\vec{a}=\overrightarrow{0} \text { or }(\vec{b}-\vec{c})=\overrightarrow{0} \text { or } \vec{a} \perp(\vec{b}-\vec{c})\)

⇒ \(\vec{a}=\overrightarrow{0} \text { or } \vec{b}=\vec{c} \text { or } \vec{a} \perp(\vec{b}-\vec{c}) \text {. }\)

Hence, \(\vec{a}\).\(\vec{b}\) = \(\vec{a}\).\(\vec{c}\) ⇒ \(\vec{a}\) = \(\overrightarrow{0}\) or \(\vec{a}\) = \(\vec{c}\) or \(\vec{a}\) ⊥ \((\vec{b}-\vec{c}).\)

Example 18 For any vector \(\vec{a}\) in space, show that \((\vec{a} \cdot \hat{i}) \hat{i}+(\vec{a} \cdot \hat{j}) \hat{j}+(\vec{a} \cdot \hat{k}) \hat{k}=\vec{a}\)

Solution

Let \(\vec{a}=a_1 \hat{i}+a_2 \hat{j}+a_3 \hat{k}\). Then,

\(\vec{a} \cdot \hat{i}=\left(a_1 \hat{i}+a_2 \hat{j}+a_3 \hat{k}\right) \cdot \hat{i}=a_1(\hat{i} \cdot \hat{i})+a_2(\hat{j} \cdot \hat{i})+a_3(\hat{k} \cdot \hat{i})\)

= a1 [∵ \(\hat{i} \cdot \hat{i}=1, \hat{j} \cdot \hat{i}=0 \text { and } \hat{k} \cdot \hat{i}=0\)].

Thus, \(\vec{a}\).\(\hat{i}\) = a1.

Similarly, \(\vec{a}\).\(\hat{i}\) = a2 and \(\vec{a}\).\(\hat{k}\) = a3.

∴ \((\vec{a} \cdot \hat{i}) \hat{i}+(\vec{a} \cdot \hat{j}) \hat{j}+(\vec{a} \cdot \hat{k}) \hat{k}=\left(a_1 \hat{i}+a_2 \hat{j}+a_3 \hat{k}\right)=\vec{a} .\)

Hence, \((\vec{a} \cdot \hat{i}) \hat{i}+(\vec{a} \cdot \hat{j}) \hat{j}+(\vec{a} \cdot \hat{k}) \hat{k}=\vec{a} .\)

Example 19 If \(\vec{a}=(2 \hat{i}+2 \hat{j}+3 \hat{k}), \quad \vec{b}=(-\hat{i}+2 \hat{j}+\hat{k}) \text { and } \vec{c}=(3 \hat{i}+\hat{j})\) such that \((\vec{a}+\lambda \vec{b}) \perp \vec{c}\), then find the value of λ.

Solution

We have

\((\vec{a}+\lambda \vec{b})=(2 \hat{i}+2 \hat{j}+3 \hat{k})+\lambda(-\hat{i}+2 \hat{j}+\hat{k})\)

= \((2-\lambda) \hat{i}+2(1+\lambda) \hat{j}+(3+\lambda) \hat{k}\)

Now,

\((\vec{a}+\lambda \vec{b}) \perp \vec{c} \Rightarrow(\vec{a}+\lambda \vec{b}) \cdot \vec{c}=0\)

⇒ \(\{(2-\lambda) \hat{i}+2(1+\lambda) \hat{j}+(3+\lambda) \hat{k}\} \cdot(3 \hat{i}+\hat{j}+0 \cdot \hat{k})=0\)

⇒ 3(2-λ) + 2(1+λ) + 0 = 0 ⇒ λ = 8.

Hence, λ = 8.

Example 20 For any two nonzero vectors \(\vec{a}\) and \(\vec{b}\), show that \((a \vec{b}+b \vec{a}) \perp(a \vec{b}-b \vec{a})\)

Solution

We have

\((a \vec{b}+b \vec{a}) \cdot(a \vec{b}-b \vec{a})\)

= \(a \vec{b} \cdot a \vec{b}-a \vec{b} \cdot b \vec{a}+b \vec{a} \cdot a \vec{b}-b^2 \vec{a} \cdot \vec{a}\)

= \(a^2(\vec{b} \cdot \vec{b})-a b(\vec{b} \cdot \vec{a})+b a(\vec{a} \cdot \vec{b})-b^2(\vec{a} \cdot \vec{a})\)

= (a2b2 – b2a2) = 0 [∵ ab = ba and (\(\vec{b}\).\(\vec{a}\)) = (\(\vec{a}\),.\(\vec{b}\))

Hence, \((a \vec{b}+b \vec{a}) \perp(a \vec{b}-b \vec{a})\).

Example 21 If \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) are three mutually perpendicular vectors of the same magnitude, prove that \((\vec{a}+\vec{b}+\vec{c})\) is equally inclined to the vectors, \(\vec{a}\), \(\vec{b}\) and \(\vec{c}\).

Solution

\(|\vec{a}|=|\vec{b}|=|\vec{c}|=a\) (say) [given) …(1)

Since \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) are mutually perpendicular vectors, we have

\(\vec{a}\).\(\vec{b}\) = \(\vec{b}\).\(\vec{c}\) = \(\vec{c}\).\(\vec{a}\) = 0 …(2)

Now, \(|\vec{a}+\vec{b}+\vec{c}|^2=(\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{a}+\vec{b}+\vec{c})\)

= \(\vec{a} \cdot \vec{a}+\vec{b} \cdot \vec{b}+\vec{c} \cdot \vec{c}+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})\)

= \(|\vec{a}|^2+|\vec{b}|^2+|\vec{c}|^2\) [using(2)]

= 3a2 [using(1)]

∴ \(\vec{a}+\vec{b}+\vec{c}|=\sqrt{3} a\) …(3)

Suppose \((\vec{a}+\vec{b}+\vec{c})\) makes angles θ1, θ2, θ3 with \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) respectively.

Then, \((\vec{a}+\vec{b}+\vec{c}) \cdot \vec{a}=|\vec{a}+\vec{b}+\vec{c}||\vec{a}| \cos \theta_1\)

= \(\left(\sqrt{3} a \cdot a \cdot \cos \theta_1\right)=\sqrt{3} a^2 \cos \theta_1\)

⇔ \((\vec{a} \cdot \vec{a}+\vec{b} \cdot \vec{a}+\vec{c} \cdot \vec{a})=\sqrt{3} a^2 \cos \theta_1\)

⇔ \(|\vec{a}|^2=\sqrt{3} a^2 \cos \theta_1 \Leftrightarrow a^2=\sqrt{3} a^2 \cos \theta_1\)

⇔ \(\cos \theta_1=\frac{1}{\sqrt{3}} \Leftrightarrow \theta_1=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right) .\)

Similarly, \(\theta_2=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right) \text { and } \theta_3=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right) \text {. }\)

∴ \(\theta_1=\theta_2=\theta_3=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right) \text {. }\)

Hence, \((\vec{a}+\vec{b}+\vec{c})\) is equally inclined to \(\vec{a}\), \(\vec{b}\), \(\vec{c}\).

Example 22 If A(0,1,1), B(3,1,5) and C(0,3,3) be the vertices of a △ABC, show, using vectors, that △ABC is right angled at C.

Solution

Let O be the origin. Then,

\(\overrightarrow{O A}=0 \hat{i}+\hat{j}+\hat{k}\), \(\overrightarrow{O B}=3 \hat{i}+\hat{j}+5 \hat{k} \text { and } \overrightarrow{O C}=0 \hat{i}+3 \hat{j}+3 \hat{k}\)

∴ \(\overrightarrow{C A}=(\overrightarrow{O A}-\overrightarrow{O C})\)

= \((0 \hat{i}+\hat{j}+\hat{k})-(0 \hat{i}+3 \hat{j}+3 \hat{k})\)

= \((0-0) \hat{i}+(1-3) \hat{j}+(1-3) \hat{k}\)

= \((0 \hat{i}-2 \hat{j}-2 \hat{k})\)

∴ \(\overrightarrow{C B}=(\overrightarrow{O B}-\overrightarrow{O C})\)

= \((3 \hat{i}+\hat{j}+5 \hat{k})-(0 \hat{i}+3 \hat{j}+3 \hat{k})=(3 \hat{i}-2 \hat{j}+2 \hat{k})\)

∴ \(\overrightarrow{C A} \cdot \overrightarrow{C B}=(0 \hat{i}-2 \hat{j}-2 \hat{k}) \cdot(3 \hat{i}-2 \hat{j}+2 \hat{k})\)

= [(0.3) + (-2)x(-2) + (-2)x2] = 0

⇒ \(\overrightarrow{C A} \perp \overrightarrow{C B}\)

Hence, △ABC is the right angled at C.

Example 23 Show that the point A(2,-1,1), B(1,-3,-5) and C(3,-4,-4) are the vertices of a right-angled triangle. Also, find the remaining angles of the triangle.

Solution

Let O be the origin. Then,

\(\overrightarrow{O A}=(2 \hat{i}-\hat{j}+\hat{k})\), \(\overrightarrow{O B}=(\hat{i}-3 \hat{j}-5 \hat{k}) \text { and } \overrightarrow{O C}=(3 \hat{i}-4 \hat{j}-4 \hat{k})\)

∴ \(\overrightarrow{A B}=(\overrightarrow{O B}-\overrightarrow{O A})=(-\hat{i}-2 \hat{j}-6 \hat{k})\)

\(\overrightarrow{B C}=(\overrightarrow{O C}-\overrightarrow{O B})=(2 \hat{i}-\hat{j}+\hat{k})\) \(\overrightarrow{C A}=(\overrightarrow{O A}-\overrightarrow{O C})=(-\hat{i}+3 \hat{j}+5 \hat{k})\)

∴ \(\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=\overrightarrow{0}\)

This shows that A, B, C are the vertices of a triangle.

\(\overrightarrow{B C} \cdot \overrightarrow{C A}=(2 \hat{i}-\hat{j}+\hat{k}) \cdot(-\hat{i}+3 \hat{j}+5 \hat{k})\)

= [2 x (-1) + (-1) x 3 + 1 x 5] = 0.

∴ \(\overrightarrow{B C} \perp \overrightarrow{C A}\) and therefore, ∠C = 90°.

Hence, △ABC is right angled at C.

Now, ∠A us the angle between \(\overrightarrow{A B}\) and \(\overrightarrow{A C}\).

∴ \(\overrightarrow{A B} \cdot \overrightarrow{A C}=|\overrightarrow{A B}||\overrightarrow{A C}| \cos A\)

⇒ \(\cos A=\frac{\overrightarrow{A B} \cdot \overrightarrow{A C}}{|\overrightarrow{A B}| \cdot|\overrightarrow{A C}|}\)

= \(\frac{(-\hat{i}-2 \hat{j}-6 \hat{k}) \cdot(\hat{i}-3 \hat{j}-5 \hat{k})}{\left\{\sqrt{(-1)^2+(-2)^2+(-6)^2}\right\} \cdot\left\{\sqrt{1^2+(-3)^2+(-5)^2}\right\}}\)

[∵ \(\overrightarrow{A C}=-\overrightarrow{C A}=(\hat{i}-3 \hat{j}-5 \hat{k})\)]

= \(\frac{\{(-1) \times 1+(-2) \times(-3)+(-6) \times(-5)\}}{\sqrt{41} \times \sqrt{35}}=\sqrt{\frac{35}{41}}\)

⇒ A = \(\cos ^{-1}\left(\sqrt{\frac{35}{41}}\right)\)

Further, ∠B is the angle between \(\overrightarrow{B C}\) and \(\overrightarrow{B A}\).

∴ \(\overrightarrow{B C} \cdot \overrightarrow{B A}=|\overrightarrow{B C}||\overrightarrow{B A}| \cos B\)

⇒ \(\cos B=\frac{\overrightarrow{B C} \cdot \overrightarrow{B A}}{|\overrightarrow{B C}||\overrightarrow{B A}|}\)

= \(\frac{(2 \hat{i}-\hat{j}+\hat{k}) \cdot(\hat{i}+2 \hat{j}+6 \hat{k})}{\left\{\sqrt{2^2+(-1)^2+1^2}\right\}\left\{\sqrt{1^2+2^2+6^2}\right\}}\)

[∵ \(\overrightarrow{B A}=-\overrightarrow{A B}=(\hat{i}+2 \hat{j}+6 \hat{k})\)]

= \(\frac{\{2 \times 1+(-1) \times 2+1 \times 6\}}{\sqrt{6} \times \sqrt{41}}=\sqrt{\frac{6}{41}}\)

⇒ B = \(\cos ^{-1}\left(\sqrt{\frac{6}{41}}\right)\)

Hence, A = \(\cos ^{-1}\left(\sqrt{\frac{35}{41}}\right)\) and B = \(\cos ^{-1}\left(\sqrt{\frac{6}{41}}\right)\).

Example 24 Let \((\hat{i}+\hat{j}+\hat{k})\),\((2 \hat{i}+5 \hat{j})\),\((3 \hat{i}+2 \hat{j}-3 \hat{k})\) and \((\hat{i}-6 \hat{j}-\hat{k})\) be the position vectors of points A, B, C, D respectively. Find the angle between AB and CD. Hence, show that AB ∥ CD.

Solution

Let the angle between \(\overrightarrow{A B}\) and \(\overrightarrow{C D}\) be θ.

Now, \(\overrightarrow{A B}\) = (p.v. of B) – (p.v. of A)

= \((2 \hat{i}+5 \hat{j})-(\hat{i}+\hat{j}+\hat{k})=(\hat{i}+4 \hat{j}-\hat{k})\)

\(\overrightarrow{C D}\) = (p.v. of D) – (p.v. of C)

= \((\hat{i}-6 \hat{j}-\hat{k})-(3 \hat{i}+2 \hat{j}-3 \hat{k})=(-2 \hat{i}-8 \hat{j}+2 \hat{k})\)

∴ \(|\overrightarrow{A B}|=\sqrt{1^2+4^2+(-1)^2}=\sqrt{18}=3 \sqrt{2}\)

\(|\overrightarrow{C D}|=\sqrt{(-2)^2+(-8)^2+2^2}=\sqrt{72}=6 \sqrt{2}\)

Now, \(\overrightarrow{A B} \cdot \overrightarrow{C D}=(\hat{i}+4 \hat{j}-\hat{k}) \cdot(-2 \hat{i}-8 \hat{j}+2 \hat{k})=(-2-32-2)=-36\)

∴ \(\cos \theta=\frac{\overrightarrow{A B} \cdot \overrightarrow{C D}}{|\overrightarrow{A B}||\overrightarrow{C D}|}=\frac{-36}{(3 \sqrt{2} \times 6 \sqrt{2})}=\frac{-36}{36}=-1\)

⇒ θ = π.

Hence, AB ∥ CD.

Examples of Scalar and Vector Products

Example 15 Express the vector \(\vec{a}=(5 \hat{i}-2 \hat{j}+5 \hat{k})\) as sum of two vectors such that one is parallel to the vector \(\vec{b}=(3 \hat{i}+\hat{k})\) and the other is perpendicular to \(\vec{b}\).

Solution

Any vector parallel to \(\vec{b}\) is the form λ\(\vec{b}\) for some scalar λ.

Let \(\vec{a}\) = λ\(\vec{b}\) + \(\vec{c}\), where \(\vec{c}\) ⊥ \(\vec{b}\). Then,

\(\vec{c}=(\vec{a}-\lambda \vec{b}) \perp \vec{b}\)

⇔ \((\vec{a}-\lambda \vec{b}) \cdot \vec{b}=0 \Leftrightarrow(\vec{a} \cdot \vec{b})-\lambda(\vec{b} \cdot \vec{b})=0\)

⇔ \((5 \hat{i}-2 \hat{j}+5 \hat{k}) \cdot(3 \hat{i}+\hat{k})-\lambda(3 \hat{i}+\hat{k}) \cdot(3 \hat{i}+\hat{k})=0\)

⇔ (15-0+5) – λ(9+1) = 0 ⇔ 10λ = 20 ⇔ λ = 2.

∴ \(\lambda \vec{b}=2 \vec{b}=(6 \hat{i}+2 \hat{k})\)

And, \(\vec{c}=(\vec{a}-2 \vec{b})=(5 \hat{i}-2 \hat{j}+5 \hat{k})-2(3 \hat{i}+\hat{k})=(-\hat{i}-2 \hat{j}+3 \hat{k})\)

Hence, the required vectors are \((6 \hat{i}+2 \hat{k}) \text { and }(-\hat{i}-2 \hat{j}+3 \hat{k}) \text {. }\)

Vector (or Cross) Product of Vectors

Vector Product Of Two Vectors Let \(\vec{a}\) and \(\vec{b}\) be two nonzero, nonparallel vectors, and let θ be the angle between them such that 0 < θ < π.

Then, the vector product of \(\vec{a}\) and \(\vec{b}\) is defined as \(\vec{a} \times \vec{b}=(|\vec{a}||\vec{b}| \sin \theta) \hat{n}\),

where \(\hat{n}\) is a unit vector perpendicular to both \(\vec{a}\) and \(\vec{b}\), such that \(\vec{a}\), \(\vec{b}\), \(\hat{n}\) form a right-handed system.

When a right-handed screw is rotated from \(\vec{a}\) to \(\vec{b}\) and it advances along \(\hat{n}\) then the system is said to be right-handed.

Remark 1 If \(\vec{a}\) and \(\vec{b}\) are parallel or collinear, i.e., when θ = 0 or θ = π then we define, \(\vec{a}\) x \(\vec{b}\) = \(\overrightarrow{0}\).

In particular, \(\vec{a}\) x \(\vec{a}\) = \(\overrightarrow{0}\).

Remark 2 If \(\vec{a}\) = \(\overrightarrow{0}\) or \(\vec{b}\) = \(\overrightarrow{0}\), we define, \(\vec{a}\) x \(\vec{b}\) = \(\overrightarrow{0}\).

Remark 3 For any vector \(\vec{a}\), we have \(\vec{a} \times \vec{a}=(|\vec{a}||\vec{a}| \sin 0) \hat{n}=0 \hat{n}=\overrightarrow{0}\)

Angle Between Two Vectors Let θ be the angle between \(\vec{a}\) and \(\vec{b}\). Then,

\(\vec{a} \times \vec{b}=(a b \sin \theta) \hat{n} \text {, where }|\vec{a}|=a \text { and }|\vec{b}|=b\)

⇒ \(|\vec{a} \times \vec{b}|=a b \sin \theta\)

⇒ \(\sin \theta=\frac{|\vec{a} \times \vec{b}|}{a b}=\frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}\)

⇒ \(\theta=\sin ^{-1}\left\{\frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}\right\} .\)

Unit Vector Perpendicular To Two Given Vectors A unit vector \(\hat{n}\) perpendicular to each one of \(\vec{a}\) and \(\vec{b}\) is given by

\(\hat{n}=\frac{(\vec{a} \times \vec{b})}{|\vec{a} \times \vec{b}|}\)

Properties of Vector Product

Result 1 Vector product is not commutative.

In fact, we have \((\vec{b} \times \vec{a})=-(\vec{a} \times \vec{b})\)

Proof Let \(\vec{a}\), \(\vec{b}\), \(\hat{n}\) from a right-handed system. Then,

\((\vec{a} \times \vec{b})=(a b \sin \theta) \hat{n}\) …(1)

Then, \(\vec{b}\), \(\vec{a}\) , –\(\hat{n}\) form a right-handed system.

∴ \((\vec{b} \times \vec{a})=(b a \sin \theta)(-\hat{n})\)

⇒ \(-(\vec{b} \times \vec{a})=(a b \sin \theta) \hat{n}\) …(2)

From (1) and (2), we get \((\vec{a} \times \vec{b})=-(\vec{b} \times \vec{a})\)

Result 2 For any two vectors \(\vec{a}\) and \(\vec{b}\), prove that \((-\vec{b}) \times \vec{a}=(\vec{a} \times \vec{b})=\vec{b} \times(-\vec{a})\).

Proof

Let θ be the angle between \(\vec{a}\) and \(\vec{b}\).

Then, the angle between (-\(\vec{b}\)) is \(\vec{a}\) is (π – θ).

And, (-\(\vec{b}\)), \(\vec{a}\), \(\hat{n}\) form a right-handed system.

∴ \((-\vec{b}) \times \vec{a}=|-\vec{b}||\vec{a}| \sin (\pi-\theta) \hat{n}\)

= \((|\vec{b}||\vec{a}| \sin \theta) \hat{n}=(a b \sin \theta) \hat{n}=(\vec{a} \times \vec{b})\)

∴ \((-\vec{b}) \times \vec{a}=(\vec{a} \times \vec{b}) .\)

Similarly, \(\vec{b} \times(-\vec{a})=(\vec{a} \times \vec{b})\)

Hence, \((-\vec{b}) \times \vec{a}=(\vec{a} \times \vec{b})=\vec{b} \times(-\vec{a})\)

Result 3 For any scalar m, we have \((m \vec{a} \times \vec{b})=m(\vec{a} \times \vec{b})=\vec{a} \times(m \vec{b})\)

An Important Note At a later stage, we shall prove that for any three vectors \(\vec{a}\), \(\vec{b}\), \(\vec{c}\), we have \(\vec{a} \times \vec{b} \cdot \vec{c}=\vec{a} \cdot \vec{b} \times \vec{c}\), i.e., the position of dot and cross can be interchanged. However, we shall use this fact in proving the following theorem.

Result 4 (Distributive law) For any vectors \(\vec{a}\), \(\vec{b}\), \(\vec{c}\), prove that \(\vec{a} \times(\vec{b}+\vec{c})=(\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})\)

Proof

Let \(\vec{p}=[\vec{a} \times(\vec{b}+\vec{c})-(\vec{a} \times \vec{b})-(\vec{a} \times \vec{c})]\), and let \(\vec{r}\) be any arbitraty vector.

Then,

\(\vec{r} \cdot \vec{p}=\vec{r} \cdot[\vec{a} \times(\vec{b}+\vec{c})-(\vec{a} \times \vec{b})-(\vec{a} \times \vec{c})]\)

= \(\vec{r} \cdot[\vec{a} \times(\vec{b}+\vec{c})]-\vec{r} \cdot(\vec{a} \times \vec{b})-\vec{r} \cdot(\vec{a} \times \vec{c})\)

= \((\vec{r} \times \vec{a}) \cdot(\vec{b}+\vec{c})-(\vec{r} \times \vec{a}) \cdot \vec{b}-(\vec{r} \times \vec{a}) \cdot \vec{c}\)

= \((\vec{r} \times \vec{a}) \cdot \vec{b}+(\vec{r} \times \vec{a}) \cdot \vec{c}-(\vec{r} \times \vec{a}) \cdot \vec{b}-(\vec{r} \times \vec{a}) \cdot \vec{c}\)

= 0.

Now, \(\vec{r}\).\(\vec{p}\) = 0 ⇒ \(\vec{r}\) = \(\overrightarrow{0}\) or \(\vec{r}\) = \(\overrightarrow{0}\) or \((\vec{r} ⊥ \vec{p})\).

Since \(\vec{r}\) is an arbitraty vector, we may choose it in such a way that \(\vec{r}\) ≠ \(\overrightarrow{0}\) and \(\vec{r}\) is not perpendicular to \(\vec{p}\),.

Then, \(\vec{p}\) = \(\overrightarrow{0}\)

⇒ \(\vec{a} \times(\vec{b}+\vec{c})-(\vec{a} \times \vec{b})-(\vec{a} \times \vec{c})=\overrightarrow{0}\)

⇒ \(\vec{a} \times(\vec{b}+\vec{c})=(\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})\)

Hence, \(\vec{a} \times(\vec{b}+\vec{c})=(\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})\).

Result 5 For any three vectors \(\vec{a}\), \(\vec{b}\), \(\vec{c}\), prove that \(\vec{a} \times(\vec{b}-\vec{c})=(\vec{a} \times \vec{b})-(\vec{a} \times \vec{c}) .\)

Proof

We have

\(\vec{a} \times(\vec{b}-\vec{c})=\vec{a} \times[\vec{b}+(-\vec{c})]\)

= \((\vec{a} \times \vec{b})+\vec{a} \times(-\vec{c})\) [by the distributive law]

= \((\vec{a} \times \vec{b})+[-(\vec{a} \times \vec{c})]\) [∵ \(\vec{a} \times(-\vec{c})=-(\vec{a} \times \vec{c})\)]

= \((\vec{a} \times \vec{b})-(\vec{a} \times \vec{c})\)

Hence, \(\vec{a} \times(\vec{b}-\vec{c})=(\vec{a} \times \vec{b})-(\vec{a} \times \vec{c}) .\)

Result Prove that two nonzero vectors \(\vec{a}\)and \(\vec{b}\) are parallel or collinear if and only if \((\vec{a} \times \vec{b})=\overrightarrow{0}\)

Proof

Let \(\vec{a}\) ≠ \(\overrightarrow{0}\) and \(\vec{b}\) ≠ \(\overrightarrow{0}\) and let θ be the angle between them.

Let \(\vec{a}\) and \(\vec{b}\) be parallel or collinear.

Then, θ = 0 or θ = π

⇒ sin θ = 0 ⇒ \((\vec{a} \times \vec{b})=(a b \sin \theta) \hat{n}=0 \hat{n}=\overrightarrow{0} .\)

Thus, when \(\vec{a}\) and \(\vec{b}\) are parallel or collinear, then \((\vec{a} \times \vec{b})=\overrightarrow{0}\).

Again, let \(\vec{a}\) ≠ \(\overrightarrow{0}\), \(\vec{b}\) ≠ \(\overrightarrow{0}\) and \((\vec{a} \times \vec{b})=\overrightarrow{0}\). Then

\((\vec{a} \times \vec{b})=\overrightarrow{0}\) ⇒ \(|\vec{a} \times \vec{b}|=0\)

⇒ ab sinθ = 0

⇒ sin θ = 0 [a ≠ 0 and b ≠ 0]

⇒ θ = 0 or θ = π

⇒ (\(vec{a}\) ∥ \(\vec{b}\)) or (\(\vec{a}\) and \(\vec{b}\) are collinear).

Result 7 Prove that

\((\vec{a} \times \vec{b})=\overrightarrow{0} \Rightarrow \vec{a}=\overrightarrow{0} \text {, or } \vec{b}=\overrightarrow{0} \text {, or } \vec{a} \| \vec{b} \text { or } \vec{a} \text { and } \vec{b}\) are collinear.

Proof

Let θ be the angle between \(\vec{a}\) and \(\vec{b}\). Then,

\(\vec{a} \times \vec{b}=\overrightarrow{0} \Rightarrow(a b \sin \theta) \hat{n}=\overrightarrow{0}\)

⇒ ab sinθ = 0

⇒ a = 0, or b = 0, or sin θ = 0

⇒ \(\vec{a}\) = \(\overrightarrow{0}\), or \(\vec{b}\) = \(\overrightarrow{0}\), or θ = 0 or θ = π

⇒ \(\vec{a}\) = \(\overrightarrow{0}\), or \(\vec{b}\) = \(\overrightarrow{0}\), or \(\vec{a}\) and \(\vec{b}\) are parallel or collinear.

Corollary Show that \(\vec{a}\) x \(\vec{b}\) = \(\vec{a}\) x \(\vec{c}\) does not imply that \(\vec{b}\) = \(\vec{c}\).

Proof

\(\vec{a} \times \vec{b}=\vec{a} \times \vec{c} \Rightarrow \vec{a} \times \vec{b}-\vec{a} \times \vec{c}=\overrightarrow{0}\)

⇒ \(\vec{a} \times(\vec{b}-\vec{c})=\overrightarrow{0}\)

⇒ \(\vec{a}=\overrightarrow{0}, \text { or }(\vec{b}-\vec{c})=0 \text {, or } \vec{a} \|(\vec{b}-\vec{c})\)

⇒ \(\vec{a}=\overrightarrow{0}, \text { or }(\vec{b}-\vec{c})=0 \text {, or } \vec{a} \|(\vec{b}-\vec{c})\)

∴ \(\vec{a} \times \vec{b}=\vec{a} \times \vec{c}\) does not always mean that \(\vec{b}\) = \(\vec{c}\).

Summary

(1) \((\vec{a} \times \vec{b})=-(\vec{b} \times \vec{a})\)

(2) \((-\vec{b}) \times \vec{a}=(\vec{a} \times \vec{b})=\vec{b} \times(-\vec{a})\)

(3) \(m \vec{a} \times \vec{b}=m(\vec{a} \times \vec{b})=\vec{a} \times(m \vec{b})\)

(4) \(\vec{a} \times(\vec{b}+\vec{c})=(\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})\)

(5) \(\vec{a} \times(\vec{b}+\vec{c})=(\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})\)

(6) \(\vec{a} \times \vec{b}=\overrightarrow{0} \Leftrightarrow(\vec{a} \| \vec{b})\) or (\(\vec{a}\) and \(\vec{b}\) are collinear), when \(\vec{a}\) ≠ \(\overrightarrow{0}\) and \(\vec{b}\) ≠ \(\overrightarrow{0}\)

Area of a Parallelogram

Theorem 1 Two adjacent sides of a ∥gm are represented by \(\vec{a}\) and \(\vec{b}\) respectively. Prove that the area of the ∥gm = \(|\vec{a} \times \vec{b}|\).

Proof

Let ABCD be a ∥gm. Join BD.

Let \(\overrightarrow{A B}\) = \(\vec{a}\), \(\overrightarrow{A D}\) = \(\vec{b}\) and ∠BAD = θ.

Draw DL ⊥ AB. Then,

AB = a and DL = AD sin θ = b sin θ.

∴ ar(△ABD) = \(\frac{1}{2}\) x base x altitude

= \(\left(\frac{1}{2} \times A B \times D L\right)=\frac{1}{2} a b \sin \theta=\frac{1}{2}|\vec{a} \times \vec{b}|\)

∴ ar(∥gm ABCD) = 2 x ar(△ABD) = \(|\vec{a} \times \vec{b}|\).

Remark (\(\vec{a}\) x \(\vec{b}\)) is called the vector area of the ∥gm.

Area of a Triangle

Theorem 2 Prove that the area of △ABC, where \(\overrightarrow{A B}\) = \(\vec{a}\) and \(\overrightarrow{A C}\) = \(\vec{b}\), is \(\frac{1}{2}|\vec{a} \times \vec{b}|\).

Proof

In △ABC, let \(\overrightarrow{A B}\) = \(\vec{a}\) and \(\overrightarrow{A C}\) = \(\vec{b}\) and ∠BAC = θ.

Draw CL ⊥ AB. Then,

AB = a and CL = (AC)sin θ = b sin θ

and ar(△ABC) = \(\frac{1}{2}\) x AB x CL

= \(\frac{1}{2} a b \sin \theta=\frac{1}{2}|\vec{a} \times \vec{b}|\)

∴ ar(△ABC) = \(\frac{1}{2}|\vec{a} \times \vec{b}|\).

Remark \(\frac{1}{2}(\vec{a} \times \vec{b})\) is called the vector area of △ABC.

Area of a Quadrilateral

Theorem 3 Prove that the area of a quadrilateral ABCD with diagonals AC and BD is \(\frac{1}{2}|\overrightarrow{A C} \times \overrightarrow{B D}|\).

Proof

Vector area of quad. ABCD

= (vector area of △ABC) + (vector area of △ACD)

= \(\frac{1}{2}(\overrightarrow{A B} \times \overrightarrow{A C})+\frac{1}{2}(\overrightarrow{A C} \times \overrightarrow{A D})\)

= \(-\frac{1}{2}(\overrightarrow{A C} \times \overrightarrow{A B})+\frac{1}{2}(\overrightarrow{A C} \times \overrightarrow{A D})\)

= \(\frac{1}{2} \cdot\{\overrightarrow{A C} \times(\overrightarrow{A D}-\overrightarrow{A B})\}=\frac{1}{2}(\overrightarrow{A C} \times \overrightarrow{B D})\)

∴ ar(quad.ABCD) = \(\frac{1}{2}|\overrightarrow{A C} \times \overrightarrow{B D}|\).

Summary

(1) ar(∥gm ABCD) = \(|\vec{a} \times \vec{b}|\), where \(\overrightarrow{A B}\) = \(\vec{a}\) and \(\overrightarrow{A D}\) = \(\vec{b}\).

(2) ar(△ABC) = \(\frac{1}{2}|\vec{a} \times \vec{b}|\), where \(\overrightarrow{A B}\) = \(\vec{a}\) and \(\overrightarrow{A C}\) = \(\vec{b}\).

(3) ar(quad. ABCD) = \(\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{B D}|\), where AC and BD are its diagonals.

Vector Product Of An Orthonormal Vector Triad

For mutually perpendicular unit vectors \(\hat{i}, \hat{j}, \hat{k}\) we have

\(\hat{i} \times \hat{i}=\hat{j} \times \hat{j}=\hat{k} \times \hat{k}=\hat{0}\) \(\hat{i} \times \hat{j}=\hat{k}=-\hat{j} \times \hat{i}, \hat{j} \times \hat{k}=\hat{i}=-\hat{k} \times \hat{j} \text { and } \hat{k} \times \hat{i}=\hat{j}=-\hat{i} \times \hat{k}\)

Vector Product in Terms of Components

Let \(\vec{a}=a_1 \hat{i}+a_2 \hat{j}+a_3 \hat{k} \text { and } \vec{b}=b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k}\). Then,

\(\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3
\end{array}\right|\)

Proof

We have

\(\vec{a} \times \vec{b}=\left(a_1 \hat{i}+a_2 \hat{j}+a_3 \hat{k}\right) \times\left(b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k}\right)\)

= \(a_1 b_1(\hat{i} \times \hat{i})+a_1 b_2(\hat{i} \times \hat{j})+a_1 b_3(\hat{i} \times \hat{k})\)

\(+a_2 b_1(\hat{j} \times \hat{i})+a_2 b_2(\hat{j} \times \hat{j})+a_2 b_3(\hat{j} \times \hat{k})\) \(+a_3 b_1(\hat{k} \times \hat{i})+a_3 b_2(\hat{k} \times \hat{j})+a_3 b_3(\hat{k} \times \hat{k})\)

= \(\left(a_2 b_3-a_3 b_2\right) \hat{i}+\left(a_3 b_1-a_1 b_3\right) \hat{j}+\left(a_1 b_2-a_2 b_1\right) \hat{k}\)

[∵ \(\hat{i} \times \hat{i}=\hat{j} \times \hat{j}=\hat{k} \times \hat{k}=\hat{0}, \hat{i} \times \hat{j}=\hat{k}, \hat{j} \times \hat{k}=\hat{i}, \hat{k} \times \hat{i}=\hat{j}\text { and }\)

\(\hat{j} \times \hat{i}=-\hat{k}, \hat{k} \times \hat{j}=-\hat{i} \text { and } \hat{i} \times \hat{k}=-\hat{j}\)]

= \(\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3
\end{array}\right|\)

Solved Examples

Example 1 If \(\vec{a}=(3 \hat{i}+\hat{j}-4 \hat{k}) \text { and } \vec{b}=(6 \hat{i}+5 \hat{j}-2 \hat{k}) \text {, find }(\vec{a} \times \vec{b}) \text { and }|\vec{a} \times \vec{b}|\)

Solution

We have

\((\vec{a} \times \vec{b})=\left|\begin{array}{rrr}
\hat{i} & \hat{j} & \hat{k} \\
3 & 1 & -4 \\
6 & 5 & -2
\end{array}\right|\)

= \((-2+20) \hat{i}-(-6+24) \hat{j}+(15-6) \hat{k}\)

= \((18 \hat{i}-18 \hat{j}+9 \hat{k})\)

\(|\vec{a} \times \vec{b}|^2=\left\{(18)^2+(-18)^2+9^2\right\}=729\)

⇒ \(|\vec{a} \times \vec{b}|=\sqrt{729}=27 \text {. }\)

Example 2 Find the values of λ and μ for which \((2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+\lambda \hat{j}+\mu \hat{k})=\overrightarrow{0}\)

Solution

Let \(\vec{a}=(2 \hat{i}+6 \hat{j}+27 \hat{k}) \text { and } \vec{b}=\hat{i}+\lambda \hat{j}+\mu \hat{k}\). Then,

\((\vec{a} \times \vec{b})=\left|\begin{array}{rrr}
\hat{i} & \hat{j} & \hat{k} \\
2 & 6 & 27 \\
1 & \lambda & \mu
\end{array}\right|\)

= \((6 \mu-27 \lambda) \hat{i}-(2 \mu-27) \hat{j}+(2 \lambda-6) \hat{k} .\)

Now, \((\vec{a} \times \vec{b})=\overrightarrow{0}\)

⇔ 2λ – 6 = 0 and 2μ – 27 = 0

⇔ λ = 3 and μ = \(\frac{27}{2}\).

Hence, λ = 3 and μ = \(\frac{27}{2}\).

Example 3 If \(\vec{a}=(\hat{i}-2 \hat{j}+3 \hat{k}) \text { and } \vec{b}=(2 \hat{i}+3 \hat{j}-5 \hat{k})\), then find \((\vec{a} \times \vec{b})\) and verify that \((\vec{a} \times \vec{b})\) is perpendicular to each one of \(\vec{a}\) and \(\vec{b}\).

Solution

We have

\((\vec{a} \times \vec{b})=\left|\begin{array}{rrr}
\hat{i} & \hat{j} & \hat{k} \\
1 & -2 & 3 \\
2 & 3 & -5
\end{array}\right|\)

= \((10-9) \hat{i}-(-5-6) \hat{j}+(3+4) \hat{k}=(\hat{i}+11 \hat{j}+7 \hat{k})\)

Now, \((\vec{a} \times \vec{b}) \cdot \vec{a}=(\hat{i}+11 \hat{j}+7 \hat{k}) \cdot(\hat{i}-2 \hat{j}+3 \hat{k})\)

∴ \((\vec{a} \times \vec{b}) \cdot \vec{a}\) = (1 – 22 + 21) = 0

∴ \((\vec{a} \times \vec{b}) \perp \vec{a} .\)

And, \((\vec{a} \times \vec{b}) \cdot \vec{b}=(\hat{i}+11 \hat{j}+7 \hat{k}) \cdot(2 \hat{i}+3 \hat{j}-5 \hat{k})\) = (2 + 33 – 35) = 0.

∴ \((\vec{a} \times \vec{b}) \perp \vec{b}\)

Example 4 Find a unit vector perpendicular to each one of the vectors \(\vec{a}=(4 \hat{i}-\hat{j}+3 \hat{k}) \text { and } \vec{b}=(2 \hat{i}+2 \hat{j}-\hat{k})\)

Solution

We know that \((\vec{a} \times \vec{b})\) is a vector perpendicular to each one of \(\vec{a}\) and \(\vec{b}\). So, the required vector is \(\frac{(\vec{a} \times \vec{b})}{|\vec{a} \times \vec{b}|}\).

Now, \((\vec{a} \times \vec{b})=\left|\begin{array}{rrr}
\hat{i} & \hat{j} & \hat{k} \\
4 & -1 & 3 \\
2 & 2 & -1
\end{array}\right|\)

= \((1-6) \hat{i}-(-4-6) \hat{j}+(8+2) \hat{k}\)

= \((-5 \hat{i}+10 \hat{j}+10 \hat{k})\)

\(|\vec{a} \times \vec{b}|=\sqrt{(-5)^2+(10)^2+(10)^2}=\sqrt{225}=15\)

Hence, the required unit vector = \(\frac{(-5 \hat{i}+10 \hat{j}+10 \hat{k})}{15}\)

= \(\frac{1}{3}(-\hat{i}+2 \hat{j}+2 \hat{k}) .\)

Example 5 Find a vector of magnitude 15, which is perpendicular to both the vectors \((4 \hat{i}-\hat{j}+8 \hat{k}) \text { and }(-\hat{j}+\hat{k})\)

Solution

Let \(\vec{a}=(4 \hat{i}-\hat{j}+8 \hat{k}) \text { and } \vec{b}=(-\hat{j}+\hat{k})\)

A unit vector perpendicular to both \(\vec{a}\) and \(\vec{b}\) = \(\frac{(\vec{a} \times \vec{b})}{|\vec{a} \times \vec{b}|}\).

Now, \(\vec{a} \times \vec{b}=\left|\begin{array}{rrr}
\hat{i} & \hat{j} & \hat{k} \\
4 & -1 & 8 \\
0 & -1 & 1
\end{array}\right|\)

= \((-1+8) \hat{i}-(4-0) \hat{j}+(-4-0) \hat{k}\)

= \((7 \hat{i}-4 \hat{j}-4 \hat{k})\)

∴ \(|\vec{a} \times \vec{b}|=\sqrt{7^2+(-4)^2+(-4)^2}=\sqrt{81}=9 .\)

So, a unit vector perpendicular to both \(\vec{a}\) and \(\vec{b}\)

= \(|\vec{a} \times \vec{b}|=\sqrt{7^2+(-4)^2+(-4)^2}=\sqrt{81}=9 .\)

The required vector = \(\frac{15(7 \hat{i}-4 \hat{j}-4 \hat{k})}{9}=\frac{5}{3}(7 \hat{i}-4 \hat{j}-4 \hat{k})\)

Example 6 If \(|\vec{a}|=2,|\vec{b}|=7 \text { and }(\vec{a} \times \vec{b})=(3 \hat{i}+2 \hat{j}+6 \hat{k})\), find the angle between \(\vec{a}\) and \(\vec{b}\).

Solution

Let θ be the angle between \(\vec{a}\) and \(\vec{b}\). Then,

\(\vec{a} \times \vec{b}=3 \hat{i}+2 \hat{j}+6 \hat{k}\)

⇒ \(|\vec{a} \times \vec{b}|=\sqrt{3^2+2^2+6^2}=\sqrt{49}=7\)

⇒ \(|\vec{a}||\vec{b}| \sin \theta=7\) [∵ \(|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta\)]

⇒ \(\sin \theta=\frac{7}{|\vec{a}||\vec{b}|}=\frac{7}{(2 \times 7)}=\frac{1}{2}\)

⇒ θ = \(\frac{\pi}{6}\).

Hence, the required angle between \(\vec{a}\) and \(\vec{b}\) is \(\frac{\pi}{6}\).

Example 7 If |\(\vec{a}\)| = √26, |\(\vec{b}\)| = 7 and \(|\vec{a} \times \vec{b}|\) = 35, find \(\vec{a}\).\(\vec{b}\)

Solution

Given that |\(\vec{a}\)| = √26, |\(\vec{b}\)| = 7 and \(|\vec{a} \times \vec{b}|\) = 35.

∴ \(|\vec{a} \times \vec{b}|=35 \Rightarrow|\vec{a}||\vec{b}| \sin \theta=35\)

⇒ \(\sin \theta=\frac{35}{|\vec{a}||\vec{b}|}=\frac{35}{(\sqrt{26}) \times 7}=\frac{5}{\sqrt{26}}\)

Now, \(\cos \theta=\sqrt{1-\sin ^2 \theta}=\sqrt{1-\frac{25}{26}}=\frac{1}{\sqrt{26}} .\)

∴ \(\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta=\left(\sqrt{26} \times 7 \times \frac{1}{\sqrt{26}}\right)=7 .\)

Hence, \(\vec{a}\).\(\vec{b}\) = 7.

Example 8 If \(\vec{a}=4 \hat{i}+3 \hat{j}+2 \hat{k} \text { and } \vec{b}=3 \hat{i}+2 \hat{k} \text {, find }|\vec{b} \times 2 \vec{a}| \text {. }\)

Solution

We have

\(\vec{b}=(3 \hat{i}+2 \hat{k}) \text { and } 2 \vec{a}=(8 \hat{i}+6 \hat{j}+4 \hat{k}) \text {. }\)

∴ \((\vec{b} \times 2 \vec{a})=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
3 & 0 & 2 \\
8 & 6 & 4
\end{array}\right|\)

= \((0-12) \hat{i}+(16-12) \hat{j}+(18-0) \hat{k}\)

= \((-12 \hat{i}+4 \hat{j}+18 \hat{k})\)

∴ \(|\vec{b} \times 2 \vec{a}|=|-12 \hat{i}+4 \hat{j}+18 \hat{k}|\)

= \(\sqrt{(-12)^2+4^2+(18)^2}=\sqrt{484}=22\)

Hence, \(|\vec{b} \times 2 \vec{a}|\) = 22.

Example 9 Find the sine of the angle between the vectors \(\vec{a}=(2 \hat{i}-\hat{j}+3 \hat{k})\) and \(\vec{b}=(\hat{i}+3 \hat{j}+2 \hat{k})\).

Solution

We have

\((\vec{a} \times \vec{b})=\left|\begin{array}{rrr}
\hat{i} & \hat{j} & \hat{k} \\
2 & -1 & 3 \\
1 & 3 & 2
\end{array}\right|\)

= \((-2-9) \hat{i}-(4-3) \hat{j}+(6+1) \hat{k}=(-11 \hat{i}-\hat{j}+7 \hat{k})\)

\(|\vec{a} \times \vec{b}|=\sqrt{(-11)^2+(-1)^2+7^2}=\sqrt{171}=3 \sqrt{19}\) \(|\vec{a}|=\sqrt{2^2+(-1)^2+3^2}=\sqrt{14}\) \(|\vec{b}|=\sqrt{1^2+3^2+2^2}=\sqrt{14}\)

Let θ be the angle between \(\vec{a}\) and \(\vec{b}\). Then,

\(\sin \theta=\frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}=\frac{3 \sqrt{19}}{(\sqrt{14})(\sqrt{14})}=\frac{3}{14} \sqrt{19} .\)

Example 10 Find the area of the parallelogram whose adjacent sides are represented by the vectors \((3 \hat{i}+\hat{j}-2 \hat{k}) \text { and }(\hat{i}-3 \hat{j}+4 \hat{k})\)

Solution

Let \(\vec{a}=(3 \hat{i}+\hat{j}-2 \hat{k}) \text { and } \vec{b}=(\hat{i}-3 \hat{j}+4 \hat{k})\)

Then, vector area of the ∥gm is \((\vec{a} \times \vec{b})\).

Now, \((\vec{a} \times \vec{b})=\left|\begin{array}{rrr}
\hat{i} & \hat{j} & \hat{k} \\
3 & 1 & -2 \\
1 & -3 & 4
\end{array}\right|\)

= \((4-6) \hat{i}-(12+2) \hat{j}+(-9-1) \hat{k}\)

= \((-2 \hat{i}-14 \hat{j}-10 \hat{k})\)

Required area = \(|\vec{a} \times \vec{b}|\)

= \(\sqrt{(-2)^2+(-14)^2+(-10)^2}\) sq units.

= \(\sqrt{300} \text { sq units }=10 \sqrt{3} \text { sq units. }\)

Example 11 Find the area of the parallelogram whose diagonals are represented by the vectors \(\vec{d}_1=(2 \hat{i}-\hat{j}+\hat{k}) \text { and } \vec{d}_2=(3 \hat{i}+4 \hat{j}-\hat{k}) \text {. }\)

Solution

Given that \(\vec{d}_1=(2 \hat{i}-\hat{j}+\hat{k}) \text { and } \vec{d}_2=(3 \hat{i}+4 \hat{j}-\hat{k}) \text {. }\)

Vector area of the ∥gm is \(\frac{1}{2}\left(\vec{d}_1 \times \vec{d}_2\right)\)

Now, \(\left(\vec{d}_1 \times \vec{d}_2\right)=\left|\begin{array}{rrr}
\hat{i} & \hat{j} & \hat{k} \\
2 & -1 & 1 \\
3 & 4 & -1
\end{array}\right|\)

= \((1-4) \hat{i}-(-2-3) \hat{j}+(8+3) \hat{k}\)

= \((-3 \hat{i}+5 \hat{j}+11 \hat{k})\)

Required area = \(\frac{1}{2}\left|\overrightarrow{d_1} \times \overrightarrow{d_2}\right|\)

= \(\frac{1}{2} \sqrt{(-3)^2+5^2+(11)^2}\) sq units

= \(\frac{1}{2} \sqrt{155}\) sq units.

Example 12 Find the area of the triangle whose adjacent sides are determined by the vectors \(\vec{a}=(-2 \hat{i}-5 \hat{k}) \text { and } \vec{b}=(\hat{i}-2 \hat{j}-\hat{k})\)

Solution

Two adjacent sides of the given triangle are represented by the vectors \(\vec{a}=(-2 \hat{i}-5 \hat{k}) \text { and } \vec{b}=(\hat{i}-2 \hat{j}-\hat{k})\)

So, the area of the triangle is \(\frac{1}{2}|\vec{a} \times \vec{b}|\).

Now, \((\vec{a} \times \vec{b})=\left|\begin{array}{rrr}
\hat{i} & \hat{j} & \hat{k} \\
-2 & 0 & -5 \\
1 & -2 & -1
\end{array}\right|\)

= \((0-10) \hat{i}-(2+5) \hat{j}+(4-0) \hat{k}\)

= \((-10 \hat{i}-7 \hat{j}+4 \hat{k})\)

∴ required area = \(\frac{1}{2}|\vec{a} \times \vec{b}|\)

= \(\frac{1}{2} \cdot\left\{\sqrt{(-10)^2+(-7)^2+4^2}\right\}\) sq units

= \(\frac{1}{2} \sqrt{165}\) sq units.

Example 13 Using vector method, find the area of the triangle whose vertices are A(1,1,1), B(1,2,3) and C(2,3,1).

Solution

Position vector of A = \((\hat{i}+\hat{j}+\hat{k})\);

position vector of B = \((\hat{i}+2 \hat{j}+3 \hat{k})\); and

position vector of C = \((2 \hat{i}+3 \hat{j}+\hat{k})\).

∴ \(\overrightarrow{A B}\) = (p.v. of B) – (p.v. of A)

= \((\hat{i}+2 \hat{j}+3 \hat{k})-(\hat{i}+\hat{j}+\hat{k})=(\hat{j}+2 \hat{k}) .\)

And, \(\overrightarrow{A C}\) = (p.v. of C) – (p.v. of A)

= \((2 \hat{i}+3 \hat{j}+\hat{k})-(\hat{i}+\hat{j}+\hat{k})=(\hat{i}+2 \hat{j})\)

∴ area of △ABC = \(\left|\frac{1}{2}(\overrightarrow{A B} \times \overrightarrow{A C})\right|\).

Now, \(\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
0 & 1 & 2 \\
1 & 2 & 0
\end{array}\right|\)

= \((0-4) \hat{i}+(2-0) \hat{j}+(0-1) \hat{k}=(-4 \hat{i}+2 \hat{j}-\hat{k})\)

⇒ \(\frac{1}{2}(\overrightarrow{A B} \times \overrightarrow{A C})=\left(-2 \hat{i}+\hat{j}-\frac{1}{2} \hat{k}\right)\)

⇒ area of △ABC = \(\left|-2 \hat{i}+\hat{j}-\frac{1}{2} \hat{k}\right|\)

= \(\sqrt{(-2)^2+1^2+\left(-\frac{1}{2}\right)^2}=\frac{\sqrt{21}}{2}\) sq units.

Hence, the area of the given triangle is \(\frac{\sqrt{21}}{2}\) sq units.

Example 14 Show that the points whose vectors are \((5 \hat{i}+6 \hat{j}+7 \hat{k}), (7 \hat{i}-8 \hat{j}+9 \hat{k}) \text { and }(3 \hat{i}+20 \hat{j}+5 \hat{k})\) are collinear.

Solution

Let the given points be A, B, C. Then,

\(\overrightarrow{A B}\) = (p.v. of B) – (p.v. of A)

= \((7 \hat{i}-8 \hat{j}+9 \hat{k})-(5 \hat{i}+6 \hat{j}+7 \hat{k})=(2 \hat{i}-14 \hat{j}+2 \hat{k})\).

And, \(\overrightarrow{AC}\) = (p.v. of C) – (p.v. of A)

= \((3 \hat{i}+20 \hat{j}+5 \hat{k})-(5 \hat{i}+6 \hat{j}+7 \hat{k})\)

= \((-2 \hat{i}+14 \hat{j}-2 \hat{k})\).

∴ \(\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{rrr}
\hat{i} & \hat{j} & \hat{k} \\
2 & -14 & 2 \\
-2 & 14 & -2
\end{array}\right|\)

= \(2 \times(-2) \cdot\left|\begin{array}{rrr}
\hat{i} & \hat{j} & \hat{k} \\
1 & -7 & 1 \\
1 & -7 & 1
\end{array}\right|=(-4 \times 0)=\overrightarrow{0}\)

[∵ R2 are R3 are identical]

Thus, \(\overrightarrow{A B}\) and \(\overrightarrow{A C}\) are parallel vectors, having a common point, A. Hence, the point A, B, C are collinear.

Example 15 Using vector method, show that the points A(2,-1,3), B(4,3,1) and C(3,1,2) are collinear.

Solution

We know, the points A, B, C are collinear ⇔ area of △ABC = 0.

Now, p.v. of A = \((2 \hat{i}-\hat{j}+3 \hat{k})\), p.v. of B = \((4 \hat{i}+3 \hat{j}+\hat{k})\), and p.v. of C = \((3 \hat{i}+\hat{j}+2 \hat{k})\).

\(\overrightarrow{A B}\) = (p.v. of B) – (p.v. of A)

= \(4 \hat{i}+3 \hat{j}+\hat{k})-(2 \hat{i}-\hat{j}+3 \hat{k})=(2 \hat{i}+4 \hat{j}-2 \hat{k})\)

And, \(\overrightarrow{A C}\) = (p.v. of C) – (p.v. of A)

= \((3 \hat{i}+\hat{j}+2 \hat{k})-(2 \hat{i}-\hat{j}+3 \hat{k})=(\hat{i}+2 \hat{j}-\hat{k})\)

∴ \(\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{rrr}
\hat{i} & \hat{j} & \hat{k} \\
2 & 4 & -2 \\
1 & 2 & -1
\end{array}\right|=2 \cdot\left|\begin{array}{rrr}
\hat{i} & \hat{j} & \hat{k} \\
1 & 2 & -1 \\
1 & 2 & -1
\end{array}\right|=\overrightarrow{0}\)

[∵ R2 and R3 are identical].

Thus, \(\overrightarrow{A B}\) and \(\overrightarrow{A C}\) are parallel vectors, having a common point, A. Hence, the points A, B, C are collinear.

Example 15 Show that the points having position vectors \((\vec{a}-2 \vec{b}+3 \vec{c}),(-2 \vec{a}+3 \vec{b}+2 \vec{c}),(-8 \vec{a}+13 \vec{b})\) are collinear, whatever be \(\vec{a}\), \(\vec{b}\), \(\vec{c}\).

Solution

Let A, B, C be the given points whose position vectors are \((\vec{a}-2 \vec{b}+3 \vec{c}),(-2 \vec{a}+3 \vec{b}+2 \vec{c})\) and \((-8 \vec{a}+13 \vec{b})\) respectively.

Then,

\(\overrightarrow{A B}\) = (p.v. of B) – (p.v. of A)

= \((-2 \vec{a}+3 \vec{b}+2 \vec{c})-(\vec{a}-2 \vec{b}+3 \vec{c})=(-3 \vec{a}+5 \vec{b}-\vec{c})\),

and \(\overrightarrow{A C}\) = (p.v. of C) – (p.v. of A)

= \((-8 \vec{a}+13 \vec{b})-(\vec{a}-2 \vec{b}+3 \vec{c})=(-9 \vec{a}+15 \vec{b}-3 \vec{c})\)

∴ \(\overrightarrow{A B} \times \overrightarrow{A C}=(-3 \vec{a}+5 \vec{b}-\vec{c}) \times(-9 \vec{a}+15 \vec{b}-3 \vec{c})\)

= \(\vec{d} \times 3 \vec{d} \text {, where } \vec{d}=-3 \vec{a}+5 \vec{b}-\vec{c}\)

= \(\overrightarrow{0}\) [∵ \(\vec{d} \times \vec{d}=\overrightarrow{0}\)].

∴ \(\overrightarrow{A B}\) and \(\overrightarrow{A C}\) are parallel vectors, a common point, A. Hence, the points A, B, C are collinear.

Lagrange’s Identity

Example 17 Prove that \(|\vec{a} \times \vec{b}|^2=\left|\begin{array}{ll}
\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\
\vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b}
\end{array}\right| .\)

Solution

Let θ be the angle between \(\vec{a}\) and \(\vec{b}\). Then,

\(|\vec{a} \times \vec{b}|^2=(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{b})\)

= \((a b \sin \theta) \hat{n} \cdot(a b \sin \theta) \hat{n}\)

= \(\left(a^2 b^2 \sin ^2 \theta\right)(\hat{n} \cdot \hat{n})=a^2 b^2 \sin ^2 \theta\)

= \(a^2 b^2\left(1-\cos ^2 \theta\right)=a^2 b^2-(a b \cos \theta)^2\)

= \((\vec{a} \cdot \vec{a})(\vec{b} \cdot \vec{b})-(\vec{a} \cdot \vec{b})^2\)

= \(\left|\begin{array}{ll}
\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\
\vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b}
\end{array}\right|\)

Hence, \(|\vec{a} \times \vec{b}|^2=\left|\begin{array}{ll}
\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\
\vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b}
\end{array}\right| .\)

Example 18 Prove that \(\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times(\vec{c}+\vec{a})+\vec{c} \times(\vec{a}+\vec{b})=\overrightarrow{0} .\)

Solution

We have

\(\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times(\vec{c}+\vec{a})+\vec{c} \times(\vec{a}+\vec{b})\)

= \((\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})+(\vec{b} \times \vec{c})+(\vec{b} \times \vec{a})+(\vec{c} \times \vec{a})+(\vec{c} \times \vec{b})\)

[by the distributive law]

= \((\vec{a} \times \vec{b})+(\vec{b} \times \vec{c})+(\vec{c} \times \vec{a})-(\vec{a} \times \vec{b})-(\vec{b} \times \vec{c})-(\vec{c} \times \vec{a})\)

= \(\overrightarrow{0}\)

[∵ \((\vec{b} \times \vec{a})=-(\vec{a} \times \vec{b}),(\vec{c} \times \vec{b})=-(\vec{b} \times \vec{c}) \text { and }(\vec{a} \times \vec{c})=-(\vec{c} \times \vec{a})\)].

Hence, \(\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times(\vec{c}+\vec{a})+\vec{c} \times(\vec{a}+\vec{b})=\overrightarrow{0} .\)

Example 19 If \(\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}\), prove that \((\vec{a} \times \vec{b})=(\vec{b} \times \vec{c})=(\vec{c} \times \vec{a})\).

Solution

\(\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0} \Rightarrow \vec{a}+\vec{b}=-\vec{c}\)

⇒ \((\vec{a}+\vec{b}) \times \vec{b}=(-\vec{c}) \times \vec{b}\)

⇒ \((\vec{a} \times \vec{b})+(\vec{b} \times \vec{b})=(-\vec{c}) \times \vec{b}\)

[by the distributive law]

⇒ \((\vec{a} \times \vec{b})+\overrightarrow{0}=(\vec{b} \times \vec{c})\)

[∵ \(\vec{b} \times \vec{b}=\overrightarrow{0} \text { and }(-\vec{c}) \times \vec{b}=\vec{b} \times \vec{c}\)]

⇒ \(\vec{a} \times \vec{b}=\vec{b} \times \vec{c}\) …(1)

Also, \(\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0} \Rightarrow \vec{b}+\vec{c}=-\vec{a}\)

⇒ \((\vec{b}+\vec{c}) \times \vec{c}=(-\vec{a}) \times \vec{c}\)

⇒ \((\vec{b} \times \vec{c})+(\vec{c} \times \vec{c})=(-\vec{a}) \times \vec{c}\) [by the distributive law]

⇒ \((\vec{b} \times \vec{c})+\overrightarrow{0}=\vec{c} \times \vec{a}\)

[∵ \(\vec{c} \times \vec{c}=\overrightarrow{0} \text { and }(-\vec{a}) \times \vec{c}=\vec{c} \times \vec{a}\)]

⇒ \(\vec{b} \times \vec{c}=\vec{c} \times \vec{a}\) …(2)

From (1) and (2), we get \(\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a} .\)

Example 20 Prove that the points A, B, C with position vectors \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) are collinear if and only if \((\vec{b} \times \vec{c})+(\vec{c} \times \vec{a})+(\vec{a} \times \vec{b})=\overrightarrow{0}\).

Proof

We have

\(\overrightarrow{A B}\) = (position vector of B) – (position vector of A) = \((\vec{b}-\vec{a})\)

and \(\overrightarrow{B C}\) = (position vector of C) – (position vector of B) = \((\vec{c}-\vec{b})\).

Now, A, B, C are collinear

⇔ \(\overrightarrow{A B}\) and \(\overrightarrow{B C}\) are parallel

⇔ \((\vec{b}-\vec{a}) \times(\vec{c}-\vec{b})=\overrightarrow{0}\)

⇔ \((\vec{b}-\vec{a}) \times \vec{c}-(\vec{b}-\vec{a}) \times \vec{b}=\overrightarrow{0}\) [by the distributive law]

⇔ \(\vec{b} \times \vec{c}-\vec{a} \times \vec{c}-\vec{b} \times \vec{b}+\vec{a} \times \vec{b}=\overrightarrow{0}\) [by the distributive law]

⇔ \((\vec{b} \times \vec{c})+(\vec{c} \times \vec{a})+(\vec{a} \times \vec{b})=\overrightarrow{0}\) [∵ \(\vec{b} \times \vec{b}=\overrightarrow{0} \text { and }-\vec{a} \times \vec{c}=\vec{c} \times \vec{a}\)].

Thus, A, B, C are collinear ⇔ \((\vec{b} \times \vec{c})+(\vec{c} \times \vec{a})+(\vec{a} \times \vec{b})=\overrightarrow{0}\)

Example 21 Prove that \((\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})\)

Proof

We have

\((\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})\)

= \(\vec{a} \times \vec{a}+\vec{a} \times \vec{b}-\vec{b} \times \vec{a}-\vec{b} \times \vec{b}\) [by the distributive law]

= \(\vec{a} \times \vec{b}-\vec{b} \times \vec{a}\) [∵ \(\vec{a} \times \vec{a}=\overrightarrow{0} \text { and } \vec{b} \times \vec{b}=\overrightarrow{0}\)]

= \((\vec{a} \times \vec{b})+(\vec{a} \times \vec{b})\) [∵ \(-\vec{b} \times \vec{a}=(\vec{a} \times \vec{b})\)]

= \(2(\vec{a} \times \vec{b})\).

Example 22 If \(\vec{a}\).\(\vec{b}\) = 0 and \(\vec{a} x \vec{b} = \overrightarrow{0}\), prove that \(\vec{a}\) = \(\overrightarrow{0}\) or \(\vec{b}\) = \(\overrightarrow{0}\).

Proof

Let \(\vec{a}\).\(\vec{b}\) = 0 and \(\vec{a}\) x \(\vec{b}\) = \(\overrightarrow{0}\). Then,

\(\vec{a}\).\(\vec{b}\) = 0 and \(\vec{a}\) x \(\vec{b}\) = \(\overrightarrow{0}\)

⇒ \((\vec{a}=\overrightarrow{0} \text { or } \vec{b}=\overrightarrow{0} \text { or } \vec{a} \perp \vec{b}) \text { and }(\vec{a}=\overrightarrow{0} \text { or } \vec{b}=\overrightarrow{0} \text { or } \vec{a} \| \vec{b})\)

⇒ \(\vec{a}=\overrightarrow{0} \text { or } \vec{b}=\overrightarrow{0}\) [∵ \(\vec{a}\) ⊥ \(\vec{b}\) and \(\vec{a}\) ∥ \(\vec{b}\) can never hold simultaneously].

Hence, \((\vec{a} \cdot \vec{b}=0 \text { and } \vec{a} \times \vec{b}=\overrightarrow{0}) \Rightarrow(\vec{a}=\overrightarrow{0} \text { or } \vec{b}=\overrightarrow{0}) \text {. }\)

Example 23 If \(\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}, \vec{a} \times \vec{b}=\vec{a} \times \vec{c} \text { and } \vec{a} \neq \overrightarrow{0}\), then prove that \(\vec{b}\) = \(\vec{c}.

Proof

[latex]\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c} \text { and } \vec{a} \neq \overrightarrow{0}\)

⇒ \(\vec{a} \cdot \vec{b}-\vec{a} \cdot \vec{c}=0 \text { and } \vec{a} \neq \overrightarrow{0}\)

⇒ \(\vec{a} \cdot(\vec{b}-\vec{c})=0 \text { and } \vec{a} \neq \overrightarrow{0}\)

⇒ \(\vec{b}-\vec{c}=\overrightarrow{0} \text { or } \vec{a} \perp(\vec{b}-\vec{c})\)

\(\vec{b}=\vec{c} \text { or } \vec{a} \perp(\vec{b}-\vec{c})\) …(1)

Again, \(\vec{a} \times \vec{b}=\vec{a} \times \vec{c} \text { and } \vec{a} \neq \overrightarrow{0}\)

⇒ \((\vec{a} \times \vec{b})-(\vec{a} \times \vec{c})=\overrightarrow{0} \text { and } \vec{a} \neq \overrightarrow{0}\)

⇒ \(\vec{a} \times(\vec{b}-\vec{c})=\overrightarrow{0} \text { and } \vec{a} \neq \overrightarrow{0}\)

⇒ \((\vec{b}-\vec{c})=\overrightarrow{0} \text { or } \vec{a} \|(\vec{b}-\vec{c})\)

⇒ \(\vec{b}=\vec{c} \text { or } \vec{a} \|(\vec{b}-\vec{c})\) …(2)

From (1) and (2), we get \(\vec{b}\) = \(\vec{c}\)

[∵ \(\vec{a} \perp(\vec{b}-\vec{c}) \text { and } \vec{a} \|(\vec{b}-\vec{c})\) both cannot hold simultaneously].

Example 24 If \(\vec{a} \times \vec{b}=\vec{c} \times \vec{d} \text { and } \vec{a} \times \vec{c}=\vec{b} \times \vec{d}\), show that \((\vec{a}-\vec{d})\) is parallel to \((\vec{b}-\vec{c})\), it being given that a ≠ d and b ≠ c.

Solution

\(\vec{a} \times \vec{b}=\vec{c} \times \vec{d} \text {, and } \vec{a} \times \vec{c}=\vec{b} \times \vec{d}\)

⇒ \(\vec{a} \times \vec{b}-\vec{a} \times \vec{c}=\vec{c} \times \vec{d}-\vec{b} \times \vec{d}\)

⇒ \(\vec{a} \times \vec{b}-\vec{a} \times \vec{c}+\vec{b} \times \vec{d}-\vec{c} \times \vec{d}=\overrightarrow{0}\)

⇒ \(\vec{a} \times(\vec{b}-\vec{c})+(\vec{b}-\vec{c}) \times \vec{d}=\overrightarrow{0}\)

⇒ \(\vec{a} \times(\vec{b}-\vec{c})-\vec{d} \times(\vec{b}-\vec{c})=\overrightarrow{0}\)

⇒ \((\vec{a}-\vec{d}) \times(\vec{b}-\vec{c})=\overrightarrow{0}\)

⇒ \((\vec{a}-\vec{d}) \|(\vec{b}-\vec{c})\)

Hence, \((\vec{a}-\vec{d})\) is parallel to \((\vec{b}-\vec{c})\).

Example 25 If \(\vec{a}=\hat{i}+\hat{j}+\hat{k} \text { and } \vec{b}=\hat{j}-\hat{k}\), find a vector \(\vec{c}\) such that \(\vec{a}\) x \(\vec{c}\) = \(\vec{b}\) and \(\vec{a}\).\(\vec{c}\) = 3.

Solution

Let \(\vec{c}=c_1 \hat{i}+c_2 \hat{j}+c_3 \hat{k}\). Then,

\((\vec{a} \times \vec{c})=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 1 & 1 \\
c_1 & c_2 & c_3
\end{array}\right|\)

= \(\left(c_3-c_2\right) \hat{i}+\left(c_1-c_3\right) \hat{j}+\left(c_2-c_1\right) \hat{k}\)

∴ \((\vec{a} \times \vec{c})=\vec{b} \Rightarrow\left(c_3-c_2\right) \hat{i}+\left(c_1-c_3\right) \hat{j}+\left(c_2-c_1\right) \hat{k}=\hat{j}-\hat{k}\)

⇒ c3 – c2 = 0, c1 – c3 = 1 and c2 – c1 = -1

⇒ c3 = c2, c1 – c3 = 1 and c2 – c1 = -1 …(1)

\(\vec{a} \cdot \vec{c}=(\hat{i}+\hat{j}+\hat{k}) \cdot\left(c_1 \hat{i}+c_2 \hat{j}+c_3 \hat{k}\right)\)

⇒ \(\vec{a} \cdot \vec{c}=c_1+c_2+c_3\)

⇒ c1 + c2 + c3 = 3 …(2) [∵ \(\vec{a}\).\(\vec{c}\) = 3]

⇒ c1 + c2 + c1 – 1 = 3 [∵ c1 – c3 = 1]

⇒ 2c1 + c2 = 4 …(3)

On solving c1 – c2 = 1 and 2c1 + c2 = 4, we get

3c1 = 5 ⇒ c1 = \(\frac{5}{3}\).

∴ \(c_2=\left(c_1-1\right)=\left(\frac{5}{3}-1\right)=\frac{2}{3} \text {. }\)

And, c3 = c2 = \(\frac{2}{3}\).

Hence, \(\vec{c}=\left(\frac{5}{3} \hat{i}+\frac{2}{3} \hat{j}+\frac{2}{3} \hat{k}\right) .\)

Product Of Three Vectors

Scalar Triple Product The scalar triple product of three vectors \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) is defined as \((\vec{a} \times \vec{b}) \cdot \vec{c}\), and it is denoted by [\(\vec{a}\), \(\vec{b}\), \(\vec{c}\)].

Thus \([\vec{a} \vec{b} \vec{c}]=(\vec{a} \times \vec{b}) \cdot \vec{c} .\)

Since \((\vec{a} x \vec{b})\) is a vector, \((\vec{a} \times \vec{b}) \cdot \vec{c}\) is a scalar.

Consequently, \([\vec{a} \vec{b} \vec{c}]\) is a scalar quantity.

Some Theorems on Scalar Triple Product

Theorem 1 (Geometrical interpretation) \((\vec{a} \times \vec{b}) \cdot \vec{c}\) represents the volume of a parallelpiped whose coterminous edges are represented by \(\vec{a}\), \(\vec{b}\), \(\vec{c}\).

Proof

Let us consider a parallelepiped having coterminous edges OA, OB and OC respectively.

Let \(\overrightarrow{O A}\) = \(\vec{a}\), \(\overrightarrow{O B}\) = \(\vec{B}\) and \(\overrightarrow{O C}\) = \(\vec{c}\).

Then, \((\vec{a} \times \vec{b})\) is a vector perpendicular to the plane of \(\vec{a}\) and \(vec{b}\).

Let θ be the angle between \((\vec{a} \times \vec{b}) and [latex]vec{c}\).

∴ \([\vec{a} \vec{b} \vec{c}]=(\vec{a} \times \vec{b}) \cdot \vec{c} .\)

= \(|\vec{a} \times \vec{b}||\vec{c}| \cos \theta\)

= (area of ∥gm OADB) [projection of \(\vec{c}\) along \((\vec{a} \times \vec{b})\)]

= (area of ∥gm OADB).OL

= (area of the base of the parallelepiped with coterminous edges \(\vec{a}\), \(\vec{v}\), \(\vec{c}\).

Hence \([\vec{a} \vec{b} \vec{c}]\) represents the volume of the parallelepiped witn coterminous edges \(\vec{A}\), \(\vec{b}\), \(\vec{c}\) forming a right-handed system.

Theorem 2 For any three vectors \(\vec{a}\), \(\vec{b}\), \(\vec{c}\), \((\vec{a} \times \vec{b}) \cdot \vec{c}=\vec{a} \cdot(\vec{b} \times \vec{c})\).

Proof

Let \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) form a right-handed system, representing the coterminous edges of a parallelepiped of volume V.

Then, V = \((\vec{a} \times \vec{b}) \cdot \vec{c} .\)

Again, \(\vec{b}\), \(\vec{c}\), \(\vec{a}\) form a right-handed system, representing the coterminous edges of the same parallelepiped.

∴ V = \((\vec{b} \times \vec{c}) \cdot \vec{a}=\vec{a} \cdot(\vec{b} \times \vec{c})\) [∵ \(\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A}\)]

Hence, \((\vec{a} \times \vec{b}) \cdot \vec{c}=\vec{a} \cdot(\vec{b} \times \vec{c})\).

Theorem 3 The scalar triple product of three vectors remains unchanged so long as their cyclic order remains unchanged, i.e., \((\vec{a} \times \vec{b}) \cdot \vec{c}=(\vec{b} \times \vec{c}) \cdot \vec{a}=(\vec{c} \times \vec{a}) \cdot \vec{b} .\)

Proof

Let \(\vec{a}\), \(\vec{b}\), \(\vec{C}\) form a right-handed system, representing the coterminous edges of a rectangular parallelepiped of volume V.

Then, V = \((\vec{a} \times \vec{b}) \cdot \vec{c} .\)

Clearly, \(\vec{b}\), \(\vec{c}\), \(\vec{a}\) as well as \(\vec{c}\), \(\vec{a}\), \(\vec{b}\) form a right-handed system, representing the coterminous edges of the same parallelepiped.

∴ \(V=(\vec{b} \times \vec{c}) \cdot \vec{a} \text { and } V=(\vec{c} \times \vec{a}) \cdot \vec{b} .\)

Thus, \((\vec{a} \times \vec{b}) \cdot \vec{c}=(\vec{b} \times \vec{c}) \cdot \vec{a}=(\vec{c} \times \vec{a}) \cdot \vec{b}\) [each equal to V]

Hence, \([\vec{a} \vec{b} \vec{c}]=[\vec{b} \vec{c} \vec{a}]=[\vec{c} \vec{a} \vec{b}]\)

Theorem 4 The scalar triple product changes in sign but not in magnitude when the cyclic order of vectors is changed.

Proof

For any three vectors \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) we know that

\([\vec{a} \vec{b} \vec{c}]=[\vec{b} \vec{c} \vec{a}]=[\vec{c} \vec{a} \vec{b}]\)

∴ \([\vec{c} \vec{b} \vec{a}]=(\vec{c} \times \vec{b}) \cdot \vec{a}=-(\vec{b} \times \vec{c}) \cdot \vec{a}=-[\vec{b} \vec{c} \vec{a}]=-[\vec{a} \vec{b} \vec{c}]\)

And, \([\vec{a} \vec{c} \vec{b}]=(\vec{a} \times \vec{c}) \cdot \vec{b}=-(\vec{c} \times \vec{a}) \cdot \vec{b}=-[\vec{c} \vec{a} \vec{b}]=-[\vec{a} \vec{b} \vec{c}] .\)

∴ \([\vec{c} \vec{b} \vec{a}]=-[\vec{a} \vec{b} \vec{c}] \text { and }[\vec{a} \vec{c} \vec{b}]=-[\vec{a} \vec{b} \vec{c}] \text {. }\)

Theorem 5 The scalar triple product vanishes if any two of its vectors are equal, i.e., \(\left[\begin{array}{lll}
\vec{a} & \vec{a} & \vec{b}
\end{array}\right]=0, \left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{a}
\end{array}\right]=0 \text { and }\left[\begin{array}{lll}
\vec{b} & \vec{a} & \vec{a}
\end{array}\right]=0.\)

Proof

We have \([\vec{a} \vec{a} \vec{b}]=(\vec{a} \times \vec{a}) \cdot \vec{b}=\overrightarrow{0} \cdot \vec{b}=0\)

\(\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{a}
\end{array}\right]=\left[\begin{array}{lll}
\vec{a} & \vec{a} & \vec{b}
\end{array}\right]\) [cyclic-ordered property]

= \((\vec{a} \times \vec{a}) \cdot \vec{b}=\overrightarrow{0} \cdot \vec{b}=0 \text {; }\)

and \(\left[\begin{array}{lll}
\vec{b} & \vec{a} & \vec{a}
\end{array}\right]=\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{a}
\end{array}\right]\)

= 0. [cyclic-ordered property]

Hence, \(\left[\begin{array}{lll}
\vec{a} & \vec{a} & \vec{b}
\end{array}\right]=\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{a}
\end{array}\right]=\left[\begin{array}{lll}
\vec{b} & \vec{a} & \vec{a}
\end{array}\right]=0 .\)

Theorem 6 The scalar triple product vanishes if any two of its vectors are parallel or collinear.

Proof

Let \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) be three vectors such that \(\vec{a}\) ∥ \(\vec{b}\), or \(\vec{a}\) and \(\vec{b}\) are collinear.

Then, \(\vec{a} = m\vec{b}\) for some scalar m.

∴ \(\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]=\left[\begin{array}{llll}
m & \vec{b} & \vec{b} & \vec{c}
\end{array}\right]=(m \vec{b} \times \vec{b}) \cdot \vec{c}=\overrightarrow{0} \cdot \vec{c}=0 .\)

Theorem 7 The necessary and sufficient condition for three nonzero, noncollinear vectors \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) to be coplanar is that \([\vec{a} \vec{b} \vec{c}]=0\)

Proof

Let \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) be three nonzero, noncollinear and coplanar vectors. Then,

\(\vec{b}\) x \(\vec{c}\) is perpendicular to the plane of \(\vec{b}\) and \(\vec{c}\)

⇒ \((\vec{b} \times \vec{c}) \perp \vec{a}\) [∵ \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) are coplanar]

⇒ \(\vec{a} \cdot(\vec{b} \times \vec{c})=0\)

⇒ \(\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]=0\)

Thus, whenever \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) are coplanar, we have \([\vec{a} \vec{b} \vec{c}]=0\).

Conversely, let \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) be three nonzero, noncollinear vectors such that \([\vec{a} \vec{b} \vec{c}]=0\). Then,

\([\vec{a} \vec{b} \vec{c}]=0 \Rightarrow \vec{a} \cdot(\vec{b} \times \vec{c})=0\)

⇒ \(\vec{a}=\overrightarrow{0}, \text { or }(\vec{b} \times \vec{c})=\overrightarrow{0}, \text { or }(\vec{b} \times \vec{c}) \perp \vec{a}\)

⇒ \((\vec{b} \times \vec{c})=\overrightarrow{0} \text {, or }(\vec{b} \times \vec{c}) \perp \vec{a}\) [∵ \(\vec{a}\) ≠ \(\vec{0}\)]

⇒ \((\vec{b} \times \vec{c}) \perp \vec{a}\)

[∵ \(\vec{b}\) ≠ \(\vec{0}\), \(\vec{c}\) ≠ \(\vec{0}\), and \(\vec{b}\), \(\vec{c}\), are noncollinear ⇒ \(\vec{b} \times \vec{c} \neq \overrightarrow{0}\)].

Thus, \((\vec{b} \times \vec{c})\) is perpendicular to \(\vec{a}\).

But, \((\vec{b} \times \vec{c})\) is perpendicular to the plane of \(\vec{b}\) and \(\vec{c}\).

∴ \(\vec{a}\) must lie in the plane of \(\vec{b}\) and \(\vec{c}\).

Hence \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) must be coplanar.

Theorem 8 (Scalar triple product in terms of components) Let \(\vec{a}=a_1 \hat{i}+a_2 \hat{j}+a_3 \hat{k}, \vec{b}=b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k} \text { and } \vec{c}=c_1 \hat{i}+c_2 \hat{j}+c_3 \hat{k} \text {. }\)

Then, \(\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]=\left|\begin{array}{lll}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{array}\right|\)

Proof

We have \(\vec{a} \times \vec{b}=\left|\begin{array}{lll}
\hat{i} & \hat{j} & \hat{k} \\
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3
\end{array}\right|\)

= \(\left(a_2 b_3-a_3 b_2\right) \hat{i}+\left(a_3 b_1-a_1 b_3\right) \hat{j}+\left(a_1 b_2-a_2 b_1\right) \hat{k}\)

∴ \([\vec{a} \vec{b} \vec{c}]=(\vec{a} \times \vec{b}) \cdot \vec{c}\)

= \(\left(a_2 b_3-a_3 b_2\right) c_1+\left(a_3 b_1-a_1 b_3\right) c_2+\left(a_1 b_2-a_2 b_1\right) c_3\)

= \(a_1\left(b_2 c_3-b_3 c_2\right)+a_2\left(b_3 c_1-b_1 c_3\right)+a_3\left(b_1 c_2-b_2 c_1\right)\)

= \(\left|\begin{array}{lll}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{array}\right| .\)

Solved Examples

Example 1 Prove that \([\hat{i} \hat{j} \hat{k}]=1 \text {, and }[\hat{i} \hat{k} \hat{j}]=-1\)

Solution

\([\hat{i} \hat{j} \hat{k}]=(\hat{i} \times \hat{j}) \cdot \hat{k}=\hat{k} \cdot \hat{k}=1\)

And, \([\hat{i} \hat{k} \hat{j}]=(\hat{i} \times \hat{k}) \cdot \hat{j}=-\hat{j} \cdot \hat{j}==-1\)

Example 2 If \(\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k} and \vec{c}=-3 \hat{i}+\hat{j}+2 \hat{k} \text {, find }[\vec{a} \vec{b} \vec{c}]\)

Solution

We have

\(\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]=\left|\begin{array}{rrr}
2 & 1 & 3 \\
-1 & 2 & 1 \\
-3 & 1 & 2
\end{array}\right|\)

= \(\left|\begin{array}{rrr}
0 & 5 & 5 \\
-1 & 2 & 1 \\
0 & -5 & -1
\end{array}\right|\)

\(\left[R_1 \rightarrow R_1+2 R_2, R_3 \rightarrow R_3-3 R_2\right]\)

= -(-1).[-5+25] = 20.

Example 3 Find the volume of the parallelepiped whose coterminous edges are represented by the vectors \(\vec{a}=2 \hat{i}-3 \hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+2 \hat{k} \text { and } \vec{c}=2 \hat{i}+\hat{j}-\hat{k}\)

Solution

We have

\(\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]=\left|\begin{array}{rrr}
2 & -3 & 1 \\
1 & -1 & 2 \\
2 & 1 & -1
\end{array}\right|\)

= \(\left|\begin{array}{rrr}
0 & -1 & -3 \\
1 & -1 & 2 \\
0 & 3 & -5
\end{array}\right|\)

\(\left[R_1 \rightarrow R_1-2 R_2 \text {, and } R_3 \rightarrow R_3-2 R_2\right]\)

= -(1).(5+9) = -14.

∴ volume of the parallelepiped

= \(|[\vec{a} \vec{b} \vec{c}]|=|-14|\) = 14 cubic units.

Example 4 Show that the vectors \(\hat{i}-3 \hat{j}+4 \hat{k}, 2 \hat{i}-\hat{j}+2 \hat{k} \text { and } 4 \hat{i}-7 \hat{j}+10 \hat{k}\) are coplanar.

Solution

Let \(\vec{a}=\hat{i}-3 \hat{j}+4 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+2 \hat{k} \text { and } \vec{c}=4 \hat{i}-7 \hat{j}+10 \hat{k}\)

∴ \(\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]=\left|\begin{array}{rrr}
1 & -3 & 4 \\
2 & -1 & 2 \\
4 & -7 & 10
\end{array}\right|=\left|\begin{array}{rrr}
1 & -3 & 4 \\
0 & 5 & -6 \\
0 & 5 & -6
\end{array}\right|\)

= \(\left|\begin{array}{l}
R_2 \rightarrow R_2-2 R_1 \\
R_3 \rightarrow R_3-4 R_1
\end{array}\right|\)

= (-30+30) = 0,

Hence, the given vectors are coplanar.

Example 5 Find the value of λ so that the vectors \(\vec{a}=2 \hat{i}-3 \hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-3 \hat{k} \text { and } \vec{c}=\hat{j}+\lambda \hat{k}\) are coplanar.

Solution

The given vectors will be coplanar if \(\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]=0\)

Now, \(\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]=0 ⇔ \left|\begin{array}{rrr}
2 & -3 & 1 \\
1 & 2 & -3 \\
0 & 1 & \lambda
\end{array}\right|=0\)

⇔ \(\left|\begin{array}{rrr}
0 & -7 & 7 \\
1 & 2 & -3 \\
0 & 1 & \lambda
\end{array}\right|=0\)

\(\left[R_1 \rightarrow R_1-2 R_2\right]\)

⇔ (-1)(-7λ-7) = 0 ⇔ 7λ + 7 = 0 ⇔ λ = -1.

Hence, the given vectors are coplanar when λ = -1.

Example 6 Show that the four points with position vectors \((4 \hat{i}+5 \hat{j}+\hat{k}),(-\hat{j}-\hat{k}),(3 \hat{i}+9 \hat{j}+4 \hat{k}) \text { and } 4(-\hat{i}+\hat{j}+\hat{k})\) are coplanar.

Solution

Let the given points be A, B, C, D respectively.

Points A, B, C, D are coplanar ⇔ \(\overrightarrow{A B}, \overrightarrow{A C} \text { and } \overrightarrow{A D}\) are coplanar

⇔ \([\overrightarrow{A B} \overrightarrow{A C} \overrightarrow{A D}]=0\)

Now, \(\overrightarrow{A B}\) = (p.v. of B)-(p.v. of A)

= \((-\hat{j}-\hat{k})-(4 \hat{i}+5 \hat{j}+\hat{k})=(-4 \hat{i}-6 \hat{j}-2 \hat{k}) .\)

\(\overrightarrow{A C}\) = (p.v. of C)-(p.v. of A)

= \((3 \hat{i}+9 \hat{j}+4 \hat{k})-(4 \hat{i}+5 \hat{j}+\hat{k})=(-\hat{i}+4 \hat{j}+3 \hat{k})\)

\(\overrightarrow{A D}\) = (p.v. of D)-(p.v. of A)

= \((-4 \hat{i}+4 \hat{j}+4 \hat{k})-(4 \hat{i}+5 \hat{j}+\hat{k})=(-8 \hat{i}-\hat{j}+3 \hat{k})\)

∴ \(\left[\begin{array}{lll}
\overrightarrow{A B} & \overrightarrow{A C} & \overrightarrow{A D}
\end{array}\right]=\left|\begin{array}{rrr}
-4 & -6 & -2 \\
-1 & 4 & 3 \\
-8 & -1 & 3
\end{array}\right|\)

= \(\left|\begin{array}{rrr}
0 & -22 & -14 \\
-1 & 4 & 3 \\
0 & -21 & -33
\end{array}\right|\)

\(\left\{\begin{array}{l}
R_1 \rightarrow R_1-4 R_2 \\
R_3 \rightarrow R_3-8 R_2
\end{array}\right\}\)

= -(-1)[462-462] = 0.

∴ \(\overrightarrow{A B}\), \(\overrightarrow{A C}\) and \(\overrightarrow{A D}\) are coplanar.

Hence, the points A, B, C, D are coplanar.

Example 7 Find the value of λ so that the four points with position vectors \((-6 \hat{i}+3 \hat{j}+2 \hat{k}),(3 \hat{i}+\lambda \hat{j}+4 \hat{k}),(5 \hat{i}+7 \hat{j}+3 \hat{k})\) and \((-13 \hat{i}+17 \hat{j}-2 \hat{k})\) are coplanar.

Solution

Let the given points be A, B, C, D respectively. Then,

\(\overrightarrow{A B}\) = (p.v. of B) – (p.v. of A)

= \((3 \hat{i}+\lambda \hat{j}+4 \hat{k})-(-6 \hat{i}+3 \hat{j}+2 \hat{k})=9 \hat{i}+(\lambda-3) \hat{j}+2 \hat{k}\)

\(\overrightarrow{A C}\) = (p.v. of C) – (p.v. of A)

= \((5 \hat{i}+7 \hat{j}+3 \hat{k})-(-6 \hat{i}+3 \hat{j}+2 \hat{k})=(11 \hat{i}+4 \hat{j}+\hat{k})\)

\(\overrightarrow{A D}\) = (p.v. of D) – (p.v. of A)

= \((-13 \hat{i}+17 \hat{j}-\hat{k})-(-6 \hat{i}+3 \hat{j}+2 \hat{k})=(-7 \hat{i}+14 \hat{j}-3 \hat{k})\)

Now, A, B, C, D are coplanar

⇔ \(\left[\begin{array}{lll}
\overrightarrow{A B} & \overrightarrow{A C} & \overrightarrow{A D}
\end{array}\right]=0\)

⇔ \(\left|\begin{array}{rcr}
9 & \lambda-3 & 2 \\
11 & 4 & 1 \\
-7 & 14 & -3
\end{array}\right|=0\)

⇔ 9(-12-14) – (λ-3)(-33+7) + 2(154+28) = 0

⇔ -234 + 26λ – 78 + 364 = 0

⇔ 26λ = -52 ⇔ λ = -2.

Hence, the required value of λ is -2.

Example 8 Show that the points A(-1,4,-3), B(3,2,-5), C(-3,8,-5) and D(-3,2,1) are coplanar.

Solution

Clearly, the position vectors of A, B, C, D are \((-\hat{i}+4 \hat{j}-3 \hat{k}), (3 \hat{i}+2 \hat{j}-5 \hat{k}),(-3 \hat{i}+8 \hat{j}-5 \hat{k}) and (-3 \hat{i}+2 \hat{j}+\hat{k})\) respectively.

∴ \(\overrightarrow{A B}\) = (p.v. of B) – (p.v. of A)

= \((3 \hat{i}+2 \hat{j}-5 \hat{k})-(-\hat{i}+4 \hat{j}-3 \hat{k})=(4 \hat{i}-2 \hat{j}-2 \hat{k})\)

\(\overrightarrow{A C}\) = (p.v. of C) – (p.v. of A)

= \((-3 \hat{i}+8 \hat{j}-5 \hat{k})-(-\hat{i}+4 \hat{j}-3 \hat{k})=(-2 \hat{i}+4 \hat{j}-2 \hat{k})\)

\(\overrightarrow{A D}\) = (p.v. of D) – (p.v. of A)

= \((-3 \hat{i}+2 \hat{j}+\hat{k})-(-\hat{i}+4 \hat{j}-3 \hat{k})=(-2 \hat{i}-2 \hat{j}+4 \hat{k})\)

∴ \(\left[\begin{array}{lll}
\overrightarrow{A B} & \overrightarrow{A C} & \overrightarrow{A D}
\end{array}\right]=\left|\begin{array}{rrr}
4 & -2 & -2 \\
-2 & 4 & -2 \\
-2 & -2 & 4
\end{array}\right|\)

= \(2 \times(-2) \times(-2) \cdot\left|\begin{array}{rrr}
2 & -1 & -1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right|\)

= \(8 \cdot\left|\begin{array}{rrr}
0 & -3 & 3 \\
0 & -3 & 3 \\
1 & 1 & -2
\end{array}\right|\)

\(\left[R_1 \rightarrow R_1-2 R_3, R_2 \rightarrow R_2-R_3\right]\)

= (8 x 0) = 0 [∵ R1 and R2 are identical]

⇒ \(\overrightarrow{A B}\), \(\overrightarrow{A C}\), \(\overrightarrow{A D}\) are coplanar

⇒ the points A, B, C, D are coplanar.

Example 9 For any three vectors \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) show that the vectors \((\vec{a}-\vec{b}),(\vec{b}-\vec{c}),(\vec{c}-\vec{a})\) are coplanar.

Solution

We know that \((\vec{a}-\vec{b}),(\vec{b}-\vec{c}),(\vec{c}-\vec{a})\) are coplanar

⇔ \(\left[\begin{array}{lll}
\vec{a}-\vec{b} & \vec{b}-\vec{c} & \vec{c}-\vec{a}
\end{array}\right]=0 .\)

Now, \(\left[\begin{array}{lll}
\vec{a}-\vec{b} & \vec{b}-\vec{c} & \vec{c}-\vec{a}
\end{array}\right]\)

= \((\vec{a}-\vec{b}) \cdot[(\vec{b}-\vec{c}) \times(\vec{c}-\vec{a})]\)

= \((\vec{a}-\vec{b}) \cdot[\vec{b} \times \vec{c}-\vec{b} \times \vec{a}-\vec{c} \times \vec{c}+\vec{c} \times \vec{a}]\) [by distribution law]

= \((\vec{a}-\vec{b}) \cdot[\vec{b} \times \vec{c}+\vec{a} \times \vec{b}+\vec{c} \times \vec{a}] [∵ -\vec{b} \times \vec{a}=\vec{a} \times \vec{b} \text {, and } \vec{c} \times \vec{c}=\overrightarrow{0}]\)

= \(\vec{a} \cdot(\vec{b} \times \vec{c})+\vec{a} \cdot(\vec{a} \times \vec{b})+\vec{a} \cdot[\vec{c} \times \vec{a}]-\vec{b} \cdot(\vec{b} \times \vec{c})-\vec{b} \cdot(\vec{a} \times \vec{b})-\vec{b} \cdot(\vec{c} \times \vec{a})\)

= \(\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]+\left[\begin{array}{lll}
\vec{a} & \vec{a} & \vec{b}
\end{array}\right]+\left[\begin{array}{lll}
\vec{a} & \vec{c} & \vec{a}
\end{array}\right]-\left[\begin{array}{lll}
\vec{b} & \vec{b} & \vec{c}
\end{array}\right]-\left[\begin{array}{lll}
\vec{b} & \vec{a} & \vec{b}
\end{array}\right]-\left[\begin{array}{lll}
\vec{b} & \vec{c} & \vec{a}
\end{array}\right]\)

= \([\vec{a} \vec{b} \vec{c}]-[\vec{b} \vec{c} \vec{a}]\)

[∵ scalar triple product with two equal vectors is 0]

= \([\vec{a} \vec{b} \vec{c}]-[\vec{a} \vec{b} \vec{c}]=0\)

{∵ \(\left[\begin{array}{lll}
\vec{b} & \vec{c} & \vec{a}
\end{array}\right]=\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]\)}.

Hence, \((\vec{a}-\vec{b}),(\vec{b}-\vec{c}),(\vec{c}-\vec{a})\) are coplanar.

Example 10 Prove that \(\left[\begin{array}{llll}
\vec{a}+\vec{b} & \vec{b}+\vec{c} & \vec{c}+\vec{a}
\end{array}\right]=2\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right] .\)

Solution

We have

\([\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]\)

= \((\vec{a}+\vec{b}) \cdot[(\vec{b}+\vec{c}) \times(\vec{c}+\vec{a})]\)

= \((\vec{a}+\vec{b}) \cdot[\vec{b} \times \vec{c}+\vec{b} \times \vec{a}+\vec{c} \times \vec{c}+\vec{c} \times \vec{a}]\) [by distribution law]

= \((\vec{a}+\vec{b}) \cdot[(\vec{b} \times \vec{c})-(\vec{a} \times \vec{b})+(\vec{c} \times \vec{a})]\)

[∵ \(\vec{c} \times \vec{c}=\overrightarrow{0}, \text { and } \vec{b} \times \vec{a}=-\vec{a} \times \vec{b}\)]

= \(\vec{a} \cdot(\vec{b} \times \vec{c})-\vec{a} \cdot(\vec{a} \times \vec{b})+\vec{a} \cdot(\vec{c} \times \vec{a})+\vec{b} \cdot(\vec{b} \times \vec{c})-\vec{b} \cdot(\vec{a} \times \vec{b})+\vec{b} \cdot(\vec{c} \times \vec{a})\)

[by distribution law]

= \(\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]-\left[\begin{array}{lll}
\vec{a} & \vec{a} & \vec{b}
\end{array}\right]+\left[\begin{array}{lll}
\vec{a} & \vec{c} & \vec{a}
\end{array}\right]+\left[\begin{array}{lll}
\vec{b} & \vec{b} & \vec{c}
\end{array}\right]-\left[\begin{array}{lll}
\vec{b} & \vec{a} & \vec{b}
\end{array}\right]+\left[\begin{array}{lll}
\vec{b} & \vec{c} & \vec{a}
\end{array}\right]\)

= \(\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]+\left[\begin{array}{lll}
\vec{b} & \vec{c} & \vec{a}
\end{array}\right]\)

[∵ scalar triple product with two equal vectors is 0]

= \(2[\vec{a} \vec{b} \vec{c}]\) {∵ \(\left[\begin{array}{lll}
\vec{b} & \vec{c} & \vec{a}
\end{array}\right]=\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]\)}

Hence, \(\left[\begin{array}{lll}
\vec{a}+\vec{b} & \vec{b}+\vec{c} & \vec{c}+\vec{a}
\end{array}\right]=2\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right] .\)

Example 11 Show that \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) are noncoplanar if and only if \(\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}\) are noncoplanar.

Solution

\(\vec{a}\), \(\vec{b}\), \(\vec{c}\) are noncoplanar

⇔ \(\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right] \neq 0 ⇔2 \left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right] \neq 0\)

⇔ \(\left[\begin{array}{lll}
\vec{a}+\vec{b} & \vec{b}+\vec{c} & \vec{c}+\vec{a}
\end{array}\right] \neq 0\)

⇔ \(\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}\) are noncoplanar.

Example 12 If \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) are the position vectors of points A, B, C prove that \((\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a})\) is a vector perpendicular tot he plane of triangle ABC.

Solution

In order to prove the required result, we have to show that \((\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a})\) is perpendicular to each of the vectors \(\overrightarrow{A B}\), \(\overrightarrow{B C}\) and \(\overrightarrow{C A}\).

We have, \(\overrightarrow{A B}=(\vec{b}-\vec{a}), \overrightarrow{B C}=(\vec{c}-\vec{b}) \text { and } \overrightarrow{C A}=(\vec{a}-\vec{c}) \text {. }\)

Now, \((\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}) \cdot(\vec{b}-\vec{a})\)

= \((\vec{a} \times \vec{b}) \cdot(\vec{b}-\vec{a})+(\vec{b} \times \vec{c}) \cdot(\vec{b}-\vec{a})+(\vec{c} \times \vec{a}) \cdot(\vec{b}-\vec{a})\)

= \((\vec{a} \times \vec{b}) \cdot \vec{b}-(\vec{a} \times \vec{b}) \cdot \vec{a}+(\vec{b} \times \vec{c}) \cdot \vec{b}-(\vec{b} \times \vec{c}) \cdot \vec{a}+(\vec{c} \times \vec{a}) \cdot \vec{b}-(\vec{c} \times \vec{a}) \cdot \vec{a}\)

= \(\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{b}
\end{array}\right]-\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{a}
\end{array}\right]+\left[\begin{array}{lll}
\vec{b} & \vec{c} & \vec{b}
\end{array}\right]-\left[\begin{array}{lll}
\vec{b} & \vec{c} & \vec{a}
\end{array}\right]+\left[\begin{array}{lll}
\vec{c} & \vec{a} & \vec{b}
\end{array}\right]-\left[\begin{array}{lll}
\vec{c} & \vec{a} & \vec{a}
\end{array}\right]\)

= \(\left[\begin{array}{lll}
\vec{c} & \vec{a} & \vec{b}
\end{array}\right]-\left[\begin{array}{lll}
\vec{b} & \vec{c} & \vec{a}
\end{array}\right]\)

[∵ scalar triple product with two equal vectors is 0].

= 0 (∵ \(\left[\begin{array}{lll}
\vec{c} & \vec{a} & \vec{b}
\end{array}\right]=\left[\begin{array}{lll}
\vec{b} & \vec{c} & \vec{a}
\end{array}\right]\))

Similarly, \((\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}) \cdot(\vec{c}-\vec{b})=0\)

And, \((\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}) \cdot(\vec{a}-\vec{c})=0\)

Thus, \((\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a})\) is perpendicular to each one of the vectors \(\overrightarrow{A B}\), \(\overrightarrow{B C}\) and \(\overrightarrow{C A}\), and therefore, it is perpendicular to the plane of △ABC.

Example 13 Show that \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) are coplanar if and only if \((\vec{a}+\vec{b}),(\vec{b}+\vec{c}),(\vec{c}+\vec{a})\) are coplanar.

Solution \((\vec{a}+\vec{b}),(\vec{b}+\vec{c}),(\vec{c}+\vec{a})\) are coplanar

⇔ \(\left[\begin{array}{lll}
\vec{a}+\vec{b} & \vec{b}+\vec{c} & \vec{c}+\vec{a}
\end{array}\right]=0\)

⇔ \((\vec{a}+\vec{b}) \cdot\{(\vec{b}+\vec{c}) \times(\vec{c}+\vec{a})\}=0\)

⇔ \((\vec{a}+\vec{b}) \cdot\{\vec{b} \times \vec{c}+\vec{b} \times \vec{a}+\vec{c} \times \vec{c}+\vec{c} \times \vec{a}\}=0\)

⇔ \((\vec{a}+\vec{b}) \cdot\{\vec{b} \times \vec{c}+\vec{b} \times \vec{a}+\vec{c} \times \vec{a}\}=0\)

[∵ \(\vec{c} \times \vec{c}=0\)]

⇔ \(\vec{a} \cdot(\vec{b} \times \vec{c})+\vec{a} \cdot(\vec{b} \times \vec{a})+\vec{a} \cdot(\vec{c} \times \vec{a})\)

\(+\vec{b} \cdot(\vec{b} \times \vec{c})+\vec{b} \cdot(\vec{b} \times \vec{a})+\vec{b} \cdot(\vec{c} \times \vec{a})=0\)

⇔ \(\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]+\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{a}
\end{array}\right]+\left[\begin{array}{lll}
\vec{a} & \vec{c} & \vec{a}
\end{array}\right]+\left[\begin{array}{lll}
\vec{b} & \vec{b} & \vec{c}
\end{array}\right]\)

\(+\left[\begin{array}{lll}
\vec{b} & \vec{b} & \vec{a}
\end{array}\right]+\left[\begin{array}{lll}
\vec{b} & \vec{c} & \vec{a}
\end{array}\right]=0\)

⇔ \([\vec{a} \vec{b} \vec{c}]+\left[\begin{array}{lll}
\vec{b} & \vec{c} & \vec{a}
\end{array}\right]=0\)

[∵ scalar triple product with two equal vectors is 0]

⇔ \(2[\vec{a} \vec{b} \vec{c}]=0\) {∵ \(\left[\begin{array}{lll}
\vec{b} & \vec{c} & \vec{a}
\end{array}\right]=\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]\)}

⇔ \([\vec{a} \vec{b} \vec{c}]=0\)

⇔ \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) are coplanar.

Hence, \((\vec{a}+\vec{b}), \quad(\vec{b}+\vec{c}), \quad(\vec{c}+\vec{a})\) are coplanar ⇔ \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) are coplanar.

Example 14. For any three vectors \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) prove that \(\left[\begin{array}{lll}
\vec{a} & \vec{b}+\vec{c} & \vec{a}+\vec{b}+\vec{c}
\end{array}\right]=0\)

Solution

We have

\(\left[\begin{array}{lll}
\vec{a} & \vec{b}+\vec{c} & \vec{a}+\vec{b}+\vec{c}
\end{array}\right]\)

= \(\{\vec{a} \times(\vec{b}+\vec{c})\} \cdot(\vec{a}+\vec{b}+\vec{c})\)

= \(\{(\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})\} \cdot(\vec{a}+\vec{b}+\vec{c})\) [by the distribution law]

= \((\vec{a} \times \vec{b}) \cdot \vec{a}+(\vec{a} \times \vec{b}) \cdot \vec{b}+(\vec{a} \times \vec{b}) \cdot \vec{c}+(\vec{a} \times \vec{c}) \cdot \vec{a}\)

\(+(\vec{a} \times \vec{c}) \cdot \vec{b}+(\vec{a} \times \vec{c}) \cdot \vec{c}\) [by the distribution law]

= \(\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]+\left[\begin{array}{lll}
\vec{a} & \vec{c} & \vec{b}
\end{array}\right]\)

[∵ scalar triple product with two equal vectors is 0]

= \([\vec{a} \vec{b} \vec{c}]-[\vec{a} \vec{b} \vec{c}]=0\)

Hence, \(\left[\begin{array}{lll}
\vec{a} & \vec{b}+\vec{c} & \vec{a}+\vec{b}+\vec{c}
\end{array}\right]=0\)

WBCHSE Class 12 Maths Solutions For Matrices

Class 12 Maths Solutions For Matrices

Matrix A rectangular array of mn numbers in the form of m horizontal lines (called rows) and n vertical lines (called columns) is called a matrix of order m by n, written as an m x n matrix.

Such an array is enclosed by [ ] or ( ).

Each of the mn numbers constituting the matrix is called an element or an entry of the matrix.

Usually, we denote a matrix by a capital letter.

The plural of matrix is matrices.

Examples (1) A = \(\left[\begin{array}{rrr}
3 & 5 & -4 \\
0 & 1 & 9
\end{array}\right]\) is a matrix, having 2 rows and 3 columns.

Its order is 2 x 3 and it has 6 elements.

(2) B = \(\left[\begin{array}{rrrr}
9 & 4 & \sqrt{2} & -1 \\
1 & 8 & -3 & 2 \\
6 & 0 & 5 & 7
\end{array}\right]\) is a matrix, having 3 rows and 4 columns. Its order is 3 x 4 and it has 12 elements.

How to Describe a Matrix

To locate the position of a particular element of a matrix, we have to specify the number of the row and that of the column in which the element occurs.

An element occuring in the ith row and jth column of a matrix A will be called the (i,j)th element of A, to be denoted by air.

WBCHSE Class 12 Maths Solutions For Matrices

Read and Learn More  Class 12 Math Solutions

In general, as m x n matrix A may be written as

A = \(\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{i 1} & a_{i 2} & a_{i 3} & \ldots & a_{i n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{m 1} & a_{m 2} & a_{m 3} & \cdots & a_{n n}
\end{array}\right]=\left[a_{i j}\right]_{m \times n} .\)

Example 1 Consider the matrix A = \(\left[\begin{array}{rrr}
3 & -2 & 5 \\
6 & 9 & 1
\end{array}\right]\)

Clearly, the element in the 1st row and 2nd column is -2.

So, we write a12 = -2.

Similarly, a11 = 3; a12 = -2; a13 = 5; a21 = 6; a22 = 9 and a23 = 1.

Example 2 Construct a 3 x 2 matrix whose elements are given by aij = (i+2j).

Solution

A 3 x 2 matrix has 3 rows and 2 columns.

In general, a 3 x 2 matrix is given by

A = \(\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right]_{3 \times 2}\)

Thus aij = (i+2j) for i=1, 2,3 and j = 1,2.

∴ a11 = (1+2×1) = 3; a12 = (1+2×2) = 5;

a21 = (2+2×1) = 4; a22=(2+2×2) = 6;

a31 = (3+2×1) = 5; a32 = (3+2×2) = 7.

Hence, A = \(\left[\begin{array}{ll}
3 & 5 \\
4 & 6 \\
5 & 7
\end{array}\right]_{3 \times 2}\)

Example 3 Construct a 2 x 3 matrix whose elements are given by aij = \(\frac{1}{2}|5 i-3 j| .\)

Solution

A 2 x 3 matrix has 2 rows and 3 columns.

In general, a 2 x 3 matrix is given by

A = \(\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]_{2 \times 3}\)

Thus, \(a_{i j}=\frac{1}{2}|5 i-3 j|\), where i = 1,2 and j = 1,2,3.

∴ \(a_{11}=\frac{1}{2}|5 \times 1-3 \times 1|=\frac{1}{2} \cdot|2|=\frac{1}{2} \times 2=1 ;\)

\(a_{12}=\frac{1}{2}|5 \times 1-3 \times 2|=\frac{1}{2} \cdot|5-6|=\frac{1}{2} \cdot|-1|=\frac{1}{2} \times 1=\frac{1}{2} \text {; }\) \(a_{13}=\frac{1}{2}|5 \times 1-3 \times 3|=\frac{1}{2} \cdot|5-9|=\frac{1}{2} \cdot|-4|=\frac{1}{2} \times 4=2 \text {; }\) \(a_{21}=\frac{1}{2}|5 \times 2-3 \times 1|=\frac{1}{2} \cdot|10-3|=\frac{1}{2} \cdot|7|=\frac{1}{2} \times 7=\frac{7}{2} ;\) \(a_{22}=\frac{1}{2}|5 \times 2-3 \times 2|=\frac{1}{2} \cdot|10-6|=\frac{1}{2} \cdot|4|=\frac{1}{2} \times 4=2\) \(a_{23}=\frac{1}{2}|5 \times 2-3 \times 3|=\frac{1}{2} \cdot|10-9|=\frac{1}{2} \cdot|1|=\frac{1}{2} \times 1=\frac{1}{2}\)

Hence, A = \(\left[\begin{array}{lll}
1 & \frac{1}{2} & 2 \\
\frac{7}{2} & 2 & \frac{1}{2}
\end{array}\right]\).

WBBSE Class 12 Matrices Solutions

Example 4 If a matrix has 12 elements, what are the possible orders it can have?

Solution

We know that a matrix of order m x n has mn elements.

Hence, all possible orders of a matrix having 12 elements are (12×1), (1×12), (6×2), (2×6), (4×3) and (3×4).

Various Types of Matrices

Row Matrix A matrix having only one row is known as a row matrix or a row vector.

Examples (1) A = [5 18] is a row matrix of order 1 x 2.

(2) B = [2 √5 -9 0] is a row matrix of order 1 x 4.

Column Matrix A matrix having only one column is known as a column matrix or a column vector.

Examples (1) A = \(\left[\begin{array}{r}
2 \\
7 \\
-3
\end{array}\right]\) is a column matrix of order 3 x 1.

(2) B = \(\left[\begin{array}{l}
6 \\
4
\end{array}\right]\) is a column matrix of order 2 x 1.

Zero Or Null Matrix A matrix each of whose elements is zero is called a zero matrix or a null matrix.

Example The matrices [0], [0 0], \(\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\) and \(\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\) are null matrices of order (1×1), (1×2), (2×2) and (2×3) respectively.

Square Matrix A matrix having the same number of rows and columns is called a square matrix.

A matrix of order (n x n) is called a square matrix of order n or an n-rowed square matrix.

A matrix of order m x n, where m ≠ n, is called a rectangular matrix.

Examples (1) The matrix \(\left[\begin{array}{rr}
3 & 2 \\
6 & -5
\end{array}\right]\) is a 2-rowed square matrix.

(2) The matrix \(\left[\begin{array}{ccc}
5 & 3 & 6 \\
7 & \sqrt{2} & -4 \\
-9 & \frac{1}{3} & 0
\end{array}\right]\) is a 3-rowed square matrix.

Diagonal Elements Of A Matrix Let A = [aij]mxn be an m x n matrix. Then, the elements aij for which i = j, are called the diagonal elements of A.

Thus, the diagonal elements of A = [aij]mxn are a11, a22, a33, a44, etc.

The line along which the diagonal elements lie is called the diagonal of the matrix.

Example Let A = \(\left[\begin{array}{rrr}
3 & 2 & -1 \\
\sqrt{5} & \frac{5}{8} & 7 \\
6 & -4 & \sqrt{2}
\end{array}\right]\) Then, the diagonal elements of A are: a11 = 3, a22 = \(\frac{5}{8}\), a33 = √2.

Understanding Matrices Concepts for Class 12

Diagonal Matrix A square matrix in which every nondiagonal element is zero is called a diagonal matrix.

If A = [aij]mxn be a diagonal matrix then aij=0 when i ≠ j and we write it as

A = diag[a11, a22, a33,…, ann].

Example Let A = \(\left[\begin{array}{rrr}
6 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & -2
\end{array}\right]\). Then, A is a diagonal matrix. We may write it as, A = diag[6,4,-2].

Scalar Matrix A square matrix in which every nondiagonal element is zero and all diagonal elements re equal is known as a scalar matrix.

Examples (1) A = \(\left[\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right]\) is a scalar matrix of order 2.

(2) B = \(\left[\begin{array}{rrr}
-3 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & -3
\end{array}\right]\) is a scalar matrix of order 3.

Unit Matrix A square matrix in which every nondiagonal element is 0 and every diagonal element is 1 is called a unit matrix or an identity matrix.

Thus, a square matrix [aij]nxn is a unit matrix if

\(a_{i j}=\left\{\begin{array}{l}
0 \text { when } i \neq j, \\
1 \text { when } i=j .
\end{array}\right.\)

A unit matrix of order n will be denoted by In or simply by I.

Examples (1) I2 = \(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\) is a unit matrix of order 2.

(2) I3 = \(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\) is a unit matrix of order 3.

Comparable Matrices Two matrices A and B are said to be comparable if they are of the same order, i.e., they have the same number of rows and the same umber of columns.

Example A = \(\left[\begin{array}{rrr}
2 & -5 & 1 \\
0 & 3 & 6
\end{array}\right]\) and B = \(\left[\begin{array}{rrr}
3 & 7 & 0 \\
1 & 4 & -9
\end{array}\right]\) are comparable matrices, each being of order (2×3).

Equal Matrices Two matrices A and B are said to be equal, written as A = B, if they are of the same order and their corresponding elements are equal.

Example 1 Find x, y, z when \(\left[\begin{array}{ll}
5 & 3 \\
x & 7
\end{array}\right]=\left[\begin{array}{ll}
y & z \\
1 & 7
\end{array}\right]\)

Solution

Since the corresponding elements of equal matrices are equal, we have

\(\left[\begin{array}{ll}
5 & 3 \\
x & 7
\end{array}\right]=\left[\begin{array}{ll}
y & z \\
1 & 7
\end{array}\right]\) ⇔ x = 1, y = 5 and z = 3.

Step-by-Step Solutions to Matrix Problems

Example 2 Find x, y, z w when \(\left[\begin{array}{ll}
x-y & 2 x+z \\
2 x-y & 3 z+w
\end{array}\right]=\left[\begin{array}{rr}
-1 & 5 \\
0 & 13
\end{array}\right]\).

Solution

We know that in equal matrices, the corresponding elements are equal.

∴ \(\left[\begin{array}{rr}
x-y & 2 x+z \\
2 x-y & 3 z+w
\end{array}\right]=\left[\begin{array}{rr}
-1 & 5 \\
0 & 13
\end{array}\right]\)

⇔ x – y = -1, 2x – y = 0, 2x + z = 5 and 3z + w = 13.

Solving the first two equations, we get x = 1 and y = 2.

Putting x = 1 in 2x + z = 5, we get z = 3.

Putting z = 3 in 3z + w = 13, we get w = 4.

∴ x = 1, y = 2, z = 3 and w = 4.

Example 3 \(\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \neq\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right] \text {. }\) Why?

Solution

Since the given null matrices are not comparable, they are not equal.

Operations On Matrices

Mainly we have four operations on matrices, namely:

Transposition, Matrix Addition, Matrix multiplication and Scalar multiplication.

Out of these operations, transposition is a unary operation while matrix addition and matrix multiplication are both binary operations and scalar multiplication is an external composition.

Transposition

Transpose Of A Matrix Let A be an (mxn) matrix. Then, the matrix obtained by interchanging the rows and columns of A is called the transpose of A, denoted by A’ or A’.

If A = [aij]mxn, then A’ = [aij]nxm.

Remarks (1) If A is an (mxn) matrix, then A’ is an (nxm) matrix.

(2) (i,j)th element of A = (j,i)th element of A’.

Examples (1) If A = \(\left[\begin{array}{rrr}
2 & 3 & -1 \\
4 & -2 & 5
\end{array}\right]\), then \(A^t=\left[\begin{array}{rr}
2 & 4 \\
3 & -2 \\
-1 & 5
\end{array}\right]\)

Here A is a (2×3) matrix and A’ is a (3×2) matrix.

(2) If B = \(\left[\begin{array}{r}
3 \\
-4 \\
6
\end{array}\right]\), then Bt = [3 -4 6].

Here, B is a (3×1) matrix and Bt is a (1×3) matrix.

Theorem (Involution) For any matrix A, prove that (A’)’ = A.

Proof

Let A = [aij]mxn matrix ⇒ A’ is an (nxm) matrix.

⇒ (A’)’ is a (mxn) matrix.

∴ A and (A’)’ are matrices of the same order.

Also, (i,j)th element of A = (j,i)th element of A’

= (i,j)th element of (A’)’.

Thus, A and (A’)’ are comparable matrices having their corresponding elements equal.

Hence, (A’)’ = A.

Symmetric Matrix A square matrix A is said to be symmetric if A’ = A.

Thus, A is symmetric ⇔ aji = aij.

Examples (1) If A = \(\left[\begin{array}{rr}
4 & 2 \\
2 & -3
\end{array}\right]\), then A’ = \(\left[\begin{array}{rr}
4 & 2 \\
2 & -3
\end{array}\right]\) = A.

∴ A is symmetric.

(2) If B = \(\left[\begin{array}{rrr}
6 & 8 & -4 \\
8 & 3 & 0 \\
-4 & 0 & 5
\end{array}\right]\), then B’ = \(\left[\begin{array}{rrr}
6 & 8 & -4 \\
8 & 3 & 0 \\
-4 & 0 & 5
\end{array}\right]\) = B.

∴ B is symmetric.

Skew-Symmetric Matrix A square matrix A is said to be skew-symmetric if A’ = -A, where -A is the matrix obtained by replacing each element of A by its negative.

Remark A is skew-symmetric ⇒ A’ = -A

⇒ aji = -aij, where A = [aij]nxn

⇒ aii = -aii

⇒ 2aii = 0 ⇒ aii = 0

⇒ every diagonal element of A is 0.

Thus, every diagonal element of a skew-symmetric matrix is 0.

Types of Matrices Explained

Examples (1) If A = \(\left[\begin{array}{rr}
0 & 8 \\
-8 & 0
\end{array}\right]\), then A’ = \(\left[\begin{array}{rr}
0 & -8 \\
8 & 0
\end{array}\right]\) = -A.

Hence, A is skew-symmetric.

(2) Let B = \(\left[\begin{array}{ccc}
0 & h & -g \\
-h & 0 & f \\
-g & f & 0
\end{array}\right]\), then B’ = \(\left[\begin{array}{ccc}
0 & -h & -g \\
h & 0 & -f \\
g & f & 0
\end{array}\right]\) = -B.

Hence, B is skew-symmetric.

Addition Of Matrices

Let A and B be two comparable matrices, each of order (mxn). Then, their sum (A+B) is a matrix of order (mxn), obtained by adding the corresponding elements of A and B.

Example 1 If A = \(\left[\begin{array}{ll}
2 & 1 \\
0 & 4
\end{array}\right]\) and B = \(\left[\begin{array}{lll}
3 & 4 & 5 \\
1 & 2 & 3
\end{array}\right]\) then A and B are matrices order 2 x 2 and 2 x 3 respectively.

So, A and B are not comparable.

Hence, A+B is not defined.

Example 2 Let A = \(\left[\begin{array}{lll}
5 & 0 & -2 \\
3 & 2 & -7
\end{array}\right]\) and B = \(\left[\begin{array}{rrr}
4 & -3 & -6 \\
-1 & 0 & 4
\end{array}\right] \text {. }\)

Clearly, each one of A and B is a 2 x 3 matrix.

∴ A + B is defined.

We have: A+B = \(\left[\begin{array}{lll}
5+4 & 0+(-3) & -2+(-6) \\
3+(-1) & 2+0 & -7+4
\end{array}\right]\)

= \(\left[\begin{array}{rrr}
9 & -3 & -8 \\
2 & 2 & -3
\end{array}\right]\)

Some Results on Addition of Matrices

Theorem 1 Matrix addition is commutative, i.e., A + B = B + A for all comparable matrices A and B.

Proof

Let A = [aij]mxn abd B = [bij]mxn. Then,

A + B = [aij]mxn + [bij]mxn

= [aij + bij]mxn [by the definition of addition of matrices]

= [bij + aij]mxn [∵ addition of numbers is commutative]

= [bij]mxn + [aij]mxn = B + A.

Hence, A + B = B + A.

Theorem 2 Matrix addition is associative, i.e., (A + B)+C = A+(B+C) for all comparable matrices A, B and C.

Proof

Let A = [aij]mxn, B = [bij]mxn and C = [cij]mxn. Then,

(A+B)+c = ([aij]mxn + [bij]mxn) + [cij]mxn

= [aij + bij]mxn + [cij]mxn

= [(aij+bij)+cij]mxn

= [aij + (bij + cij)]mxn

[∵ addition of numbers is associative]

= [aij]mxn + [bij+cij]mxn

= [aij]mxn + ([bij]m+n + [cij]mxn) = A + (B+C).

Hence, (A+B)+C = A+(B+C).

Theorem 3 If A is an mxn matrix and O is an mxn null matrix, then A + O = O + A = A.

Proof

Let A = [aij]mxn and O = [bij]mxn,

where bij = 0 for all suffixes i and j.

Then, A + O = [aij]mxn + [bij]mxn = [aij+bij]mxn

= [aij+0]mxn [∵ bij = 0]

= [aij]mxn = A.

∴ A + O = A.

Similarly, O + A = A.

Hence, A + O = O + A = A.

Remark The null matrix O of order m x n is the additive identity in the set of all m x n matrices.

Example 3 Let A = \(\left[\begin{array}{rrr}
3 & 5 & 4 \\
1 & 2 & -3
\end{array}\right]\) and O = \(\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\), then verify that A + O = O + A = A.

Solution

Clearly, each one of A and O is a matrix of order (2×3).

So, (A+O) and (O+A) are both defined.

Now, A + O = \(\left[\begin{array}{rrr}
3 & 5 & 4 \\
1 & 2 & -3
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\)

= \(\left[\begin{array}{rrr}
3+0 & 5+0 & 4+0 \\
1+0 & 2+0 & -3+0
\end{array}\right]+\left[\begin{array}{rrr}
3 & 5 & 4 \\
1 & 2 & -3
\end{array}\right]\) = A.

And, O + A = \(\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{rrr}
3 & 5 & 4 \\
1 & 2 & -3
\end{array}\right]\)

= \(\left[\begin{array}{lll}
0+3 & 0+5 & 0+4 \\
0+1 & 0+2 & 0+(-3)
\end{array}\right]=\left[\begin{array}{llr}
3 & 5 & 4 \\
1 & 2 & -3
\end{array}\right]\) = A.

Hence, A + O = O + A = A.

Common Questions on Matrices and Their Solutions

Negative Of A Matrix Let A = [aij]mxn. Then, the negative of A is the matrix (-A) = [-aij]mxn, obtained by replacing each element of A with its corresponding additive inverse. (-A) is called the additive inverse of A.

Example 4 If A = \(\left[\begin{array}{rrr}
3 & -2 & 0 \\
-5 & 7 & \sqrt{2}
\end{array}\right]\), find (-A) and verify that A + (-A) = (-A) + A = 0.

Solution

Clearly, we have

(-A) = \(\left[\begin{array}{rrr}
-3 & 2 & 0 \\
5 & -7 & -\sqrt{2}
\end{array}\right]\)

Now, A + (-A) = \(\left[\begin{array}{rrr}
3 & -2 & 0 \\
-5 & 7 & \sqrt{2}
\end{array}\right]+\left[\begin{array}{rrr}
-3 & 2 & 0 \\
5 & -7 & -\sqrt{2}
\end{array}\right]\)

= \(\left[\begin{array}{ccc}
3+(-3) & -2+2 & 0+0 \\
-5+5 & 7+(-7) & \sqrt{2}+(-\sqrt{2})
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=O\)

and, (-A) + A = \(\left[\begin{array}{rrr}
-3 & 2 & 0 \\
5 & -7 & -\sqrt{2}
\end{array}\right]+\left[\begin{array}{rrr}
3 & -2 & 0 \\
-5 & 7 & \sqrt{2}
\end{array}\right]\)

= \(\left[\begin{array}{ccc}
-3+3 & 2+(-2) & 0+0 \\
5+(-5) & -7+7 & -\sqrt{2}+\sqrt{2}
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\)

Hence, A + (-A) = (-A) + A = O.

Theorem 4 If A and B are two matrices of the same order then prove that (A+B)’ = (A’+B’).

Proof Let A = [aij]mxn and B = [bij]mxn. Then,

A is an (mxn) matrix, B is an (mxn) matrix

⇒ (A+B) is an (mxn) matrix

⇒ (A + B)’ is an (nxm) matrix.

Also, A is an (mxn) matrix and B is an (mxn) matrix

⇒ A’ is an (nxm) matrix and B’ is an (nxm) matrix

⇒ (A’ + B’) is an (nxm) matrix.

Thus, (A+B)’ and (A’+B’) are comparable matrices.

Also, (j,i)th element of (A+B)’

= (i,j)th element of (A+B)

= (i,j)th element of A + (i,j)th element of B

= (j, i)th element of A’ + (j, i)th element of B’

= (j, i)th element of (A’ + B’).

Thus, (A + B)’ and (A’ + B’) are comparable and their corresponding elements are equal.

Hence, (A+B)’ = (A’ + B’).

Solved Examples

Example 1 Let A = \(\left[\begin{array}{rrr}
2 & 3 & -5 \\
0 & -4 & 8
\end{array}\right]\) Verify that (A’)’ = A.

Solution

We have A’ = \(\left[\begin{array}{rrr}
2 & 3 & -5 \\
0 & -4 & 8
\end{array}\right]^t=\left[\begin{array}{rr}
2 & 0 \\
3 & -4 \\
-5 & 8
\end{array}\right]\)

⇒ \(\left(A^t\right)^t=\left[\begin{array}{rr}
2 & 0 \\
3 & -4 \\
-5 & 8
\end{array}\right]^t=\left[\begin{array}{rrr}
2 & 3 & -5 \\
0 & -4 & 8
\end{array}\right]=A\)

Hence, (A’)’ = A.

Example 2 Let A = \(\left[\begin{array}{rrr}
2 & 3 & 5 \\
-1 & 0 & 4
\end{array}\right]\) and B = \(\left[\begin{array}{rrr}
4 & -2 & 3 \\
2 & 6 & -1
\end{array}\right]\). Verify that A + B = B + A.

Solution

Here, A is a 2 x 3 matrix and B is a 2 x 3 matrix. So, A and B are comparable.

Therefore, (A+B) and (B+A) both exist and each is a 2 x 3 matrix.

Now, A + B = \(\left[\begin{array}{rrr}
2 & 3 & 5 \\
-1 & 0 & 4
\end{array}\right]+\left[\begin{array}{rrr}
4 & -2 & 3 \\
2 & 6 & -1
\end{array}\right]\)

= \(\left[\begin{array}{rll}
2+4 & 3+(-2) & 5+3 \\
-1+2 & 0+6 & 4+(-1)
\end{array}\right]=\left[\begin{array}{lll}
6 & 1 & 8 \\
1 & 6 & 3
\end{array}\right] .\)

And, B + A = \(\left[\begin{array}{rrr}
4 & -2 & 3 \\
2 & 6 & -1
\end{array}\right]+\left[\begin{array}{rrr}
2 & 3 & 5 \\
-1 & 0 & 4
\end{array}\right]\)

= \(\left[\begin{array}{lrr}
4+2 & -2+3 & 3+5 \\
2+(-1) & 6+0 & (-1)+4
\end{array}\right]=\left[\begin{array}{lll}
6 & 1 & 8 \\
1 & 6 & 3
\end{array}\right]\)

Hence, A + B = B + A.

Example 3 Let A = \(\left[\begin{array}{rr}
1 & -2 \\
5 & 4 \\
3 & 0
\end{array}\right]\), B = \(\left[\begin{array}{rr}
3 & 1 \\
0 & 2 \\
-3 & 5
\end{array}\right]\) and C = \(\left[\begin{array}{rr}
4 & 3 \\
-2 & 2 \\
1 & 6
\end{array}\right]\). Verify that (A + B) + C = A + (B + C).

Solution

Clearly, each one of the matrices A, B, C is a (3×2) matrix. So, (A + B) + C and A + (B + C) are both defined and each one is a 3 x 2 matrix.

Now, (A+B) = \(\left[\begin{array}{rr}
1 & -2 \\
5 & 4 \\
3 & 0
\end{array}\right]+\left[\begin{array}{rr}
3 & 1 \\
0 & 2 \\
-3 & 5
\end{array}\right]\)

= \(\left[\begin{array}{lr}
1+3 & -2+1 \\
5+0 & 4+2 \\
3+(-3) & 0+5
\end{array}\right]=\left[\begin{array}{rr}
4 & -1 \\
5 & 6 \\
0 & 5
\end{array}\right]\)

∴ (A+B)+C = \(\left[\begin{array}{rr}
4 & -1 \\
5 & 6 \\
0 & 5
\end{array}\right]+\left[\begin{array}{rr}
4 & 3 \\
-2 & 2 \\
1 & 6
\end{array}\right]\)

= \(\left[\begin{array}{lr}
4+4 & -1+3 \\
5+(-2) & 6+2 \\
0+1 & 5+6
\end{array}\right]=\left[\begin{array}{rr}
8 & 2 \\
3 & 8 \\
1 & 11
\end{array}\right]\)

Also, (B + C) = \(\left[\begin{array}{rr}
3 & 1 \\
0 & 2 \\
-3 & 5
\end{array}\right]+\left[\begin{array}{rr}
4 & 3 \\
-2 & 2 \\
1 & 6
\end{array}\right]\)

= \(\left[\begin{array}{ll}
3+4 & 1+3 \\
0+(-2) & 2+2 \\
-3+1 & 5+6
\end{array}\right]=\left[\begin{array}{rr}
7 & 4 \\
-2 & 4 \\
-2 & 11
\end{array}\right] \text {. }\)

∴ A + (B + C) = \(\left[\begin{array}{rr}
1 & -2 \\
5 & 4 \\
3 & 0
\end{array}\right]+\left[\begin{array}{rr}
7 & 4 \\
-2 & 4 \\
-2 & 11
\end{array}\right]\)

= \(\left[\begin{array}{ll}
1+7 & -2+4 \\
5+(-2) & 4+4 \\
3+(-2) & 0+11
\end{array}\right]=\left[\begin{array}{rr}
8 & 2 \\
3 & 8 \\
1 & 11
\end{array}\right] \text {. }\)

Hence, (A + B) + C = A + (B + C).

WBCHSE Class 12 Maths Solutions For Matrices Solved Examples

Example 4 Find the additive inverse of the matrix A = \(\left[\begin{array}{rrr}
2 & -5 & 0 \\
4 & 3 & -1
\end{array}\right]\).

Solution

The additive inverse of the given matrix A is the matrix -A, given by

\(-A=\left[\begin{array}{ccc}
-2 & -(-5) & 0 \\
-4 & -3 & -(-1)
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 5 & 0 \\
-4 & -3 & 1
\end{array}\right]\)

Subtraction Of Matrices If A and B are two comparable matrices then we define (A – B) = A + (-B).

Example 5 If A = \(\left[\begin{array}{rrr}
2 & -3 & 1 \\
0 & 7 & -9
\end{array}\right]\) and B = \(\left[\begin{array}{lll}
1 & 2 & -3 \\
4 & 8 & -4
\end{array}\right]\), find (A – B).

Solution

We have, (-B) = \(\left[\begin{array}{lll}
-1 & -2 & 3 \\
-4 & -8 & 4
\end{array}\right]\)

∴ (A – B) = A + (-B)

= \(\left[\begin{array}{rrr}
2 & -3 & 1 \\
0 & 7 & -9
\end{array}\right]+\left[\begin{array}{lll}
-1 & -2 & 3 \\
-4 & -8 & 4
\end{array}\right]\)

= \(\left[\begin{array}{rrr}
2+(-1) & -3+(-2) & 1+3 \\
0+(-4) & 7+(-8) & -9+4
\end{array}\right]=\left[\begin{array}{rrr}
1 & -5 & 4 \\
-4 & -1 & -5
\end{array}\right]\)

Hence, (A – B) = \(\left[\begin{array}{rrr}
1 & -5 & 4 \\
-4 & -1 & -5
\end{array}\right] \text {. }\)

Example 6 Prove that the sum of two symmetric matrices is symmetric.

Solution

Let A and B be two symmetric matrices of the same order.

Then, A’ = A and B’ = B.

∴ (A + B)’ = A’ + B’ = (A + B) [∵ A’ = A and B’ = B].

Hence, (A + B) is symmetric.

Example 7 Prove that the sum of two skew-symmetric matrices is a skew-symmetric matrix.

Solution

Let A and B be two skew-symmetric matrices. Then,

A’ = -A and B’ = -B.

∴ (A + B)’ = (A’ + B’) = (-A) + (-B) = -(A + B).

Hence, (A + B) is skew-symmetric.

Example 8 For any square matrix A with real entries, prove that (1) (A + A’) is symmetric (2) (A – A’) is skew-symmetric.

Solution

Let A and B be two skew-symmetric matrices. Then,

(1) (A + A’)’ = A’ + (A’)’ [∵ (A + B)’ = A’ + B’]

= A’ = A [∵ (A’)’ = A]

= (A + A’) [∵ A + B = B + A].

Hence, (A + A’) is symmetric.

(2) (A – A’)’ = A’ – (A’)’ [∵ (A – B)’ = A’ – B’

= A’ – A [∵ (A’)’ = A]

= (A – A’).

Thus, (A – A’)’ = -(A – A’).

Hence, (A – A’) is skew-symmetric.

Multiplication of Matrices

For two given matrices A and B, we say that the product AB exists only when the number of rows in A equals the number of columns in B.

When AB exists, we say that A is conformable to B for multiplication.

Product Of Matrices

Let A = [aij]mxn and B = [bij]nxp be two matrices such that the number of columns in A equals the number of rows in B.

Then, AB exists and it is an (mxp) matrix, given by

\(A B=\left[c_{i 2}\right]_{-\times} \text {where } c_{i k}=\left(a_{i i} b_{1 k}+a_{i k} b_{2 k}+\ldots a_{i k} b_{n k}\right)=\sum_{j=1}^n a_i b_{j k}\)

∴ (i,k)th element of AB

= sum of the products of corresponding elements of ith row of A and kth column of B.

Remarks For two given matrices A and B:

(1) AB may exist and BA may not exist;

(2) BA may exist and AB may not exist;

(3) AB and BA both may not exist;

(4) AB and BA both may exist.

Solved Examples

Example 1 If A = \(\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]\) and B = \(\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32}
\end{array}\right]\) then show that AB and BA both exist. Find AB and BA.

Solution

Here, A is a 2 x 3 matrix and B is a 3 x 2 matrix.

∴ AB exists and it is a 2 x 2 matrix.

Let AB = \(\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right]\). Then,

c11 = (1st row of A) x (1st column of B)

= a11b11 + a12b21 + a13b31;

c12 = (1st row of A)x(2nd column of B)

= a11b12 + a12b22 + a13b32;

c21 = (2nd row of A) x (1st column of B)

= a22b11 + a22b21 + a23b31;

and c22 = (2nd row of A) x (2nd column of B)

= a21b12 + a22b22 + a23b32.

∴ AB = \(\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32}
\end{array}\right]\)

= \(\left[\begin{array}{ll}
a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31} & a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32} \\
a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31} & a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{32}
\end{array}\right]\)

Again, B is 3 x 2 matrix and A is a 2 x 3 matrix. So, BA exists and it is a 3 x 3 matrix.

Proceeding as above, we get

BA = \(\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32}
\end{array}\right]\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]\)

= \(\left[\begin{array}{lll}
b_{11} a_{11}+b_{12} a_{21} & b_{11} a_{12}+b_{12} a_{22} & b_{11} a_{13}+b_{12} a_{23} \\
b_{21} a_{11}+b_{22} a_{21} & b_{21} a_{12}+b_{22} a_{22} & b_{21} a_{13}+b_{22} a_{23} \\
b_{31} a_{11}+b_{32} a_{21} & b_{31} a_{12}+b_{32} a_{22} & b_{31} a_{13}+b_{32} a_{23}
\end{array}\right] .\)

Example 2 If A = \(\left[\begin{array}{rr}
2 & -1 \\
3 & 4 \\
1 & 5
\end{array}\right]\) and B = \(\left[\begin{array}{rr}
-1 & 3 \\
2 & 1
\end{array}\right]\), find AB. Does BA exist?

Solution

Here A is a 3 x 2 matrix and B is a 2 x 2 matrix.

Clearly, the number of columns in A equals the number of rows in B.

∴ AB exists and it is a 3 x 2 matrix.

Now, AB = \(\left[\begin{array}{rr}
2 & -1 \\
3 & 4 \\
1 & 5
\end{array}\right]\left[\begin{array}{rr}
-1 & 3 \\
2 & 1
\end{array}\right]\)

= \(\left[\begin{array}{rl}
2 \cdot(-1)+(-1) \cdot 2 & 2 \cdot 3+(-1) \cdot 1 \\
3 \cdot(-1)+4 \cdot 2 & 3 \cdot 3+4 \cdot 1 \\
1 \cdot(-1)+5 \cdot 2 & 1 \cdot 3+5 \cdot 1
\end{array}\right]\)

= \(\left[\begin{array}{rr}
-4 & 5 \\
5 & 13 \\
9 & 8
\end{array}\right]\)

Further, B is a 2 x 2 matrix and A is a 3 x 2 matrix. So, the number of columns in B is not equal to the number of rows in A.

So, BA does not exist.

Example 3 Let A = \(\left[\begin{array}{rrr}
1 & -2 & 3 \\
-4 & 2 & 5
\end{array}\right]\) and B = \(\left[\begin{array}{rr}
2 & 3 \\
4 & 5 \\
-2 & 1
\end{array}\right]\). Find AB and BA,a nd show that AB ≠ BA.

Solution

Here A is a 2 x 3 matrix and B is a 3 x 2 matrix.

So, AB exists and it is a 2 x 2 matrix.

Now, AB = \(\left[\begin{array}{rrr}
1 & -2 & 3 \\
-4 & 2 & 5
\end{array}\right]\left[\begin{array}{rr}
2 & 3 \\
4 & 5 \\
-2 & 1
\end{array}\right]\)

= \(\left[\begin{array}{ll}
1 \cdot 2+(-2) \cdot 4+3 \cdot(-2) & 1 \cdot 3+(-2) \cdot 5+3 \cdot 1 \\
(-4) \cdot 2+2 \cdot 4+5 \cdot(-2) & (-4) \cdot 3+2 \cdot 5+5 \cdot 1
\end{array}\right]\)

= \(\left[\begin{array}{rr}
-12 & -4 \\
-10 & 3
\end{array}\right]\)

Again, B is a 3 x 2 matrix and A is a 2 x 3 matrix.

So, BA exists and it is a 3 x 3 matrix.

Now, BA = \(\left[\begin{array}{rr}
2 & 3 \\
4 & 5 \\
-2 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & -2 & 3 \\
-4 & 2 & 5
\end{array}\right]\)

= \(\left[\begin{array}{rrr}
2 \cdot 1+3 \cdot(-4) & 2 \cdot(-2)+3 \cdot 2 & 2 \cdot 3+3 \cdot 5 \\
4 \cdot 1+5 \cdot(-4) & 4 \cdot(-2)+5 \cdot 2 & 4 \cdot 3+5 \cdot 5 \\
(-2) \cdot 1+1 \cdot(-4) & (-2) \cdot(-2)+1 \cdot 2 & (-2) \cdot 3+1 \cdot 5
\end{array}\right]\)

= \(\left[\begin{array}{rrr}
-10 & 2 & 21 \\
-16 & 2 & 37 \\
-6 & 6 & -1
\end{array}\right] \text {. }\)

Hence, AB ≠ BA.

Properties of Matrix Multiplication

1. Commutativity

Matrix multiplication is not commutative in general.

Proof Let A and B be two given matrices.

If AB exists then it is quite possible that BA may not exist.

For example, if A is a 3 x 2 matrix and B is a 2 x 2 matrix then clearly, AB exists but BA does not exist.

Similarly, if BA exists then AB may not exist.

For example, if A is a 2 x 3 matrix an dB is a 2 x 2 matrix then clearly, BA exists but AB does not exist.

Further, if AB and BA both exist, then may not be comparable. For example, if A is a 2 x 3 matrix and B is a 3 x 2 matrix then clearly, AB as well ad BA exists. But, AB is a 2 x 2 matrix while BA is a 3 x 3 matrix.

Again, if AB and BA both exist and they are comparable, even then they may not be equal.

For example, if A = \(\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\) and B = \(\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right]\) then AB and BA are both defined and each one is a 2 x 2 matrix.

But, AB = \(\left[\begin{array}{ll}
1 & 5 \\
1 & 8
\end{array}\right]\) and BA = \(\left[\begin{array}{ll}
3 & 5 \\
3 & 6
\end{array}\right]\)

This shows that AB ≠ BA.

Hence, in general, AB ≠ BA.

Remarks (1) When AB = BA, we say that A and B commute.

(2) When AB = -BA, we say that A and B anticommute.

Properties of Matrices Overview

2. Associative law

For any matrices A, B, C for which (AB)C and A(BC) both exist, we have (AB)C = A(BC).

3. Distributive laws of multiplication over addition We have:

(1) A.(B + c) = (AB + AC)

(2) (A + B).C = (AC + BC)

4. The product of two nonzero matrices can be a zero matrix.

Example Let A = \(\left[\begin{array}{ll}
0 & 1 \\
0 & 2
\end{array}\right]\) and B = \(\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]\).

Then, A ≠ O and B ≠ O. But, AB = O.

Left Zero divisor If AB = O and A ≠ O then A is called a leftzerodivisior of AB.

Right Zero divisor If AB = O and B ≠ O then B is called a right zero divisor of AB.

5. If A is a given square matrix and I is an identity matrix of the same order as A then we have A.I = I.A = A.

6. If A is a given square matrix and O is the null matrix of the same order as A then O.A = A.O = O.

Positive Integral Powers of a Square Matrix

Let A be a square matrix of order n. Then, we define:

A2 = A.A;

A3 = A.A.A = A2.A;

A4 = A.A.A.A = A3.A, and so on.

∴ An = (A. A. A……n times).

Theorem 1 If A and B are square matrices of the same order then (A+B)2 = A2 + AB + BA + B2. Also, when AB = BA then (A+B)2 = A2 + 2AB + B2.

Proof Let A and B be n-rowed square matrices.

Then, clearly, (A + B) is a square matrix of order n.

So, (A + B)2 is defined.

Now, (A + B)2 = (A + B).(A + B)

= A.(A + B) + B.(A + B) [by distributive law]

= AA + AB + BA + BB [by distributive law]

=A2 + AB + BA + B2.

Hence, (A + B)2 = (A2 + AB + BA + B2).

Particular case When AB = BA

In this case, we have

(A + B)2 = (A2 + AB + AB + B2) = (A2 + 2AB + B2) [∵ BA = AB].

Theorem 2 If A and B are square matrices of the same order then (A + B)(A – B) = A2 – AB + BA – B2.

Also, when AB = BA then (A + B)(A – B) = A2 – B2.

Proof

We have

(A + B).(A – B) = A(A – B) + B(A – B) [by distributive law]

= AA – AB + BA – BB [∵ A(B – c) = AB – AC]

= A2 – AB + BA – B2.

Hence, (A + B)(A – B) = A2 – AB + BA – B2.

Particular case When AB = BA

In this case, (A + B)(A – B) = (A2 – B2) [∵ BA = AB].

Solved Examples

Example 1 If A = \(\left[\begin{array}{ll}
5 & 4 \\
2 & 3
\end{array}\right]\) and B = \(\left[\begin{array}{lll}
3 & 5 & 1 \\
6 & 8 & 4
\end{array}\right]\), find AB and BA whichever exists.

Solution

Here, A is a 2 x 2 matrix and B is a 2 x 3 matrix.

Clearly, the number of columns in A = number of rows in B.

∴ AB exists and it is a 2 x 3 matrix.

AB = \(\left[\begin{array}{ll}
5 & 4 \\
2 & 3
\end{array}\right]\left[\begin{array}{lll}
3 & 5 & 1 \\
6 & 8 & 4
\end{array}\right]\)

= \(\left[\begin{array}{lll}
5 \cdot 3+4 \cdot 6 & 5 \cdot 5+4 \cdot 8 & 5 \cdot 1+4 \cdot 4 \\
2 \cdot 3+3 \cdot 6 & 2 \cdot 5+3 \cdot 8 & 2 \cdot 1+3 \cdot 4
\end{array}\right]\)

= \(\left[\begin{array}{ccc}
15+24 & 25+32 & 5+16 \\
6+18 & 10+24 & 2+12
\end{array}\right]=\left[\begin{array}{lll}
39 & 57 & 21 \\
24 & 34 & 14
\end{array}\right]\)

Again, B is a 2 x 3 matrix and A is a 2 x 2 matrix.

∴ number of columns in B ≠ number of rows in A.

So, BA does not exist.

Example 2 If A = \(\left[\begin{array}{rrr}
2 & -1 & 3 \\
-4 & 5 & 1
\end{array}\right]\) and B = \(\left[\begin{array}{rr}
2 & 3 \\
4 & -2 \\
1 & 5
\end{array}\right]\) then find AB and BA. Show that AB ≠ BA.

Solution

Here, A is a 2 x 3 matrix and B is a 3 x 2 matrix.

So, number of columns in A = number of rows in B.

∴ AB exists and it is a 2 x 2 matrix.

AB = \(\left[\begin{array}{rrr}
2 & -1 & 3 \\
-4 & 5 & 1
\end{array}\right]\left[\begin{array}{rr}
2 & 3 \\
4 & -2 \\
1 & 5
\end{array}\right]\)

= \(\left[\begin{array}{ll}
2 \cdot 2+(-1) \cdot 4+3 \cdot 1 & 2 \cdot 3+(-1) \cdot(-2)+3 \cdot 5 \\
-4 \cdot 2+5 \cdot 4+1 \cdot 1 & -4 \cdot 3+5 \cdot(-2)+1 \cdot 5
\end{array}\right]\)

= \(\left[\begin{array}{rr}
4-4+3 & 6+2+15 \\
-8+20+1 & -12-10+5
\end{array}\right]=\left[\begin{array}{rr}
3 & 23 \\
13 & -17
\end{array}\right] .\)

Again, B is a 3 x 2 matrix and A is a 2 x 3 matrix.

So, number of columns in B = number of rows in A.

∴ BA exists and it is a 3 x 3 matrix.

BA = \(\left[\begin{array}{rr}
2 & 3 \\
4 & -2 \\
1 & 5
\end{array}\right]\left[\begin{array}{rrr}
2 & -1 & 3 \\
-4 & 5 & 1
\end{array}\right]\)

= \(\left[\begin{array}{lll}
2 \cdot 2+3 \cdot(-4) & 2 \cdot(-1)+3 \cdot 5 & 2 \cdot 3+3 \cdot 1 \\
4 \cdot 2+(-2) \cdot(-4) & 4 \cdot(-1)+(-2) \cdot 5 & 4 \cdot 3+(-2) \cdot 1 \\
1 \cdot 2+5 \cdot(-4) & 1 \cdot(-1)+5 \cdot 5 & 1 \cdot 3+5 \cdot 1
\end{array}\right]\)

= \(\left[\begin{array}{llr}
4-12 & -2+15 & 6+3 \\
8+8 & -4-10 & 12-2 \\
2-20 & -1+25 & 3+5
\end{array}\right]=\left[\begin{array}{rrr}
-8 & 13 & 9 \\
16 & -14 & 10 \\
-18 & 24 & 8
\end{array}\right]\)

Clearly, AB ≠ BA.

Example 3 If A = \(\left[\begin{array}{rrr}
1 & -1 & 2 \\
3 & 2 & 0 \\
-2 & 0 & 1
\end{array}\right]\), B = \(\left[\begin{array}{rr}
3 & 1 \\
0 & 2 \\
-2 & 5
\end{array}\right]\) and C = \(\left[\begin{array}{lll}
2 & 1 & -3 \\
3 & 0 & -1
\end{array}\right]\) then verify that (AB)C = A(BC).

Solution

We have

AB = \(\left[\begin{array}{rrr}
1 & -1 & 2 \\
3 & 2 & 0 \\
-2 & 0 & 1
\end{array}\right]\left[\begin{array}{rr}
3 & 1 \\
0 & 2 \\
-2 & 5
\end{array}\right]\)

= \(\left[\begin{array}{rr}
3-0-4 & 1-2+10 \\
9+0-0 & 3+4+0 \\
-6+0-2 & -2+0+5
\end{array}\right]=\left[\begin{array}{rr}
-1 & 9 \\
9 & 7 \\
-8 & 3
\end{array}\right]\)

⇒ (AB)C = \(\left[\begin{array}{rr}
-1 & 9 \\
9 & 7 \\
-8 & 3
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & -3 \\
3 & 0 & -1
\end{array}\right]\)

= \(\left[\begin{array}{rrr}
-2+27 & -1+0 & 3-9 \\
18+21 & 9+0 & -27-7 \\
-16+9 & -8+0 & 24-3
\end{array}\right]=\left[\begin{array}{rrr}
25 & -1 & -6 \\
39 & 9 & -34 \\
-7 & -8 & 21
\end{array}\right] \text {. }\)

Also, BC = \(\left[\begin{array}{rr}
3 & 1 \\
0 & 2 \\
-2 & 5
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & -3 \\
3 & 0 & -1
\end{array}\right]\)

= \(\left[\begin{array}{rrr}
6+3 & 3+0 & -9-1 \\
0+6 & 0+0 & 0-2 \\
-4+15 & -2+0 & 6-5
\end{array}\right]=\left[\begin{array}{rrr}
9 & 3 & -10 \\
6 & 0 & -2 \\
11 & -2 & 1
\end{array}\right]\)

⇒ (AB)C = \(\left[\begin{array}{rrr}
1 & -1 & 2 \\
3 & 2 & 0 \\
-2 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
9 & 3 & -10 \\
6 & 0 & -2 \\
11 & -2 & 1
\end{array}\right]\)

= \(\left[\begin{array}{rrr}
9-6+22 & 3-0-4 & -10+2+2 \\
27+12+0 & 9+0-0 & -30-4+0 \\
-18+0+11 & -6+0-2 & 20-0+1
\end{array}\right]\)

= \(\left[\begin{array}{rrr}
25 & -1 & -6 \\
39 & 9 & -34 \\
-7 & -8 & 21
\end{array}\right]\)

Hence, (AB)C = A(BC).

Class 11 Physics Class 12 Maths Class 11 Chemistry
NEET Foundation Class 12 Physics NEET Physics

Example 4 If A = \(\left[\begin{array}{ll}
3 & 2 \\
1 & 0
\end{array}\right]\), B = \(\left[\begin{array}{rrr}
1 & -2 & 5 \\
0 & 7 & 3
\end{array}\right]\) and C = \(\left[\begin{array}{rrr}
8 & 1 & -6 \\
2 & -5 & 0
\end{array}\right]\) verify that A(B + C) = (AB + AC).

Solution

We have

A(B + C) = \(\left[\begin{array}{ll}
3 & 2 \\
1 & 0
\end{array}\right] \cdot\left\{\left[\begin{array}{rrr}
1 & -2 & 5 \\
0 & 7 & 3
\end{array}\right]+\left[\begin{array}{rrr}
8 & 1 & -6 \\
2 & -5 & 0
\end{array}\right]\right\}\)

= \(\left[\begin{array}{ll}
3 & 2 \\
1 & 0
\end{array}\right]\left[\begin{array}{rrr}
9 & -1 & -1 \\
2 & 2 & 3
\end{array}\right]\)

= \(\left[\begin{array}{lll}
3 \cdot 9+2 \cdot 2 & 3 \cdot(-1)+2 \cdot 2 & 3 \cdot(-1)+2 \cdot 3 \\
1 \cdot 9+0 \cdot 2 & 1 \cdot(-1)+0 \cdot 2 & 1 \cdot(-1)+0 \cdot 3
\end{array}\right]\)

= \(\left[\begin{array}{rrr}
31 & 1 & 3 \\
9 & -1 & -1
\end{array}\right] \text {. }\)

Now, AB = \(\left[\begin{array}{ll}
3 & 2 \\
1 & 0
\end{array}\right]\left[\begin{array}{rrr}
1 & -2 & 5 \\
0 & 7 & 3
\end{array}\right]\)

= \(\left[\begin{array}{lll}
3 \cdot 1+2 \cdot 0 & 3 \cdot(-2)+2 \cdot 7 & 3 \cdot 5+2 \cdot 3 \\
1 \cdot 1+0 \cdot 0 & 1 \cdot(-2)+0 \cdot 7 & 1 \cdot 5+0 \cdot 3
\end{array}\right]\)

= \(\left[\begin{array}{rrr}
3 & 8 & 21 \\
1 & -2 & 5
\end{array}\right]\)

And, AC = \(\left[\begin{array}{ll}
3 & 2 \\
1 & 0
\end{array}\right]\left[\begin{array}{rrr}
8 & 1 & -6 \\
2 & -5 & 0
\end{array}\right]\)

= \(\left[\begin{array}{lll}
3 \cdot 8+2 \cdot 2 & 3 \cdot 1+2 \cdot(-5) & 3 \cdot(-6)+2 \cdot 0 \\
1 \cdot 8+0 \cdot 2 & 1 \cdot 1+0 \cdot(-5) & 1 \cdot(-6)+0 \cdot 0
\end{array}\right]\)

= \(\left[\begin{array}{rrr}
28 & -7 & -18 \\
8 & 1 & -6
\end{array}\right] .\)

∴ (AB + AC) = \(\left[\begin{array}{rrr}
3 & 8 & 21 \\
1 & -2 & 5
\end{array}\right]+\left[\begin{array}{rrr}
28 & -7 & -18 \\
8 & 1 & -6
\end{array}\right]\)

= \(\left[\begin{array}{rrr}
31 & 1 & 3 \\
9 & -1 & -1
\end{array}\right]\)

Hence, A(B + C) = (AB + AC).

Applications of Matrices in Real Life

Example 5 Give an example of two matrices A and B such that A ≠ O, B ≠ O and AB = BA = O.

Solution

Let A = \(\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\) and B = \(\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]\). Then,

AB = \(\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 \cdot 1+1 \cdot(-1) & 1 \cdot(-1)+1 \cdot 1 \\
1 \cdot 1+1 \cdot(-1) & 1 \cdot(-1)+1 \cdot 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\)=0 .

BA = \(\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 \cdot 1+1 \cdot(-1) & 1 \cdot 1+1 \cdot(-1) \\
(-1) \cdot 1+1 \cdot 1 & (-1) \cdot 1+1 \cdot 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\)=O

Hence, AB = BA = O.

Example 6 Let A = \(\left[\begin{array}{cc}
0 & -\tan \frac{\alpha}{2} \\
\tan \frac{\alpha}{2} & 0
\end{array}\right]\) and I is the identity matrix of order 2. Show that (I + A) = \((I-A) \cdot\left[\begin{array}{rr}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]\)

Solution

Let \(\tan \frac{\alpha}{2}=t\)

Then, \(\cos \alpha=\frac{1-\tan ^2(\alpha / 2)}{1+\tan ^2(\alpha / 2)}=\frac{1-t^2}{1+t^2}\)

and \(\sin \alpha=\frac{2 \tan (\alpha / 2)}{1+\tan ^2(\alpha / 2)}=\frac{2 t}{1+t^2}\)

∴ \((I+A)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{rr}
0 & -t \\
t & 0
\end{array}\right]=\left[\begin{array}{rr}
1 & -t \\
t & 1
\end{array}\right]\)

And, \((I-A)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{rr}
0 & -t \\
t & 0
\end{array}\right]=\left[\begin{array}{rr}
1 & t \\
-t & 1
\end{array}\right]\)

∴ \((I-A) \cdot\left[\begin{array}{rr}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]\)

= \(\left[\begin{array}{rr}
1 & t \\
-t & 1
\end{array}\right]\left[\begin{array}{ll}
\frac{1-t^2}{1+t^2} & \frac{-2 t}{1+t^2} \\
\frac{2 t}{1+t^2} & \frac{1-t^2}{1+t^2}
\end{array}\right]\)

= \(\left[\begin{array}{cc}
\frac{1-t^2}{1+t^2}+\frac{2 t^2}{1+t^2} & \frac{-2 t}{1+t^2}+\frac{t\left(1-t^2\right)}{1+t^2} \\
\frac{-t\left(1-t^2\right)}{1+t^2}+\frac{2 t}{1+t^2} & \frac{2 t^2}{1+t^2}+\frac{1-t^2}{1+t^2}
\end{array}\right]\)

= \(\left[\begin{array}{rr}
1 & -t \\
t & 1
\end{array}\right]\)=(I+A) .

Hence, (I + A) = \((I-A) \cdot\left[\begin{array}{rr}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]\)

Example 7 If A = \(\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\) then prove that \(A^n=\left[\begin{array}{rr}
\cos n \theta & \sin n \theta \\
-\sin n \theta & \cos n \theta
\end{array}\right], n \in N .\)

Solution

We shall prove the result by using the principle of mathematical induction.

When n = 1, we have

\(A^1=\left[\begin{array}{rr}
\cos 1 \cdot \theta & \sin 1 \cdot \theta \\
-\sin 1 \cdot \theta & \cos 1 \cdot \theta
\end{array}\right]=\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] .\)

Thus, the result is true for n = 1.

Let the result be true for n = k.

Then, \(A^k=\left[\begin{array}{rr}
\cos k \theta & \sin k \theta \\
-\sin k \theta & \cos k \theta
\end{array}\right]\)

∴ A^{k+1}

= \(A \cdot A^k=\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{rr}
\cos k \theta & \sin k \theta \\
-\sin k \theta & \cos k \theta
\end{array}\right]\)

= \(\left[\begin{array}{rr}
\cos \theta \cos k \theta-\sin \theta \sin k \theta & \cos \theta \sin k \theta+\sin \theta \cos k \theta \\
-\sin \theta \cos k \theta-\cos \theta \sin k \theta & -\sin \theta \sin k \theta+\cos \theta \cos k \theta
\end{array}\right]\)

= \(\left[\begin{array}{rr}
\cos (\theta+k \theta) & \sin (\theta+k \theta) \\
-\sin (\theta+k \theta) & \cos (\theta+k \theta)
\end{array}\right]\)

= \(\left[\begin{array}{rr}
\cos (k+1) \theta & \sin (k+1) \theta \\
-\sin (k+1) \theta & \cos (k+1) \theta
\end{array}\right]\)

Thus, the result is true for n = (k+1), whenever it is true for n = k.

Hence, \(A^n=\left[\begin{array}{rr}
\cos n \theta & \sin n \theta \\
-\sin n \theta & \cos n \theta
\end{array}\right]\) for all values of n ∈ N.

Example 8 Let A and B be symmetric matrices of the same order. Show that AB is symmetric if and only if AB = BA.

Solution

Since A and B are symmetric, we have A’ = A and B’ = B.

Let AB be symmetric. Then,

\((A B)^t=A B \Rightarrow B^t A^t=A B\left[(A B)^t=B^t A^t\right]\)

⇒ BA = AB [∵ B’ = B and a’ = A].

Thus, AB = BA.

Conversely, let AB = BA. Then,

AB = BA ⇒ \((A B)^t=(B A)^t=A^t B^t=A B\) [∵ A’ = A and B’ = B]

⇒ AB is symmetric.

Hence, AB is symmetric ⇔ AB = BA.

Example 9 If A and B are symmetric matrices, prove that (AB – BA) is skew-symmetric.

Solution

Since A and B are symmetric, we have At = A and Bt = B.

∴ \((A B-B A)^t=(A B)^t-(B A)^t\)

= \(B^t A^t-A^t B^t\) [∵ \((A B)^t=B^t A^t \text { and }(B A)^t=A^t B^t\)]

= BA – AB [∵ \(A^t=A \text { and } B^t=B\)]

= -(AB-BA).

This shows that (AB-BA) is skew-symmetric.

Example 10 Find the matrix A such that \(\left[\begin{array}{rr}
2 & -1 \\
1 & 0 \\
-3 & 4
\end{array}\right]-A=\left[\begin{array}{rrr}
-1 & -8 & -10 \\
1 & -2 & -5 \\
9 & 22 & 15
\end{array}\right]\)

Solution

Clearly, the product is a (3×3) matrix and the prefactor is a (3×2) matrix. So, A must be a (2×3) matrix.

Let A = \(\left[\begin{array}{lll}
x & y & z \\
u & v & w
\end{array}\right]\)

Then, the given equation becomes

\(\left[\begin{array}{rr}
2 & -1 \\
1 & 0 \\
-3 & 4
\end{array}\right] \cdot\left[\begin{array}{lll}
x & y & z \\
u & v & w
\end{array}\right]=\left[\begin{array}{rrr}
-1 & -8 & -10 \\
1 & -2 & -5 \\
9 & 22 & 15
\end{array}\right]\)

⇒ \(\left[\begin{array}{ccc}
2 x-u & 2 y-v & 2 z-w \\
x & y & z \\
-3 x+4 u & -3 y+4 v & -3 z+4 w
\end{array}\right]=\left[\begin{array}{ccc}
-1 & -8 & -10 \\
1 & -2 & -5 \\
9 & 22 & 15
\end{array}\right]\)

⇒ 2x – u = -1, 2y – v = -8, 2z – w = -10, x = 1, y = -2, z = -5

⇒ x = 1, y = -2, x = -5, u = 3, v = 4 and w = 0.

Hence, A = \(\left[\begin{array}{rrr}
1 & -2 & -5 \\
3 & 4 & 0
\end{array}\right]\)

Scalar Multiplication

Let A be a given matrix and k be a nonzero real number. Then, the matrix obtained by multiplying each element of A by k is called the scalar multiple of A by k and it is denoted by kA.

Here, k is called a scalar.

If A is an (mxn) matrix then kA is also an (mxn) matrix.

If A = [aij]mxn then kA = [k.aij]mxn.

Example 1 If A = \(\left[\begin{array}{rrr}
5 & 6 & -4 \\
8 & -3 & 2
\end{array}\right]\), find (1) 3A (2) -5A (3)\frac{1}{2}A.

Solution We have:

(1) 3A = \(\left[\begin{array}{ccc}
3 \times 5 & 3 \times 6 & 3 \times(-4) \\
3 \times 8 & 3 \times(-3) & 3 \times 2
\end{array}\right]=\left[\begin{array}{rrr}
15 & 18 & -12 \\
24 & -9 & 6
\end{array}\right]\)

(2) -5A = \(\left[\begin{array}{ccc}
(-5) \times 5 & (-5) \times 6 & (-5) \times(-4) \\
(-5) \times 8 & (-5) \times(-3) & (-5) \cdot 2
\end{array}\right]=\left[\begin{array}{rrr}
-25 & -30 & 20 \\
-40 & 15 & -10
\end{array}\right] \text {. }\)

(3) \(\frac{1}{2} A=\left[\begin{array}{lll}
\frac{1}{2} \times 5 & \frac{1}{2} \times 6 & \frac{1}{2} \times(-4) \\
\frac{1}{2} \times 8 & \frac{1}{2} \times(-3) & \frac{1}{2} \times 2
\end{array}\right]=\left[\begin{array}{rrr}
\frac{5}{2} & 3 & -2 \\
4 & -\frac{3}{2} & 1
\end{array}\right] \text {. }\)

Some Properties of Scalar Multiplication

Theorem 1 If A and B are two matrices of the same order and k is a scalar then prove that k(A+B) = kA + kB.

Proof Let A = [aij]mxn and B = [bij]mxn. Then,

k(A+B) = k.([aij]mxn + [bij]mxn)

= k.[aij + bij]mxn [by definition of addition of matrices]

= [k(aij+bij)]mxn [by definition of scalar multiplication]

= [k.aij + k.bij]mxn [by distributive law]

= kA + kB.

Hence, k(A + B) = kA + kB.

Theorem 2 If A is any matrix and k1, k2 are any scalars then prove that \(\left(k_1+k_2\right) A=k_1 A+k_2 A\).

Proof

Let A = [aij]mxn. Then,

\(\left(k_1+k_2\right) A=\left(k_1+k_2\right) \cdot\left[a_{i j}\right]_{m \times n}\)

= \(\left[\left(k_1+k_2\right) \cdot a_{i j}\right]_{m \times n}\) [by definition of scalar multiplication]

= \(\left[k_1 \cdot a_{i j}+k_2 \cdot a_{i j}\right]_{m \times n}\) [by distributive law]

= \(\left[k_1 \cdot a_{i j}\right]_{m \times n}+\left[k_2 \cdot a_{i j}\right]_{m \times n}\) [by definition of addition of matrices]

= \(k_1 A+k_2 A .\)

Hence, \(\left(k_1+k_2\right) A=k_1 A+k_2 A\).

Theorem 3 If A is any matrix and k1, k2 are any scalars then prove that \(k_1\left(k_2 A\right)=\left(k_1 k_2\right) A .\)

Proof

Let A = \(\left[a_{i j}\right]_{m \times n}\). Then,

\(k_1\left(k_2 A\right)=k_1\left[k_2 \cdot a_{i j}\right]_{m \times n}=\left[k_1\left(k_2 \cdot a_{i j}\right)\right]_{m \times n}\)

= \(\left[\left(k_1 k_2\right) \cdot a_{i j}\right]_{m \times n}\) [by associativity of multiplication in numbers]

= \(\left(k_1 k_2\right) \cdot\left[a_{i j}\right]_{m \times n}=\left(k_1 k_2\right) A .\)

Hence, \(k_1\left(k_2 A\right)=\left(k_1 k_2\right) A .\)

Real-Life Applications of Matrix Theory

Theorem 4 Let A be a given matrix and let k be a scalar. Then, prove that \((k A)^t=k A^t .\)

Proof

Let A = [aij]mxn be a given matrix and let k be a scalar. Then,

A is an (mxn) matrix ⇒ kA is an (mxn) matrix

⇒ \((k A)^t\) is an (nxm) matrix.

Also, A is an (mxn) matrix ⇒ A^t is an (nxm) matrix

⇒ \(kA^t\) is an (nxm) matrix.

Thus, \((k A)^t\) and \(\left(k A^t\right)\) are comparable matrices.

Also, (j,i)th element of \((k A)^t\) = (i,j)th element of kA

= k times (i,j)th element of \(A^t\)

= (j,i)th element of \((k A)^t\).

Thus, \((k A)^t and \left(k A^t\right)\) are comparable matrices whose corresponding elements are equal.

Hence, \((k A)^t=k A^t .\)

Theorem 5 Let A and B be two matrices such that AB exists and let c be a nonzero scalar. Then, prove that c(A x B) = (cA) x B = A x (cB).

Proof

Let A = [aij]mxn and B = [bjk]nxp. Then,

A is an (mxn) matrix, B is an (nxp) matrix

⇒ (A x B) is an (m x p) matrix

⇒ c(A x B) is an (m x p) matrix.

Again, A is an (m x n) matrix, B is an (n x p) matrix

⇒ cA is an (m x n) matrix, B is an (n x p) matrix

⇒ (cA) x B is an (m x p) matrix.

∴ c(A x B) and (cA) x B are comparable matrices.

Now, (i,k)th element of c(A x B)

= c time (i,k)th element of (A x B)

= \(c \cdot \sum_{j=1}^n a_{i j} b_{j k}\)

= \(c \cdot\left(a_{i 1} b_{1 k}+a_{i 2} b_{2 k}+\ldots+a_{i n} b_{n k}\right)\)

= \(\left(c a_{i 1}\right) b_{1 k}+\left(c a_{i 2}\right) b_{2 k}+\ldots+\left(c a_{i n}\right) b_{n k}\)

= (i,j)th element of (cA) x B.

Thus, c(A x B) are (cA) x B are comparable and their corresponding elements are equal.

Hence, c(A x B) = (cA x B).

Again, A is an (m x n) matrix and B is an (n x p) matrix

⇒ A is an (m x n) matrix and cB is an (n x p) matrix

⇒ A x (cB) is an (m x p) matrix.

Thus, c(A x B) and A x (cB) are comparable.

Also, (i,k)th element of A x (cB)

= \(\sum_{j=1}^n a_{i j}\left(c b_{j k}\right)\)

= \(a_{i 1}\left(c b_{1 k}\right)+a_{i 2}\left(c b_{2 k}\right)+\ldots+a_{i n}\left(c b_{n k}\right)\)

= \(c\left(a_{i 1} b_{1 k}+a_{i 2} b_{2 k}+\ldots+a_{i n} b_{n k}\right)\)

= \(c \sum_{j=1}^n a_{i j} b_{j k}\) = (i,k)th element of c(A x B).

∴ c(A x B) = A x (cB)

Hence, c(A x B) = (cA) x B = A x (cB).

Summary of properties of Matrix Operations

1. (1) \(\text { (i) }\left(A^t\right)^t=A\)

(2) \((A+B)^t=\left(A^t+B^t\right) .\)

(3) \((A \times B)^t \neq\left(A^t \times B^t\right) \text { and }(A \times B)^t \neq\left(B^t \times A^t\right) \text {. }\)

2. (1) (A + B) = (B + A)

(2) (A + B) + C = A + (B + C)

(3) For all comparable matrices A there exists a null matrix O such that A + O = O + A = A.

3. (1) (A x B) ≠ (B x A).

(2) (A x B) x C = A x (B x C)

(3) A x (B + C) = (A x B) + (A x C)

(4) (A + B) x C = (A x C) + (B x C)

(5) For all square matrices A of the same order there exists a unit matrix I such that (A x I) = (I x A) = A.

4. (1) (C A)^t=C A^{\prime} \text {. }

(2) c(A + B) = (cA + cB)

(3) c(A x B) = (cA x B) = A x (cB).

(4) ∃ a matrix S such that St = S(called a symmetric matrix)

More Solved Examples

Example 2 If A = \(\left[\begin{array}{rr}
3 & 5 \\
7 & -9
\end{array}\right]\) and B = \(\left[\begin{array}{rr}
6 & -4 \\
2 & 3
\end{array}\right]\), find (4A – 3B).

Solution

We have: 4A – 3B = 4A + (-3)B.

Now, \(4 A=\left[\begin{array}{ll}
4 \times 3 & 4 \times 5 \\
4 \times 7 & 4 \times(-9)
\end{array}\right]=\left[\begin{array}{rr}
12 & 20 \\
28 & -36
\end{array}\right]\)

and (-3)B = \(\left[\begin{array}{ll}
(-3) \times 6 & (-3) \times(-4) \\
(-3) \times 2 & (-3) \times 3
\end{array}\right]=\left[\begin{array}{rr}
-18 & 12 \\
-6 & -9
\end{array}\right] .\)

∴ 4A – 3B = 4A + (-3)B-B

= \(\left[\begin{array}{rr}
12 & 20 \\
28 & -36
\end{array}\right]+\left[\begin{array}{rr}
-18 & 12 \\
-6 & -9
\end{array}\right]\)

= \(\left[\begin{array}{cc}
12+(-18) & 20+12 \\
28+(-6) & (-36)+(-9)
\end{array}\right]=\left[\begin{array}{rr}
-6 & 32 \\
22 & -45
\end{array}\right] \text {. }\)

Hence, (4A – 3B) = \(\left[\begin{array}{rr}
-6 & 32 \\
22 & -45
\end{array}\right]\)

Example 3 Let A = diag[3,-5,7] and B = diag[-1, 2,4]. Find (1) (A + B), (2) (A – B), (3) -5A, (4) (2A + 3B).

Solution

We have

\(A=\left[\begin{array}{rrr}
3 & 0 & 0 \\
0 & -5 & 0 \\
0 & 0 & 7
\end{array}\right] \text { and } B=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 4
\end{array}\right]\)

∴ (1) \(A+B=\left[\begin{array}{rrr}
3 & 0 & 0 \\
0 & -5 & 0 \\
0 & 0 & 7
\end{array}\right]+\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 4
\end{array}\right]=\left[\begin{array}{rrr}
2 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & 11
\end{array}\right]\)

(2) (A – B) = A + (-B)

= \(\left[\begin{array}{rrr}
3 & 0 & 0 \\
0 & -5 & 0 \\
0 & 0 & 7
\end{array}\right]+\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -4
\end{array}\right]=\left[\begin{array}{rrr}
4 & 0 & 0 \\
0 & -7 & 0 \\
0 & 0 & 3
\end{array}\right]\)

(3) -5A = (-5).A = \((-5) \cdot\left[\begin{array}{rrr}
3 & 0 & 0 \\
0 & -5 & 0 \\
0 & 0 & 7
\end{array}\right]=\left[\begin{array}{rrr}
-15 & 0 & 0 \\
0 & 25 & 0 \\
0 & 0 & -35
\end{array}\right]\)

(4) 2A + 3B = \(\left[\begin{array}{rrr}
6 & 0 & 0 \\
0 & -10 & 0 \\
0 & 0 & 14
\end{array}\right]+\left[\begin{array}{rrr}
-3 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 12
\end{array}\right]=\left[\begin{array}{rrr}
3 & 0 & 0 \\
0 & -4 & 0 \\
0 & 0 & 26
\end{array}\right]\)

Example 4 Simplify \(\cos \theta \cdot\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]+\sin \theta \cdot\left[\begin{array}{rr}
\sin \theta & -\cos \theta \\
\cos \theta & \sin \theta
\end{array}\right] \text {. }\)

Solution

We have

\(\cos \theta \cdot\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]+\sin \theta \cdot\left[\begin{array}{rr}
\sin \theta & -\cos \theta \\
\cos \theta & \sin \theta
\end{array}\right] \text {. }\)

= \(\left[\begin{array}{cc}
\cos ^2 \theta & \sin \theta \cos \theta \\
-\sin \theta \cos \theta & \cos ^2 \theta
\end{array}\right]+\left[\begin{array}{cc}
\sin ^2 \theta & -\sin \theta \cos \theta \\
\sin \theta \cos \theta & \sin ^2 \theta
\end{array}\right]\)

= \(\left[\begin{array}{cc}
\cos ^2 \theta+\sin ^2 \theta & \sin \theta \cos \theta+(-\sin \theta \cos \theta) \\
-\sin \theta \cos \theta+\sin \theta \cos \theta & \cos ^2 \theta+\sin ^2 \theta
\end{array}\right]\)

= \(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .\)

Example 5 If \(2\left[\begin{array}{cc}
x & 5 \\
7 & y-3
\end{array}\right]+\left[\begin{array}{ll}
3 & 4 \\
1 & 2
\end{array}\right]=\left[\begin{array}{rc}
7 & 14 \\
15 & 14
\end{array}\right]\), find the values of x and y.

Solution

We have

\(2\left[\begin{array}{cc}
x & 5 \\
7 & y-3
\end{array}\right]+\left[\begin{array}{ll}
3 & 4 \\
1 & 2
\end{array}\right]=\left[\begin{array}{rr}
7 & 14 \\
15 & 14
\end{array}\right]\)

⇒ \(\left[\begin{array}{cc}
2 x & 10 \\
14 & 2 y-6
\end{array}\right]+\left[\begin{array}{ll}
3 & 4 \\
1 & 2
\end{array}\right]=\left[\begin{array}{rc}
7 & 14 \\
15 & 14
\end{array}\right]\)

⇒ \(\left[\begin{array}{cc}
2 x+3 & 14 \\
15 & 2 y-4
\end{array}\right]=\left[\begin{array}{rr}
7 & 14 \\
15 & 14
\end{array}\right]\)

⇒ 2x + 3 = 7 and 2y – 4 = 14

⇒ x = 2 and y = 9.

The values of x and y are 3 and 9

Example 6 Find matrix X such that \(X+\left[\begin{array}{rr}
4 & 6 \\
-3 & 7
\end{array}\right]=\left[\begin{array}{ll}
3 & -6 \\
5 & -8
\end{array}\right]\)

Solution

Let A = \(\left[\begin{array}{rr}
4 & 6 \\
-3 & 7
\end{array}\right]\) and B = \(\left[\begin{array}{rr}
3 & -6 \\
5 & -8
\end{array}\right]\)

Then, the given matrix equation is X + A = B.

Now, X + A = B ⇒ X = B – A = B + (-A)

= \(\left[\begin{array}{rr}
3 & -6 \\
5 & -8
\end{array}\right]+\left[\begin{array}{rr}
-4 & -6 \\
3 & -7
\end{array}\right]\)

= \(\left[\begin{array}{ll}
3+(-4) & -6+(-6) \\
5+3 & -8+(-7)
\end{array}\right]=\left[\begin{array}{rr}
-1 & -12 \\
8 & -15
\end{array}\right] \text {. }\)

Hence, X = \(\left[\begin{array}{rr}
-1 & -12 \\
8 & -15
\end{array}\right]\)

Example 7 Find a matrix X such that 2A + B + X = O, where A = \(\left[\begin{array}{rr}
-1 & 2 \\
3 & 4
\end{array}\right]\) and B = \(\left[\begin{array}{rr}
3 & -2 \\
1 & 5
\end{array}\right] \text {. }\)

Solution

We have

2A + B + X = O ⇒ X = -(2A + B).

Now, (2A + B) = \(2 \cdot\left[\begin{array}{rr}
-1 & 2 \\
3 & 4
\end{array}\right]+\left[\begin{array}{rr}
3 & -2 \\
1 & 5
\end{array}\right]\)

= \(\left[\begin{array}{rr}
-2 & 4 \\
6 & 8
\end{array}\right]+\left[\begin{array}{rr}
3 & -2 \\
1 & 5
\end{array}\right]\)

= \(\left[\begin{array}{rl}
-2+3 & 4+(-2) \\
6+1 & 8+5
\end{array}\right]=\left[\begin{array}{rr}
1 & 2 \\
7 & 13
\end{array}\right]\)

∴ X = -(2A + B) = \(\left[\begin{array}{cc}
-1 & -2 \\
-7 & -13
\end{array}\right]\)

Example 8 Find matrices X and Y, if X + Y = \(\left[\begin{array}{ll}
5 & 2 \\
0 & 9
\end{array}\right]\) and X – Y = \(\left[\begin{array}{rr}
3 & 6 \\
0 & -1
\end{array}\right]\).

Solution

Adding the given matrices, we get

(X + Y) + (X – Y) = \(\left[\begin{array}{ll}
5 & 2 \\
0 & 9
\end{array}\right]+\left[\begin{array}{rr}
3 & 6 \\
0 & -1
\end{array}\right]\)

⇒ \(2 X=\left[\begin{array}{ll}
5+3 & 2+6 \\
0+0 & 9+(-1)
\end{array}\right]\)

⇒ \(2 X=\left[\begin{array}{ll}
8 & 8 \\
0 & 8
\end{array}\right]\) ⇒ \(X=\frac{1}{2} \cdot\left[\begin{array}{ll}
8 & 8 \\
0 & 8
\end{array}\right]=\left[\begin{array}{ll}
4 & 4 \\
0 & 4
\end{array}\right]\)

On substracting the given matrices, we get

(X + Y) – (X – Y)=\(\left[\begin{array}{ll}
5 & 2 \\
0 & 9
\end{array}\right]-\left[\begin{array}{rr}
3 & 6 \\
0 & -1
\end{array}\right]\)

⇒ \(2 Y=\left[\begin{array}{ll}
5-3 & 2-6 \\
0-0 & 9-(-1)
\end{array}\right]=\left[\begin{array}{ll}
2 & -4 \\
0 & 10
\end{array}\right]\)

⇒ \(Y=\frac{1}{2}\left[\begin{array}{rr}
2 & -4 \\
0 & 10
\end{array}\right]=\left[\begin{array}{rr}
1 & -2 \\
0 & 5
\end{array}\right] .\)

Hence, X = \(\left[\begin{array}{ll}
4 & 4 \\
0 & 4
\end{array}\right] and Y = \left[\begin{array}{rr}
1 & -2 \\
0 & 5
\end{array}\right] \text {. }\)

Matrix Polynomial Let f(x) = \(a_0 x^m+a_1 x^{m-1}+a_2 x^{m-2}+\ldots+a_{m-1} x+a_m\) be a polynomial of degree m and let A be a square matrix of order n. Then, the corresponding matrix polynomial is:

f(A) = \(a_0 A^{m+}+a_1 A^{m-1}+a_2 A^{m-2}+\ldots+a_{m-1} A+a_m I\), where I is a unit matrix of order n.

Example 9 If f(x) = \(x^2-5 x+7\) and A = \(\left[\begin{array}{rr}
3 & 1 \\
-1 & 2
\end{array}\right]\), find f(A).

Solution

f(x) = \(x^2-5 x+7\) ⇒ f(A) = \(A^2-5 A+7 I\)

Now, \(A^2=\left[\begin{array}{rr}
3 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{rr}
3 & 1 \\
-1 & 2
\end{array}\right]\)

= \(\left[\begin{array}{rr}
9-1 & 3+2 \\
-3-2 & -1+4
\end{array}\right]=\left[\begin{array}{rr}
8 & 5 \\
-5 & 3
\end{array}\right]\)

-5A = \(\left[\begin{array}{ll}
(-5) \cdot 3 & (-5) \cdot 1 \\
(-5) \cdot(-1) & (-5) \cdot 2
\end{array}\right]=\left[\begin{array}{rr}
-15 & -5 \\
5 & -10
\end{array}\right]\)

7I = \(7 \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
7 & 0 \\
0 & 7
\end{array}\right] .\)

∴ f(A) = \(A^2-5 A+7 I\)

= \(\left[\begin{array}{rr}
8 & 5 \\
-5 & 3
\end{array}\right]+\left[\begin{array}{rr}
-15 & -5 \\
5 & -10
\end{array}\right]+\left[\begin{array}{ll}
7 & 0 \\
0 & 7
\end{array}\right]\)

= \(\left[\begin{array}{cc}
8+(-15)+7 & 5+(-5)+0 \\
-5+5+0 & 3+(-10)+7
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\)

Hence, f(A) = \(\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=0 .\)

Example 10 If A = \(\left[\begin{array}{rr}
3 & -5 \\
-4 & 2
\end{array}\right]\), show that \(A^2-5 A-14 I=0 .\)

Solution

We have

\(A^2=\left[\begin{array}{rr}
3 & -5 \\
-4 & 2
\end{array}\right]\left[\begin{array}{rr}
3 & -5 \\
-4 & 2
\end{array}\right]\)

= \(\left[\begin{array}{cc}
3 \cdot 3+(-5)(-4) & 3 \cdot(-5)+(-5) \cdot 2 \\
(-4) \cdot 3+2 \cdot(-4) & (-4) \cdot(-5)+2 \cdot 2
\end{array}\right]=\left[\begin{array}{rr}
29 & -25 \\
-20 & 24
\end{array}\right]\)

-5A = \((-5)\left[\begin{array}{rr}
3 & -5 \\
-4 & 2
\end{array}\right]=\left[\begin{array}{rr}
-15 & 25 \\
20 & -10
\end{array}\right] \text {; }\)

-14I = \((-14)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{rr}
-14 & 0 \\
0 & -14
\end{array}\right] \text {. }\)

∴ \(A^2-5 A-14 I=A^2+(-5) A+(-14 I)\)

= \(\left[\begin{array}{rr}
29 & -25 \\
-20 & 24
\end{array}\right]+\left[\begin{array}{rr}
-15 & 25 \\
20 & -10
\end{array}\right]+\left[\begin{array}{rr}
-14 & 0 \\
0 & -14
\end{array}\right]\)

= \(\left[\begin{array}{cc}
29+(-15)+(-14) & -25+25+0 \\
-20+20+0 & 24+(-10)+(-14)
\end{array}\right]\)

= \(\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=0 \text {. }\)

Hence, \(A^2-5 A-14 I=0 .\)

Examples of Matrix Operations

Example 11 If A = \(\left[\begin{array}{rr}
1 & 0 \\
-1 & 7
\end{array}\right]\), find k so that \(A^2=8 A+k I\).

Solution

We have

\(A^2=\left[\begin{array}{rr}
1 & 0 \\
-1 & 7
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
-1 & 7
\end{array}\right]=\left[\begin{array}{rl}
1-0 & 0+0 \\
-1-7 & 0+49
\end{array}\right]=\left[\begin{array}{rr}
1 & 0 \\
-8 & 49
\end{array}\right]\)

(8A + kI) = \(8 \cdot\left[\begin{array}{rr}
1 & 0 \\
-1 & 7
\end{array}\right]+k \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\)

= \(\left[\begin{array}{rr}
8 & 0 \\
-8 & 56
\end{array}\right]+\left[\begin{array}{ll}
k & 0 \\
0 & k
\end{array}\right]=\left[\begin{array}{cc}
8+k & 0 \\
-8 & 56+k
\end{array}\right]\)

∴ \(A^2=8 A+k I\) ⇒ \(\left[\begin{array}{rr}
1 & 0 \\
-8 & 49
\end{array}\right]=\left[\begin{array}{cc}
8+k & 0 \\
-8 & 56+k
\end{array}\right]\)

⇒ 8 + k = 1 and 56 + k = 49

⇒ k = -7.

Hence, k = -7.

Example 12 If A = \(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\), prove that for all n ∈ N, \((a I+b A)^n=a^n I+n d^{n-1} b A\), where I is the identity matrix of order 2.

Solution

We shall prove the result by mathematical induction.

When n = 1, we have:

LHS = \((a I+b A)^1=(a I+b A)=\left(a^1 I+1 a^0 b A\right)\) = RHS.

So, the result is true for n = 1.

Let it be true for n = m, so that

\((a I+b A)^m=a^m I+m a^{m-1} b A\) …(1)

∴ \((a I+b A)^{m+1}\)

= \((a I+b A) \cdot(a I+b A)^m=(a I+b A) \cdot\left(a^m I+m a^{m-1} b A\right)\) [using(1)]

= \(a I\left(a^m I+m a^{m-1} b A\right)+b A\left(a^m I+m a^{m-1} b A\right)\)

= \(a^{m+1} I+m d^m b A+a^m b A+m a^{m-1} b^2 A^2\) [∵ II = I, IA = A = AI]

= \(a^{m+1} I+(m+1) a^m b A\) [∵ \(A^2=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \times\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=O]\).

Thus, whenever the result is true for n = m, then it is also true for n = (m + 1).

Hence, by mathematical induction, it is true for all n ∈ N.

Theorem 6 If A is a symmetric matrix, then prove that kA is symmetric.

Proof Since A is symmetric, we have \(A^t=A .\)

∴ \((k A)^t=k A^t=k A\) [∵ \(A^t=A\)].

Hence, (kA) is symmetric.

Theorem 7 If A is a skew-symmetric matrix, then prove that kA is skew-symmetric.

Proof Since A is skew-symmetric, we have \(A^t=-A .\)

∴ \((k A)^t=k \cdot A^t=k \cdot(-A)=-(k A)\) [∵ \(A^t=-A\)].

Hence, (kA) is skew-symmetric.

Theorem 8 Prove that every square matrix is expressible as the sum of a symmetric matrix and a skew-symmetric matrix.

Proof Let A be any square matrix. Then, we can write

\(A=\frac{1}{2}\left(A+A^t\right)+\frac{1}{2}\left(A-A^t\right)=P+Q \text { (say). }\)

Then, it is easy to verify that P is symmetric and Q is skew-symmetric.

Hence, the theorem follows.

Example 13 Express the matrix A = \(\left[\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right]\) as the sum of a symmetric matrix and a skew-symmetric matrix.

Solution

We know that \(A=\frac{1}{2}\left(A+A^{\dagger}\right)+\frac{1}{2}\left(A-A^{\dagger}\right)=P+Q\), where P is a symmetric and Q is skew-symmetric.

∴ \(P=\frac{1}{2}\left(A+A^t\right)=\frac{1}{2} \cdot\left\{\left[\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right]+\left[\begin{array}{rr}
3 & 1 \\
-4 & -1
\end{array}\right]\right\}\)

= \(\frac{1}{2} \cdot\left[\begin{array}{cc}
3+3 & -4+1 \\
1+(-4) & -1+(-1)
\end{array}\right]=\frac{1}{2} \cdot\left[\begin{array}{rr}
6 & -3 \\
-3 & -2
\end{array}\right]=\left[\begin{array}{cc}
3 & \frac{-3}{2} \\
\frac{-3}{2} & -1
\end{array}\right]\)

And, \(Q=\frac{1}{2}\left(A-A^t\right)=\frac{1}{2} \cdot\left\{\left[\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right]-\left[\begin{array}{rr}
3 & 1 \\
-4 & -1
\end{array}\right]\right\}\)

= \(\frac{1}{2} \cdot\left[\begin{array}{cc}
3-3 & -4-1 \\
1-(-4) & -1-(-1)
\end{array}\right]=\frac{1}{2} \cdot\left[\begin{array}{cc}
0 & -5 \\
1+4 & -1+1
\end{array}\right]\)

= \(\frac{1}{2} \cdot\left[\begin{array}{rr}
0 & -5 \\
5 & 0
\end{array}\right]=\left[\begin{array}{rr}
0 & -\frac{5}{2} \\
\frac{5}{2} & 0
\end{array}\right] \text {. }\)

Hence, A = P + Q, where P is symmetric and Q is skew-symmetric.

Example 14 Express the matrix A = \(\left[\begin{array}{rrr}
1 & 3 & 5 \\
-6 & 8 & 3 \\
-4 & 6 & 5
\end{array}\right]\) as the sum of a symmetric matrix and a skew-symmetric matrix.

Solution

We know that \(A=\frac{1}{2}\left(A+A^t\right)+\frac{1}{2}\left(A-A^t\right)=P+Q\), where P is symmetric and Q is skew-symmetric.

Now, \(P=\frac{1}{2}\left(A+A^t\right)\)

= \(\frac{1}{2} \cdot\left\{\left[\begin{array}{rrr}
1 & 3 & 5 \\
-6 & 8 & 3 \\
-4 & 6 & 5
\end{array}\right]+\left[\begin{array}{rrr}
1 & -6 & -4 \\
3 & 8 & 6 \\
5 & 3 & 5
\end{array}\right]\right\}\)

= \(\frac{1}{2} \cdot\left[\begin{array}{rrr}
2 & -3 & 1 \\
-3 & 16 & 9 \\
1 & 9 & 10
\end{array}\right]=\left[\begin{array}{rrr}
1 & -\frac{3}{2} & \frac{1}{2} \\
-\frac{3}{2} & 8 & \frac{9}{2} \\
\frac{1}{2} & \frac{9}{2} & 5
\end{array}\right]\)

And, \(Q=\frac{1}{2}\left(A-A^t\right)\)

= \(\frac{1}{2} \cdot\left\{\left[\begin{array}{rrr}
1 & 3 & 5 \\
-6 & 8 & 3 \\
-4 & 6 & 5
\end{array}\right]-\left[\begin{array}{rrr}
1 & -6 & -4 \\
3 & 8 & 6 \\
5 & 3 & 5
\end{array}\right]\right\}\)

= \(\frac{1}{2} \cdot\left[\begin{array}{rrr}
0 & 9 & 9 \\
-9 & 0 & -3 \\
-9 & 3 & 0
\end{array}\right]=\left[\begin{array}{rrr}
0 & \frac{9}{2} & \frac{9}{2} \\
-\frac{9}{2} & 0 & -\frac{3}{2} \\
-\frac{9}{2} & \frac{3}{2} & 0
\end{array}\right]\)

Hence, A = P + Q, where P is symmetric and Q is skew-symmetric.

Elementary Operations on Matrices

Given below are three row operations and three column operations on a matrix, which are called elementary operations or transformations.

Equivalent Matrices Two matrices A and B are said to be equivalent if one is obtained from the other by one or more elementary operations and we write, A ~ B.

Three Elementary Row Operations

(1) Interchange of any two rows The interchange of ith and jth rows is denoted by Ri ⟷ Rj.

Example Let A = \(\left[\begin{array}{rrr}
3 & 2 & -1 \\
\sqrt{2} & 4 & 6 \\
5 & -3 & 7
\end{array}\right]\)

Applying R2 ⟷ R3, we get A ~ \(\left[\begin{array}{rrr}
3 & 2 & -1 \\
5 & -3 & 7 \\
\sqrt{2} & 4 & 6
\end{array}\right] \text {. }\)

(2) Multiplication of the elements of a row by a nonzero number Suppose each element of ith row of a given matrix is multiplied by a nonzero number k.

Then, we denote it by Ri → kRi.

Example Let A = \(\left[\begin{array}{rrr}
3 & 2 & -1 \\
\sqrt{3} & -5 & 6 \\
1 & 8 & 4
\end{array}\right]\)

Applying R2 → 4R2, we get A ~ \(\left[\begin{array}{rrr}
3 & 2 & -1 \\
4 \sqrt{3} & -20 & 24 \\
1 & 8 & 4
\end{array}\right]\)

(3) Multiplying each element of a row by a nonzero number and then adding them to the corresponding elements of another row Suppose each element of jth row of a matrix A is multiplied by a nonzero number k and then added to the corresponding elements of ith row.

We dentoe it by Ri → Ri + kRj.

Example Let A = \(\left[\begin{array}{rrr}
2 & -1 & 5 \\
-3 & 4 & \sqrt{2} \\
7 & 6 & 3
\end{array}\right]\)

Applying R1 → R1 + 2R3, we get A ~ \(\left[\begin{array}{rrr}
16 & 11 & 11 \\
-3 & 4 & \sqrt{2} \\
7 & 6 & 3
\end{array}\right]\)

Three Elementary Column Operations

(1) Interchange of any two columns The interchange of ith and jth columns is denoted by \(c_i \leftrightarrow c_j .\)

Example Let A = \(\left[\begin{array}{rrr}
2 & 1 & -3 \\
-1 & 5 & 4 \\
6 & 3 & \frac{1}{2}
\end{array}\right]\)

Applying \(c_1 \leftrightarrow c_2\), we get A ~ \(\left[\begin{array}{rrr}
1 & 2 & -3 \\
5 & -1 & 4 \\
3 & 6 & \frac{1}{2}
\end{array}\right] \text {. }\)

(2) Multiplying each element of a column by a nonzero number Suppose each element of ith column of matrix A is multiplied by a nonzero number k.

Then, we write, \(\mathcal{C}_i \rightarrow k \mathcal{C}_i\)

Example Let A = \(\left[\begin{array}{rrr}
3 & 1 & -5 \\
\sqrt{2} & -2 & 4 \\
6 & 2 & 8
\end{array}\right]\)

Applying \(\mathcal{C}_3 \rightarrow 2 \mathcal{C}_3\), we get A ~ \(\left[\begin{array}{rrr}
3 & 1 & -10 \\
\sqrt{2} & -2 & 8 \\
6 & 2 & 16
\end{array}\right]\)

(3) Multiplying each element of a column of a given matrix A by a nonzero number and then adding to the corresponding elements of another column Suppose each element of ith column of a given matrix A is multiplied by a nonzero number k and then added to the corresponding elements of ith column.

Then we write, \(C_i \rightarrow C_i+k C_j .\)

Example Let A = \(\left[\begin{array}{rrr}
2 & 0 & 4 \\
-1 & 3 & 1 \\
5 & -2 & 6
\end{array}\right]\)

Applying \(C_3 \rightarrow C_3+2 C_1\), we get A ~ \(\left[\begin{array}{rrr}
2 & 0 & 8 \\
-1 & 3 & -1 \\
5 & -2 & 16
\end{array}\right]\)

Invertible Matrices A square matrix A of order n is said to be invertible if there exists a square matrix B of order n such that AB = BA = I.

Also, then B is called the inverse of A and we write, \(A^{-1}=B\).

Example Let A = \(\left[\begin{array}{ll}
3 & 5 \\
1 & 2
\end{array}\right]\) and B = \(\left[\begin{array}{rr}
2 & -5 \\
-1 & 3
\end{array}\right]\). Then,

AB = \(\left[\begin{array}{ll}
3 & 5 \\
1 & 2
\end{array}\right]\left[\begin{array}{rr}
2 & -5 \\
-1 & 3
\end{array}\right]=\left[\begin{array}{rr}
6-5 & -15+15 \\
2-2 & -5+6
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I\),

BA = \(\left[\begin{array}{rr}
2 & -5 \\
-1 & 3
\end{array}\right]\left[\begin{array}{ll}
3 & 5 \\
1 & 2
\end{array}\right]=\left[\begin{array}{rr}
6-5 & 10-10 \\
-3+3 & -5+6
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I\)

∴ AB = BA = I.

Hence, \(A^{-1}=B\).

Theorem 1 (Uniqueness of Inverse) Every invertible square matrix has a unique inverse.

Proof

Let A be an invertible square matrix of order n.

If possible, let B as well as C be the inverse of A.

Then, AB = BA = I and AC = CA = I.

Now, AC = I ⇒ B(AC) = B.I = B,

BA = I ⇒ (BA)C = I.C = C.

But, B(AC) = (BA)C [by associative law of multiplication]

∴ B = C.

Hence, an invertible matrix has a unique inverse.

Inverse Of A Matrix By Elementary Row Operations

Let A be a square matrix of order n.

We can write, A = I.A …(1)

Now, let a sequence of elementary row operations reduce A on LHS of (1) to I and I on RHS of (1) to a matrix B.

Then, I = BA ⇒ \(I \cdot A^{-1}=(B A) A^{-1}=B\left(A A^{-1}\right)=B I\)

⇒ \(A^{-1}=B\).

We can summarise the above method as given below.

Method Step 1. Write A = I.A.

Step 2. By using elementary row operations on A, transform it into a unit matrix.

Step 3. In the same order we apply elementary operations on I to convert it into a matrix B.

Step 4. Then, \(A^{-1}=B\).

Remark If on applying one or more elementary row operations on A, we obtain all zeros in one or more rows, then we say that \(A^{-1}\) does not exist.

Solved Examples

Example 1 By using elementary row operations, find the inverse of the matrix A = \(\left[\begin{array}{ll}
1 & -2 \\
2 & -6
\end{array}\right]\)

Solution

We have

\(\left[\begin{array}{cc}
1 & -2 \\
2 & -6
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \cdot A\)

⇒ \(\left[\begin{array}{ll}
1 & -2 \\
0 & -2
\end{array}\right]=\left[\begin{array}{rr}
1 & 0 \\
-2 & 1
\end{array}\right] \cdot A\)

\(\left[R_2 \rightarrow R_2-2 R_1\right]\)

⇒ \(\left[\begin{array}{rr}
1 & -2 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
1 & \frac{-1}{2}
\end{array}\right] \cdot A\)

\(\left[R_2 \rightarrow\left(\frac{-1}{2}\right) R_2\right]\)

⇒ \(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{rr}
3 & -1 \\
1 & -\frac{1}{2}
\end{array}\right] \cdot A\)

\(\left[R_1 \rightarrow R_1+2 R_2\right] .\)

Hence, \(A^{-1}=\left[\begin{array}{rr}
3 & -1 \\
1 & -\frac{1}{2}
\end{array}\right]\)

Example 2 By using elementary row operations, find the inverse of the matrix A = \(\left[\begin{array}{rr}
3 & -1 \\
-4 & 2
\end{array}\right]\)

Solution

We have

A = \(\left[\begin{array}{rr}
3 & -1 \\
-4 & 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \cdot A\)

⇒ \(\left[\begin{array}{cc}
-1 & 1 \\
-4 & 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \cdot A\)

\(\left[R_1 \rightarrow R_1+R_2\right]\)

⇒ \(\left[\begin{array}{rr}
1 & -1 \\
-4 & 2
\end{array}\right]=\left[\begin{array}{rr}
-1 & -1 \\
0 & 1
\end{array}\right] \cdot A\)

\(\left[R_1 \rightarrow(-1) \cdot R_1\right]\)

⇒ \(\left[\begin{array}{ll}
1 & -1 \\
0 & -2
\end{array}\right]=\left[\begin{array}{cc}
-1 & -1 \\
-4 & -3
\end{array}\right] \cdot A\)

\(\left[R_2 \rightarrow R_2+4 R_1\right]\)

⇒ \(\left[\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{rr}
-1 & -1 \\
2 & \frac{3}{2}
\end{array}\right] \cdot A\)

\(\left[R_2 \rightarrow\left(\frac{-1}{2}\right) R_2\right]\)

⇒ \(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & \frac{1}{2} \\
2 & \frac{3}{2}
\end{array}\right] \cdot A\)

\(\left[R_1 \rightarrow R_1+R_2\right] .\)

Hence, \(A^{-1}=\left[\begin{array}{ll}
1 & \frac{1}{2} \\
2 & \frac{3}{2}
\end{array}\right] \text {. }\)

Example 3 If A = \(\left[\begin{array}{rr}
6 & -3 \\
-2 & 1
\end{array}\right]\), show that \(A^{-1}\) does not exist.

Solution

We have

\(\left[\begin{array}{rr}
6 & -3 \\
-2 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \cdot A\)

⇒ \(\left[\begin{array}{rr}
1 & -\frac{1}{2} \\
-2 & 1
\end{array}\right]=\left[\begin{array}{ll}
\frac{1}{6} & 0 \\
0 & 1
\end{array}\right] \cdot A\)

\(\left[R_1 \rightarrow \frac{1}{6} R_1\right]\)

⇒ \(\left[\begin{array}{rr}
1 & -\frac{1}{2} \\
0 & 0
\end{array}\right]=\left[\begin{array}{rr}
\frac{1}{6} & 0 \\
\frac{1}{3} & 1
\end{array}\right] \cdot A\)

\(\left[R_2 \rightarrow R_2+2 R_1\right]\)

Thus, we have all zeros in second row of the left-hand side matrix. Hence, \(A^{-1}\) does not exist.

Example 4 By using elementary row operations, find the inverse of the matrix A = \(\left[\begin{array}{rrr}
1 & 3 & -2 \\
-3 & 0 & -5 \\
2 & 5 & 0
\end{array}\right]\)

Solution

We have

\(\left[\begin{array}{rrr}
1 & 3 & -2 \\
-3 & 0 & -5 \\
2 & 5 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot A\)

⇒ \(\left[\begin{array}{rrr}
1 & 3 & -2 \\
0 & 9 & -11 \\
0 & -1 & 4
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
3 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right] \cdot A\)

\(\left[\begin{array}{l}
R_2 \rightarrow R_2+3 R_1 \\
R_3 \rightarrow R_3-2 R_1
\end{array}\right]\)

⇒ \(\left[\begin{array}{rrr}
1 & 3 & -2 \\
0 & -1 & 4 \\
0 & 9 & -11
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 0 & 1 \\
3 & 1 & 0
\end{array}\right] \cdot A\)

\(\left[R_2 \leftrightarrow R_3\right]\)

⇒ \(\left[\begin{array}{rrr}
1 & 0 & 10 \\
0 & -1 & 4 \\
0 & 0 & 25
\end{array}\right]=\left[\begin{array}{rrr}
-5 & 0 & 3 \\
-2 & 0 & 1 \\
-15 & 1 & 9
\end{array}\right] \cdot A\)

\(\left[\begin{array}{l}
R_1 \rightarrow R_1+3 R_2 \\
R_3 \rightarrow R_3+9 R_2
\end{array}\right]\)

⇒ \(\left[\begin{array}{rrr}
1 & 0 & 10 \\
0 & 1 & -4 \\
0 & 0 & 25
\end{array}\right]=\left[\begin{array}{rrr}
-5 & 0 & 3 \\
2 & 0 & -1 \\
-15 & 1 & 9
\end{array}\right] \cdot A\)

\(\left[R_2 \rightarrow(-1) \cdot R_2\right]\)

⇒ \(\left[\begin{array}{rrr}
1 & 0 & 10 \\
0 & 1 & -4 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
-5 & 0 & 3 \\
2 & 0 & -1 \\
\frac{-3}{5} & \frac{1}{25} & \frac{9}{25}
\end{array}\right]\)

\(\left[R_3 \rightarrow \frac{1}{25} R_3\right]\)

⇒ \(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & \frac{-2}{5} & \frac{-3}{5} \\
\frac{-2}{5} & \frac{4}{25} & \frac{11}{25} \\
\frac{-3}{5} & \frac{1}{25} & \frac{9}{25}
\end{array}\right] \cdot A\)

\(\left[\begin{array}{l}
R_1 \rightarrow R_1-10 R_3 \\
R_2 \rightarrow R_2+4 R_3
\end{array}\right]\)

Hence, \(A^{-1}=\left[\begin{array}{ccc}
1 & \frac{-2}{5} & \frac{-3}{5} \\
\frac{-2}{5} & \frac{4}{25} & \frac{11}{25} \\
\frac{-3}{5} & \frac{1}{25} & \frac{9}{25}
\end{array}\right] \text {. }\)

Example 5 By using elementary row operations, find the inverse of the matrix A = \(\left[\begin{array}{rrr}
3 & -1 & -2 \\
2 & 0 & -1 \\
3 & -5 & 0
\end{array}\right] .\)

Solution

We have

\(\left[\begin{array}{rrr}
3 & -1 & -2 \\
2 & 0 & -1 \\
3 & -5 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot A\)

⇒ \(\left[\begin{array}{rrr}
1 & -1 & -1 \\
2 & 0 & -1 \\
3 & -5 & 0
\end{array}\right]=\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot A\)

\(\left[R_1 \rightarrow R_1-R_2\right]\)

⇒ \(\left[\begin{array}{rrr}
1 & -1 & -1 \\
0 & 2 & 1 \\
0 & -2 & 3
\end{array}\right]=\left[\begin{array}{rrr}
1 & -1 & 0 \\
-2 & 3 & 0 \\
-3 & 3 & 1
\end{array}\right] \cdot A\)

\(\left[\begin{array}{l}
R_2 \rightarrow R_2-2 R_1 \\
R_3 \rightarrow R_3-3 R_1
\end{array}\right]\)

⇒ \(\left[\begin{array}{rrr}
1 & -1 & -1 \\
0 & 1 & \frac{1}{2} \\
0 & -2 & 3
\end{array}\right]=\left[\begin{array}{rrr}
1 & -1 & 0 \\
-1 & \frac{3}{2} & 0 \\
-3 & 3 & 1
\end{array}\right] \cdot A\)

\(\left\{R_2 \rightarrow \frac{1}{2} R_2\right\}\)

⇒ \(\left[\begin{array}{ccc}
1 & 0 & \frac{-1}{2} \\
0 & 1 & \frac{1}{2} \\
0 & 0 & 4
\end{array}\right]=\left[\begin{array}{rrr}
0 & \frac{1}{2} & 0 \\
-1 & \frac{3}{2} & 0 \\
-5 & 6 & 1
\end{array}\right] \cdot A\)

\(\left\{\begin{array}{l}
R_1 \rightarrow R_1+R_2 \\
R_3 \rightarrow R_3+2 R_2
\end{array}\right\}\)

⇒ \(\left[\begin{array}{ccc}
1 & 0 & \frac{-1}{2} \\
0 & 1 & \frac{1}{2} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{rrr}
0 & \frac{1}{2} & 0 \\
-1 & \frac{3}{2} & 0 \\
\frac{-5}{4} & \frac{3}{2} & \frac{1}{4}
\end{array}\right] \cdot A\)

\(\left\{R_3 \rightarrow \frac{1}{4} R_3\right\}\)

⇒ \(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
\frac{-5}{8} & \frac{5}{4} & \frac{1}{8} \\
\frac{-3}{8} & \frac{3}{4} & \frac{-1}{8} \\
\frac{-5}{4} & \frac{3}{2} & \frac{1}{4}
\end{array}\right] \cdot A\)

\(\left\{\begin{array}{l}
R_1 \rightarrow R_1+\frac{1}{2} R_3 \\
R_2 \rightarrow R_2-\frac{1}{2} R_3
\end{array}\right\} .\)

Hence, \(A^{-1}=\left[\begin{array}{ccc}
\frac{-5}{8} & \frac{5}{4} & \frac{1}{8} \\
\frac{-3}{8} & \frac{3}{4} & \frac{-1}{8} \\
\frac{-5}{4} & \frac{3}{2} & \frac{1}{4}
\end{array}\right] \text {. }\)

Example 6 By using elementary row transformations, find the invers of the matrix A = \(\left[\begin{array}{rrr}
2 & 0 & -1 \\
5 & 1 & 0 \\
0 & 1 & 3
\end{array}\right]\)

Solution

We have

\(\left[\begin{array}{rrr}
2 & 0 & -1 \\
5 & 1 & 0 \\
0 & 1 & 3
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot A\)

⇒ \(\left[\begin{array}{rrr}
2 & 0 & -1 \\
1 & 1 & 2 \\
0 & 1 & 3
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot A\)

\(\left[R_2 \rightarrow R_2-2 R_1\right]\)

⇒ \(\left[\begin{array}{rrr}
1 & 1 & 2 \\
2 & 0 & -1 \\
0 & 1 & 3
\end{array}\right]=\left[\begin{array}{rrr}
-2 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot A\)

\(\left[R_1 \leftrightarrow R_2\right]\)

⇒ \(\left[\begin{array}{rrr}
1 & 1 & 2 \\
0 & -2 & -5 \\
0 & 1 & 3
\end{array}\right]=\left[\begin{array}{rrr}
-2 & 1 & 0 \\
5 & -2 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot A\)

\(\left[R_2 \rightarrow R_2-2 R_1\right]\)

⇒ \(\left[\begin{array}{rrr}
1 & 1 & 2 \\
0 & 1 & 3 \\
0 & -2 & -5
\end{array}\right]=\left[\begin{array}{rrr}
-2 & 1 & 0 \\
0 & 0 & 1 \\
5 & -2 & 0
\end{array}\right] \cdot A\)

\(\left[R_2 \leftrightarrow R_3\right]\)

⇒ \(\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{rrr}
-2 & 1 & -1 \\
0 & 0 & 1 \\
5 & -2 & 2
\end{array}\right] \cdot A\)

\(\left[\begin{array}{l}
R_1 \rightarrow R_1-R_2 \\
R_3 \rightarrow R_3+2 R_2
\end{array}\right]\)

⇒ \(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{rrr}
3 & -1 & 1 \\
-15 & 6 & -5 \\
5 & -2 & 2
\end{array}\right] \cdot A\)

\(\left[\begin{array}{l}
R_1 \rightarrow R_1+R_3 \\
R_2 \rightarrow R_2-3 R_3
\end{array}\right]\)

Hence, \(A^{-1}=\left[\begin{array}{rrr}
3 & -1 & 1 \\
-15 & 6 & -5 \\
5 & -2 & 2
\end{array}\right]\)

Example 7 If A = \(\left[\begin{array}{rrr}
1 & -1 & 1 \\
2 & 1 & -1 \\
-1 & -2 & 2
\end{array}\right]\), show that \(A^{-1}\) does not exist.

Solution

We have

\(\left[\begin{array}{rrr}
1 & -1 & 1 \\
2 & 1 & -1 \\
-1 & -2 & 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot A\)

⇒ \(\left[\begin{array}{rrr}
1 & -1 & 1 \\
0 & 3 & -3 \\
0 & -3 & 3
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right], A\)

\(\left[\begin{array}{l}
R_2 \rightarrow R_2-2 R_1 \\
R_3 \rightarrow R_3+R_1
\end{array}\right]\)

⇒ \(\left[\begin{array}{rrr}
1 & -1 & 1 \\
0 & 3 & -3 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right] \cdot A\)

\(\left[R_3 \rightarrow R_3+R_2\right] .\)

Thus, we have all zeros in 3rd row of the left-hand side matrix.

Hence, A^{-1} does not exist.

WBCHSE Class 12 Maths Solutions For Determinants

Class 12 Maths Solutions For Determinants

Determinant of a Square Matrix

Corresponding to each square Matrix

A = \(\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n n}
\end{array}\right]\)

there is associated an expression, called the determinat of A, denoted by det A or |A|, written associated

det A = |A| = \(\left|\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n n}
\end{array}\right| .\)

A matrix is an arrangement of numbers and so it has no fixed value, while eac determinant has a fixed value.

A determinant having n rows and n columns is known as a determinant of order n.

The determiants of nonsquare matrices are not defined.

WBCHSE Class 12 Maths Solutions For Determinants

Value Of A Determinant Of Order 1 The value of a determinant of a (1×1) matrix [a] is defined as |a| = a.

Read and Learn More  Class 12 Math Solutions

Value Of A Determinant of Order 2 We defined

\(\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=\left(a_{11} a_{22}-a_{21} a_{12}\right) .\)

Example 1 Evaluate:

(1) \(\left|\begin{array}{ll}
6 & -3 \\
7 & -2
\end{array}\right|\)

(2) \(\left|\begin{array}{cc}
x^2-x+1 & x-1 \\
x+1 & x+1
\end{array}\right|\)

Solution

(1) \(\left|\begin{array}{ll}
6 & -3 \\
7 & -2
\end{array}\right|=6(-2)-7(-3)=-12+21=9 \text {. }\)

(2) \(\left|\begin{array}{cc}
x^2-x+1 & x-1 \\
x+1 & x+1
\end{array}\right|=\left(x^2-x+1\right)(x+1)-(x+1)(x-1)\)

= \(\left(x^3+1\right)-\left(x^2-1\right)=\left(x^3-x^2+2\right)\)

Example 2 Show that \(\left|\begin{array}{rr}
\sin 10^{\circ} & -\cos 10^{\circ} \\
\sin 80^{\circ} & \cos 80^{\circ}
\end{array}\right|=1 .\)

Solution

We have

\(\left|\begin{array}{rr}
\sin 10^{\circ} & -\cos 10^{\circ} \\
\sin 80^{\circ} & \cos 80^{\circ}
\end{array}\right|=\left(\sin 10^{\circ} \cos 80^{\circ}\right)-\left(-\sin 80^{\circ} \cos 10^{\circ}\right)\)

= \(\left(\sin 10^{\circ} \cos 80^{\circ}+\sin 80^{\circ} \cos 10^{\circ}\right)\)

= \(\sin \left(10^{\circ}+80^{\circ}\right)=\sin 90^{\circ}=1 .\)

Example 3 If \(\left|\begin{array}{rr}
4 & m \\
-3 & 5
\end{array}\right|=8\), find the value of m.

Solution

\(\left|\begin{array}{rr}
4 & m \\
-3 & 5
\end{array}\right|=8\) ⇔ 20 + 3m = 8

⇔ 3m = -12.

⇔ m = -4.

The value of m = -4.

Value Of A Determinant Of Order 3 Or More To find the value of a determinant of order 3 or more, we need the following definitions.

Minor Of aij in |A| The minor of an element aij in |A| is defined as the value of the determinant obtained by deleting the ith row and jth column of |A|, and it is denoted by Mij.

Cofactor Of aij In |A| The cofactor Cij of an element aij is defined as \(C_{i j}=(-1)^{i+j} \cdot M_{i j}\)

Example 1 Find the minors and cofactors of the elements of the determinant \(\Delta=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|\)

Solution

Let Mij denote the minor of aij in Δ.

Now, a11 occurs in the 1st row and 1st column. So, in order to find the minor of a11, we delete the 1st row and 1st column of Δ. The minor M11 of a11 is given by,

\(M_{11}=\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|=\left(a_{22} a_{33}-a_{32} a_{23}\right) \text {. }\)

Similarly, we have

\(M_{12}=\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|=\left(a_{21} a_{33}-a_{31} a_{23}\right) ;\) \(M_{13}=\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|=\left(a_{21} a_{32}-a_{31} a_{22}\right) ;\) \(M_{21}=\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right|=\left(a_{12} a_{33}-a_{32} a_{13}\right) .\)

Similarly, we may obtain the minor of each of the remaining elements.

Now, if we denotre the cofactor of aij by cij then

\(C_{11}=(-1)^{1+1} \cdot M_{11}=M_{11}=\left(a_{22} a_{33}-a_{32} a_{23}\right) ;\) \(C_{12}=(-1)^{1+2} \cdot M_{12}=-M_{12}=\left(a_{31} a_{23}-a_{21} a_{33}\right) ;\) \(C_{13}=(-1)^{1+3} \cdot M_{13}=M_{13}=\left(a_{21} a_{32}-a_{31} a_{22}\right) ;\) \(C_{21}=(-1)^{2+1} \cdot M_{21}=-M_{21}=\left(a_{32} a_{13}-a_{12} a_{33}\right)\)

Similarly, the cofactor of each of the remaining elements of Δ can be determined.

WBBSE Class 12 Determinants Solutions

Example 2 Find the minor and cofactor of each element of Δ = \(\left|\begin{array}{rrr}
1 & -3 & 2 \\
4 & -1 & 2 \\
3 & 5 & 2
\end{array}\right| \text {. }\)

Solution

The minors of the elements of Δ are given by

\(M_{11}=\left|\begin{array}{rr}
-1 & 2 \\
5 & 2
\end{array}\right|=-12 ; M_{12}=\left|\begin{array}{ll}
4 & 2 \\
3 & 2
\end{array}\right|=2 ; M_{13}=\left|\begin{array}{rr}
4 & -1 \\
3 & 5
\end{array}\right|=23\) ;

\(M_{21}=\left|\begin{array}{rr}
-3 & 2 \\
5 & 2
\end{array}\right|=-16 ; M_{22}=\left|\begin{array}{rr}
1 & 2 \\
3 & 2
\end{array}\right|=-4 ; M_{23}=\left|\begin{array}{rr}
1 & -3 \\
3 & 5
\end{array}\right|=14\) ;

\(M_{31}=\left|\begin{array}{ll}
-3 & 2 \\
-1 & 2
\end{array}\right|=-4 ; M_{32}=\left|\begin{array}{cc}
1 & 2 \\
4 & 2
\end{array}\right|=-6 ; M_{33}=\left|\begin{array}{cc}
1 & -3 \\
4 & -1
\end{array}\right|=11 \text {. }\)

So, the cofactors of the corresponding elements of Δ are

\(C_{11}=(-1)^{1+1} \cdot M_{11}=M_{11}=-12 ; C_{12}=(-1)^{1+2} \cdot M_{12}=-M_{12}=-2\) ;

\(C_{13}=(-1)^{1+3} \cdot M_{13}=M_{13}=23 ; C_{21}=(-1)^{2+1} \cdot M_{21}=-M_{21}=16\)

\(C_{22}=(-1)^{2+2} \cdot M_{22}=M_{22}=-4 ; C_{23}=(-1)^{2+3} \cdot M_{23}=-M_{23}=-14\) ;

\(C_{31}=(-1)^{3+1} \cdot M_{31}=M_{31}=-4 ; C_{32}=(-1)^{3+2} \cdot M_{32}=-M_{32}=6\) ;

\(C_{33}=(-1)^{3+3} \cdot M_{33}=M_{33}=11 .\)

Value of a Determinant

The value of a determinant is the sum of the products of elements of a row (or a column) with their corresponding cofactors.

We may expand a determinant by any arbitrarily chosen row or column.

Expansion of a Determinant

Expanding the given determinant by 1st row, we have

\(\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11} \cdot \text { (its cofactor) }+a_{12} \cdot \text { (its cofactor) }+a_{13} \cdot \text { (its cofactor) }\)

= \(a_{11} c_{11}+a_{12} c_{12}+a_{13} c_{13}\)

= \(a_{11} M_{11}=a_{12} M_{12}+a_{13} M_{13}\) [∵ \(C_{12}=-M_{12}\)]

= \(a_{11} \cdot\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12} \cdot\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13} \cdot\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|\)

= \(a_{11} \cdot\left(a_{22} a_{33}-a_{32} a_{23}\right)-a_{12} \cdot\left(a_{21} a_{33}-a_{31} a_{23}\right)+a_{13} \cdot\left(a_{21} a_{32}-a_{31} a_{22}\right) .\)

We may expand it by any row or column.

Remark 1 If we expand a determinant by any row or column using minors, we keep in view the following symbols for a determinant of order theree:

\(\left|\begin{array}{lll}
+ & – & + \\
– & + & – \\
+ & – & +
\end{array}\right|\)

Remark 2 If a row or a column of a determinant consists of all zeros, the value of the determinant is zero.

Example 1 Evaluate △ = \(\left|\begin{array}{rrr}
3 & 4 & 5 \\
-6 & 2 & -3 \\
8 & 1 & 7
\end{array}\right|\)

Solution

Expanding the given determinant by 1st row, we get

△ = \(3 \cdot\left|\begin{array}{rr}
2 & -3 \\
1 & 7
\end{array}\right|-4 \cdot\left|\begin{array}{rr}
-6 & -3 \\
8 & 7
\end{array}\right|+5 \cdot\left|\begin{array}{rr}
-6 & 2 \\
8 & 1
\end{array}\right|\)

= 3(14 + 3) – 4(-42 + 24) + 5.(-6-16) = 13.

Example 2 Expand the determinant △ = \(\left|\begin{array}{lll}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right| .\)

Solution

Expanding by 1st row, we have

△ = \(a \cdot\left|\begin{array}{ll}
b & f \\
f & c
\end{array}\right|-h \cdot\left|\begin{array}{ll}
h & f \\
g & c
\end{array}\right|+g \cdot\left|\begin{array}{ll}
h & b \\
g & f
\end{array}\right|\)

= \(a\left(b c-f^2\right)-h \cdot(c h-f g)+g \cdot(f h-b g)\)

= \(\left(a b c+2 f g h-a f^2-b g^2-c h^2\right) .\)

Properties of Determinants

The properties of a determinant serve the purpose of a useful tool for finding its value. We will mention these properties and verify them for a third-order determinant.

Theorem 1 The value of a determinant remains unchanged if its rows and columns are interchanged.

Proof

Let △ = \(\left|\begin{array}{lll}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{array}\right|\) and let △’ be the determinant obtained by interchanging the rows and columns of △.

Then, △’ = \(\left|\begin{array}{lll}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{array}\right|\)

= \(a_1 \cdot\left|\begin{array}{ll}
b_2 & b_3 \\
c_2 & c_3
\end{array}\right|-b_1 \cdot\left|\begin{array}{ll}
a_2 & a_3 \\
c_2 & c_3
\end{array}\right|+c_1 \cdot\left|\begin{array}{ll}
a_2 & a_3 \\
b_2 & b_3
\end{array}\right|\)

[expansion by 1st column]

= \(a_1\left(b_2 c_3-b_3 c_2\right)-b_1\left(a_2 c_3-c_2 a_3\right)+c_1\left(a_2 b_3-a_3 b_2\right)\)

= △ [expanded by 1st row].

Corollary If A is a square matrix then |A’| = |A|.

Understanding Determinants in Class 12 Maths

Theorem 2 If two rows or columns of a determinant are interchanged then the determinant retains its absolute value but its sign is changed.

Proof

Let △ = \(\left|\begin{array}{lll}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{array}\right|\) and let △’ be the determinant obtained by interchanging any two rows, say 1st and 3rd rows, of △. Then,

△’ = \(\left|\begin{array}{lll}
a_3 & b_3 & c_3 \\
a_2 & b_2 & c_2 \\
a_1 & b_1 & c_1
\end{array}\right|\)

= \(a_3 \cdot\left|\begin{array}{ll}
b_2 & c_2 \\
b_1 & c_1
\end{array}\right|-a_2 \cdot\left|\begin{array}{ll}
b_3 & c_3 \\
b_1 & c_1
\end{array}\right|+a_1 \cdot\left|\begin{array}{ll}
b_3 & c_3 \\
b_2 & c_2
\end{array}\right|\) [expanded by 1st column]

= \(a_3\left(b_2 c_1-b_1 c_2\right)-a_2\left(b_3 c_1-b_1 c_3\right)+a_1\left(b_3 c_2-b_2 c_3\right)\)

= \(-a_1\left(b_2 c_3-b_3 c_2\right)+a_2\left(b_1 c_3-b_3 c_1\right)-a_3\left(b_1 c_2-b_2 c_1\right)\)

= \(-\left[a_1\left(b_2 c_3-b_3 c_2\right)-a_2\left(b_1 c_3-b_3 c_1\right)+a_3\left(b_1 c_2-b_2 c_1\right)\right]\)

= -△ [expanded by 1st column].

Theorem 3 If any two rows or columns of a determinant are identical then its value is zero.

Proof

If we interchange the identical rows of the given determinant △. But, interchanging any two rows of a determinant changes its sign.

∴ △ = -△ ⇔ 2△ = 0, i.e., △ = 0.

Theorem 4 If each element of a row or a column of a determinant is multiplied by a constant k then the value of a new determinant is k times the value of the original determinant.

Proof

Let △ = \(\left|\begin{array}{lll}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{array}\right|\) and let △’ be the determinant obtained by multiplying each element of a row, say the second row of △, by k. Then,

△’ = \(\left|\begin{array}{ccc}
a_1 & b_1 & c_1 \\
k a_2 & k b_2 & k c_2 \\
a_3 & b_3 & c_3
\end{array}\right|\)

= \(a_1 \cdot\left|\begin{array}{cc}
k b_2 & k c_2 \\
b_3 & c_3
\end{array}\right|-k a_2 \cdot\left|\begin{array}{cc}
b_1 & c_1 \\
b_3 & c_3
\end{array}\right|+a_3 \cdot\left|\begin{array}{cc}
b_1 & c_1 \\
k b_2 & k c_2
\end{array}\right|\)

= \(a_1\left(k b_2 c_3-k b_3 c_2\right)-k a_2\left(b_1 c_3-b_3 c_1\right)+a_3\left(k b_1 c_2-k b_2 c_1\right)\)

= \(k\left[a_1\left(b_2 c_3-b_3 c_2\right)-a_2\left(b_1 c_3-b_3 c_1\right)+a_3\left(b_1 c_2-b_2 c_1\right)\right]=k \Delta\)

Corollary For a square matrix A of order n, \(|k A| = k^n \cdot|A| .\)

Theorem 5 If any two rows or columns of a determinant are proportional then its value is zero.

Proof

Let △ = \(\left|\begin{array}{ccc}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
k a_1 & k b_1 & k c_1
\end{array}\right|\)

= \(k\left|\begin{array}{lll}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_1 & b_1 & c_1
\end{array}\right|\)

= k x 0 = 0 [∵ 1st and 3rd rows are identical].

Theorem 6 If each element of a two (or column) of a determinant is expressed as sum of two or more terms then the determinant can be expressed as the sum of two or more determinants.

Proof

Let △ = \(\left|\begin{array}{ccc}
a_1+\alpha_1 & b_1+\beta_1 & c_1+\gamma_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{array}\right|\)

Then, on expanding △ by first row, we get

△ = \(\left(a_1+\alpha_1\right)\left(b_2 c_3-b_3 c_2\right)-\left(b_1+\beta_1\right)\left(a_2 c_3-a_3 c_2\right)+\left(c_1+\gamma_1\right)\left(a_2 b_3-a_3 b_2\right)\)

= \(\left[a_1\left(b_2 c_3-b_3 c_2\right)-b_1\left(a_2 c_3-a_3 c_2\right)+c_1\left(a_2 b_3-a_3 b_2\right)\right]\)
\(+\left[\alpha_1\left(b_2 c_3-b_3 c_2\right)-\beta_1\left(a_2 c_3-a_3 c_2\right)+\gamma_1\left(a_2 b_3-a_3 b_2\right)\right]\)

= \(\left|\begin{array}{lll}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{array}\right|+\left|\begin{array}{lll}
\alpha_1 & \beta_1 & \gamma_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{array}\right| .\)

Theorem 7 If to any row or column of a determinant, a multiple of another row or column is added, the value of the determinant remains the same.

Proof

Let △ = \(\left|\begin{array}{lll}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{array}\right| .\)

Let △’ = \(\left|\begin{array}{ccc}
a_1+k a_3 & b_1+k b_3 & c_1+k c_3 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{array}\right| .\)

Then, △’ = \(\left|\begin{array}{lll}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{array}\right|+\left|\begin{array}{ccc}
k a_3 & k b_3 & k c_3 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{array}\right|\)

= \(\left|\begin{array}{lll}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{array}\right|\) [∵ 2nd det. is 0, its 1st and 3rd rows being proportional]

Theorem 8 The sum of the products of the elements of any row (or column) of a determinant with cofactors of the corresponding elements of any other row (or column) is zero.

Proof

Let △ = \(\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| .\)

Let us take the sum of the products of elements of first row with the cofactors of the corresponding elements of second row.

\(a_{11} A_{21}+a_{12} A_{22}+a_{13} A_{23}\)

= \(a_{11} \cdot(-1)^{2+1} \cdot\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right|+a_{12} \cdot(-1)^{2+2} \cdot\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right|+a_{13} \cdot(-1)^{2+3} \cdot\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{31} & a_{32}
\end{array}\right|\)

= \(-a_{11}\left(a_{12} a_{33}-a_{32} a_{13}\right)+a_{12}\left(a_{11} a_{33}-a_{31} a_{13}\right)-a_{13}\left(a_{11} a_{32}-a_{31} a_{12}\right)=0 .\)

To Find the Value of a Determinant

The main theme behind the simplification of a determinant lies in obtaining the maximum possible number of zeros in a row (or a column) by using the above properties and then to expand the determinant by that row (or column). We denote the 1st, 2nd, 3rd rows of a determinant by R1, R2, R3 respectively and the 1st, 2nd, 3rd columns by C1, C2, C3 respectively. We shall also express the

(1) interchange of the ith and jth rows by Ri ⟷ Rj;

(2) addition of k times the elements of the jth row with the corresponding elements of the ith row by Ri → Ri + k Rj.

We use similar notations for operations on columns, replacing R by C.

Solved Examples

Example 1 Evaluate \(\left|\begin{array}{rrr}
9 & 9 & 12 \\
1 & -3 & -4 \\
1 & 9 & 12
\end{array}\right| \text {. }\)

Solution

Let the given determinat be △. Then,

△ = \(\left|\begin{array}{rrr}
9 & 9 & 12 \\
1 & -3 & -4 \\
1 & 9 & 12
\end{array}\right|\)

= \(\left|\begin{array}{rrr}
0 & 36 & 48 \\
1 & -3 & -4 \\
0 & 12 & 16
\end{array}\right|\)

\(\left\{\begin{array}{l}
R_1 \rightarrow R_1-9 R_2 \\
R_3 \rightarrow R_3-R_2
\end{array}\right\}\)

= \((12 \times 4) \cdot\left|\begin{array}{rrr}
0 & 3 & 4 \\
1 & -3 & -4 \\
0 & 3 & 4
\end{array}\right|\) {taking out 12 common from R1 and 4 common from R3}

= (48 x 0) = 0 [∵ R1 and R3 are identical].

Hence, △ = 0.

Example 2 Evaluate \(\left|\begin{array}{lll}
265 & 240 & 219 \\
240 & 225 & 198 \\
219 & 198 & 181
\end{array}\right| .\)

Solution

Let the given determinant be △. Then,

△ = \(\left|\begin{array}{lll}
265 & 240 & 219 \\
240 & 225 & 198 \\
219 & 198 & 181
\end{array}\right|\)

= \(\left|\begin{array}{lll}
46 & 21 & 219 \\
42 & 27 & 198 \\
38 & 17 & 181
\end{array}\right|\)

\(\left[C_1 \rightarrow\left(C_1-C_3\right) \text { and } C_2 \rightarrow\left(C_2-C_3\right)\right]\)

= \(\left|\begin{array}{rrr}
4 & 21 & 9 \\
-12 & 27 & -72 \\
4 & 17 & 11
\end{array}\right|\)

\(\left[C_1 \rightarrow\left(C_1-2 C_2\right) \text { and } C_3 \rightarrow\left(C_3-10 C_2\right)\right]\)

= \(\left|\begin{array}{rrr}
0 & 4 & -2 \\
0 & 78 & -39 \\
4 & 17 & 11
\end{array}\right|\)

\(\left[R_1 \rightarrow\left(R_1-R_3\right) \text { and } R_2 \rightarrow\left(R_2+3 R_3\right)\right]\)

= \(\text { 2(39) }\left|\begin{array}{rrr}
0 & 2 & -1 \\
0 & 2 & -1 \\
4 & 17 & 11
\end{array}\right|\)

[taking 2 common from R1 and 39 common from R2]

= (78 x 0) = 0 [∵ R1 and R2 are identical].

Step-by-Step Solutions for Determinant Problems

Example 3 Without expanding, prove that

\(\left|\begin{array}{ccc}
\sin \alpha & \cos \alpha & \cos (\alpha+\delta) \\
\sin \beta & \cos \beta & \cos (\beta+\delta) \\
\sin \gamma & \cos \gamma & \cos (\gamma+\delta)
\end{array}\right|=0\)

Solution

Let the given determinant be △. Then,

△ = \(\left|\begin{array}{ccc}
\sin \alpha & \cos \alpha & \cos \alpha \cos \delta-\sin \alpha \sin \delta \\
\sin \beta & \cos \beta & \cos \beta \cos \delta-\sin \beta \sin \delta \\
\sin \gamma & \cos \gamma & \cos \gamma \cos \delta-\sin \gamma \sin \delta
\end{array}\right|\)

= \(\left|\begin{array}{ccc}
\sin \alpha & \cos \alpha & 0 \\
\sin \beta & \cos \beta & 0 \\
\sin \gamma & \cos \gamma & 0
\end{array}\right|\)

\(\left[C_3 \rightarrow C_3+(\sin \delta) C_1-(\cos \delta) C_2\right]\)

= 0 [expanded by C3].

Hence, △ = 0.

Example 4 Prove that \(\left|\begin{array}{ccc}
a & a+b & a+b+c \\
2 a & 3 a+2 b & 4 a+3 b+2 c \\
3 a & 6 a+3 b & 10 a+6 b+3 c
\end{array}\right|=a^3\)

Solution

Let the given determinant be △. Then,

△ = \(\left|\begin{array}{ccc}
a & a+b & a+b+c \\
2 a & 3 a+2 b & 4 a+3 b+2 c \\
3 a & 6 a+3 b & 10 a+6 b+3 c
\end{array}\right|\)

= \(\left|\begin{array}{ccc}
a & a+b & a+b+c \\
0 & a & 2 a+b \\
0 & 3 a & 7 a+3 b
\end{array}\right|\)

\(\left[R_2 \rightarrow R_2-2 R_1 \text { and } R_3 \rightarrow R_3-3 R_1\right]\)

= \(\left|\begin{array}{ccc}
a & a+b & a+b+c \\
0 & a & 2 a+b \\
0 & 0 & a
\end{array}\right|\)

\(\left[R_3 \rightarrow R_3-3 R_2\right]\)

= \(a \cdot\left|\begin{array}{cc}
a & 2 a+b \\
0 & a
\end{array}\right|\) [expanding along C1]

= \(a \cdot\left(a^2-0\right)=a^3 .\)

Hence, △ = \(a^3\).

Example 5 Without expanding, prove that \(\left|\begin{array}{ccc}
x+y & y+z & z+x \\
z & x & y \\
1 & 1 & 1
\end{array}\right|=0 .\)

Solution

Let the given determinant be △. Then,

△ = \(\left|\begin{array}{ccc}
x+y & y+z & z+x \\
z & x & y \\
1 & 1 & 1
\end{array}\right|\)

= \(\left|\begin{array}{ccc}
x+y+z & x+y+z & x+y+z \\
z & x & y \\
1 & 1 & 1
\end{array}\right|\)

\(\left[R_1 \rightarrow\left(R_1+R_2\right)\right]\)

= \((x+y+z) \cdot\left|\begin{array}{lll}
1 & 1 & 1 \\
z & x & y \\
1 & 1 & 1
\end{array}\right|\) [taking (x+y+z) common from R1]

= (x + y + z) x 0 = 0 [∵ R1 and R3 are identical].

Hence, △ = 0.

Example 6 Using properties of determinants, prove that \(\left|\begin{array}{ccc}
x+y & x & x \\
5 x+4 y & 4 x & 2 x \\
10 x+8 y & 8 x & 3 x
\end{array}\right|=x^3 \text {. }\)

Solution

Let the given determinant be △. Then,

△ = \(\left|\begin{array}{ccc}
x+y & x & x \\
5 x+4 y & 4 x & 2 x \\
10 x+8 y & 8 x & 3 x
\end{array}\right|\)

= \(\left|\begin{array}{ccc}
x+y & x & x \\
3 x+2 y & 2 x & 0 \\
7 x+5 y & 5 x & 0
\end{array}\right|\)

\(\left[R_2 \rightarrow\left(R_2-2 R_1\right) \text { and } R_3 \rightarrow\left(R_3-3 R_1\right)\right]\)

= \(x \cdot\left|\begin{array}{ll}
3 x+2 y & 2 x \\
7 x+5 y & 5 x
\end{array}\right|\) [expanded by C3]

= \(x^2 \cdot\left|\begin{array}{ll}
3 x+2 y & 2 \\
7 x+5 y & 5
\end{array}\right|\) [taking x common from C2]

= \(x^2 \cdot[5(3 x+2 y)-2(7 x+5 y)]=\left(x^2 \cdot x\right)=x^3 .\)

Hence, △ = \(x^3\)

Example 7 Using properties of determinants, prove that \(\left|\begin{array}{ccc}
0 & a b^2 & a c^2 \\
a^2 b & 0 & b c^2 \\
a^2 c & c b^2 & 0
\end{array}\right|=2 a^3 b^3 c^3 \text {, }\)

Solution

Let the given determinant be △. Then,

△ = \(\left|\begin{array}{ccc}
0 & a b^2 & a c^2 \\
a^2 b & 0 & b c^2 \\
a^2 c & c b^2 & 0
\end{array}\right|\)

= \(\left(a^2 b^2 c^2\right) \cdot\left|\begin{array}{lll}
0 & a & a \\
b & 0 & b \\
c & c & 0
\end{array}\right|\)

\(\left[\begin{array}{l}
\text { taking } a^2, b^2, c^2 \text { common from } C_1, C_2 \\
\text { and } C_3 \text { respectively }
\end{array}\right]\)

= \(\left(a^3 b^3 c^3\right) \cdot\left|\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right|\)

\(\left[\begin{array}{l}
\text { taking } a, b, c \text { common from } R_1, R_2 \\
\text { and } R_3 \text { respectively }
\end{array}\right]\)

= \(\left(a^3 b^3 c^3\right) \cdot\left|\begin{array}{rrr}
0 & 1 & 1 \\
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right|\)

\(\left[R_3 \rightarrow R_3-R_2\right]\)

= \(\left(a^3 b^3 c^3\right) \cdot(-1) \cdot\left|\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right|\) [expanded by C1]

= \(-\left(a^3 b^3 c^3\right)(-1-1)=2 a^3 b^3 c^3\)

Hence, △ = \(2 a^3 b^3 c^3\)

Example 8 Prove that \(\left|\begin{array}{ccc}
-a^2 & a b & a c \\
a b & -b^2 & b c \\
a c & b c & -c^2
\end{array}\right|=4 a^2 b^2 c^2\)

Solution

Let the given determinant be △. Then,

△ = \(\left|\begin{array}{ccc}
-a^2 & a b & a c \\
a b & -b^2 & b c \\
a c & b c & -c^2
\end{array}\right|\)

= \((a b c) \cdot\left|\begin{array}{rrr}
-a & a & a \\
b & -b & b \\
c & c & -c
\end{array}\right|\)

\(\left[\begin{array}{l}
\text { taking out } a, b, c \text { common from } \\
C_1, C_2, C_3 \text { respectively }
\end{array}\right]\)

= \((a b c) \cdot\left|\begin{array}{ccc}
-a & 0 & 0 \\
b & 0 & 2 b \\
c & 2 c & 0
\end{array}\right|\)

\(\left[C_2 \rightarrow\left(C_2+C_1\right) \text { and } C_3 \rightarrow\left(C_3+C_1\right)\right]\)

= \((a b c) \cdot(-a)\left|\begin{array}{cc}
0 & 2 b \\
2 c & 0
\end{array}\right|=(a b c)(-a)(-4 b c)\)

= \(4 a^2 b^2 c^2\).

Example 9 Using properties of determinants, show that \(\left|\begin{array}{ccc}
a+x & y & z \\
x & a+y & z \\
x & y & a+z
\end{array}\right|=a^2(a+x+y+z)\)

Solution

Let the given determinant be △. Then,

△ = \(\left|\begin{array}{ccc}
a+x & y & z \\
x & a+y & z \\
x & y & a+z
\end{array}\right|\)

= \(\left|\begin{array}{ccc}
a+x+y+z & y & z \\
a+x+y+z & a+y & z \\
a+x+y+z & y & a+z
\end{array}\right|\)

\(\left[C_1 \rightarrow C_1+C_2+C_3\right]\)

= \((a+x+y+z) \cdot\left|\begin{array}{ccc}
1 & y & z \\
1 & a+y & z \\
1 & y & a+z
\end{array}\right|\)

[taking (a + x + y + z) common from C1]

=\((a+x+y+z) \cdot\left|\begin{array}{lll}
1 & y & z \\
0 & a & 0 \\
0 & 0 & a
\end{array}\right|\)

\(\left[R_2 \rightarrow R_2-R_1 \text { and } R_3 \rightarrow R_3-R_1\right]\)

= \((a+x+y+z) \cdot 1 \cdot\left|\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right|\)

[expanded by C1]

= \(a^2(a+x+y+z) \text {. }\)

Hence, △ = \(a^2(a+x+y+z)\).

Key Properties of Determinants Explained

Example 10 Using Properties of determinants, prove that \(\left|\begin{array}{ccc}
a-b-c & 2 a & 2 a \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right|=(a+b+c)^3 \text {. }\)

Solution

Let the given determinant be △. Then,

△ = \(\left|\begin{array}{ccc}
a-b-c & 2 a & 2 a \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right|\)

= \(\left|\begin{array}{ccc}
a+b+c & a+b+c & a+b+c \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right|\)

\(\left[R_1 \rightarrow\left(R_1+R_2+R_3\right)\right]\)

= \((a+b+c) \cdot\left|\begin{array}{ccc}
1 & 1 & 1 \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right|\) [taking (a + b + c) common from R1]

= \((a+b+c) \cdot\left|\begin{array}{ccc}
1 & 0 & 0 \\
2 b & -(a+b+c) & 0 \\
2 c & 0 & -(a+b+c)
\end{array}\right|\)

\(\left[C_2 \rightarrow\left(C_2-C_1\right) \text { and } C_3 \rightarrow\left(C_3-C_1\right)\right]\)

= \((a+b+c) \cdot 1 \cdot\left|\begin{array}{cc}
-(a+b+c) & 0 \\
0 & -(a+b+c)
\end{array}\right|\)

= \((a+b+c)(a+b+c)^2=(a+b+c)^3 .\)

Hence, △ = \((a+b+c)^3 .\)

Example 11 Using properties of determinants, prove that \(\left|\begin{array}{ccc}
a & b & c \\
a-b & b-c & c-a \\
b+c & c+a & a+b
\end{array}\right|=\left(a^3+b^3+c^3-3 a b c\right)\)

Solution

Let the given determinant be △. Then,

△ = \(\left|\begin{array}{ccc}
a & b & c \\
a-b & b-c & c-a \\
b+c & c+a & a+b
\end{array}\right|\)

= \(\left|\begin{array}{ccc}
a+b+c & b & c \\
0 & b-c & c-a \\
2(a+b+c) & c+a & a+b
\end{array}\right|\)

\(\left[C_1 \rightarrow\left(C_1+C_2+C_3\right)\right]\)

= \((a+b+c) \cdot\left|\begin{array}{ccc}
1 & b & c \\
0 & b-c & c-a \\
2 & c+a & a+b
\end{array}\right|\) [taking (a + b + c) common from C1]

= \((a+b+c) \cdot\left|\begin{array}{ccc}
1 & b & c \\
0 & b-c & c-a \\
0 & c+a-2 b & a+b-2 c
\end{array}\right|\)

\(\left[R_3 \rightarrow R_3-2 R_1\right]\)

= \((a+b+c) \cdot 1 \cdot\left|\begin{array}{cc}
b-c & c-a \\
c+a-2 b & a+b-2 c
\end{array}\right|\) [expanded by C1]

= \((a+b+c) \cdot\left|\begin{array}{ll}
b-c & c-a \\
a-b & b-c
\end{array}\right| \quad\left[R_2 \rightarrow R_2+R_1\right]\)

= \((a+b+c) \cdot\left[(b-c)^2-(a-b)(c-a)\right]\)

= \((a+b+c)\left(a^2+b^2+c^2-a b-b c-c a\right)\)

= \(\left(a^3+b^3+c^3-3 a b c\right)\)

Hence, △ = \(\left(a^3+b^3+c^3-3 a b c\right)\).

Example 12 Using properties of determinants, prove that \(\left|\begin{array}{ccc}
3 a & -a+b & -a+c \\
a-b & 3 b & c-b \\
a-c & b-c & 3 c
\end{array}\right|=3(a+b+c)(a b+b c+c a) \text {. }\)

Solution

Let the given determinant be △. Then,

△ = \(\left|\begin{array}{ccc}
3 a & -a+b & -a+c \\
a-b & 3 b & c-b \\
a-c & b-c & 3 c
\end{array}\right|\)

= \(\left|\begin{array}{ccc}
a+b+c & -a+b & -a+c \\
a+b+c & 3 b & c-b \\
a+b+c & b-c & 3 c
\end{array}\right|\)

\(\left[C_1 \rightarrow\left(C_1+C_2+C_3\right)\right]\)

= \((a+b+c) \cdot\left|\begin{array}{ccc}
1 & -a+b & -a+c \\
1 & 3 b & c-b \\
1 & b-c & 3 c
\end{array}\right|\)

= \((a+b+c) \cdot\left|\begin{array}{ccc}
1 & -a+b & -a+c \\
0 & 2 b+a & a-b \\
0 & a-c & 2 c+a
\end{array}\right|\)

\(\left[R_2 \rightarrow\left(R_2-R_1\right) \text { and } R_3 \rightarrow\left(R_3-R_1\right)\right]\)

= \((a+b+c) \cdot 1 \cdot\left|\begin{array}{cc}
2 b+a & a-b \\
a-c & 2 c+a
\end{array}\right|\) [expanded by C1]

= (a + b + c)[(2b + a)(2c + a) – (a – c)(a – b)]

= \((a+b+c)\left[\left(4 b c+2 a b+2 a c+a^2\right)-\left(a^2-a b-a c+b c\right)\right]\)

= 3(a + b + c)(Ab + bc + ca).

Hence, △ = 3(a + b + c)(Ab + bc + ca).

Example 13 Prove that \(\left|\begin{array}{ccc}
a+b x & c+d x & p+q x \\
a x+b & c x+d & p x+q \\
u & v & w
\end{array}\right|=\left(1-x^2\right) \cdot\left|\begin{array}{ccc}
a & c & p \\
b & d & q \\
u & v & w
\end{array}\right| .\)

Solution

Let the given determinant be △. Then,

△ = \(\left|\begin{array}{ccc}
a+b x & c+d x & p+q x \\
a x+b & c x+d & p x+q \\
u & v & w
\end{array}\right|\)

= \(\left|\begin{array}{ccc}
a\left(1-x^2\right) & c\left(1-x^2\right) & p\left(1-x^2\right) \\
a x+b & c x+d & p x+q \\
u & v & w
\end{array}\right|\)

\(\left[R_1 \rightarrow R_1-x R_2\right]\)

= \(\left(1-x^2\right) \cdot\left|\begin{array}{ccc}
a & c & p \\
a x+b & c x+d & p x+q \\
u & v & w
\end{array}\right|\)

= \(\left(1-x^2\right) \cdot\left|\begin{array}{lll}
a & c & p \\
b & d & q \\
u & v & w
\end{array}\right|\)

\(\left[R_2 \rightarrow\left(R_2-x R_1\right)\right]\)

Hence, △ = \(\left(1-x^2\right) \cdot\left|\begin{array}{ccc}
a & c & p \\
b & d & q \\
u & v & w
\end{array}\right| .\)

Class 11 Physics Class 12 Maths Class 11 Chemistry
NEET Foundation Class 12 Physics NEET Physics

Example 14 Prove that \(\left|\begin{array}{ccc}
y+z & z & y \\
z & z+x & x \\
y & x & x+y
\end{array}\right|=4 x y z .\)

Solution

Given determinant = \(\left|\begin{array}{ccc}
y+z & z & y \\
z & z+x & x \\
y & x & x+y
\end{array}\right|\)

= \(\left|\begin{array}{ccc}
0 & -2 x & -2 x \\
z & z+x & x \\
y & x & x+y
\end{array}\right|\)

\(\left[R_1 \rightarrow R_1-\left(R_2+R_3\right)\right]\)

= \((-2 x) \cdot\left|\begin{array}{ccc}
0 & 1 & 1 \\
z & z+x & x \\
y & x & x+y
\end{array}\right|\) [taking (-2x) common from R1]

= \((-2 x) \cdot\left|\begin{array}{ccc}
0 & 0 & 1 \\
z & z & x \\
y & -y & x+y
\end{array}\right|\)

\(\left[C_2 \rightarrow\left(C_2-C_3\right)\right]\)

= \((-2 x) \cdot 1 \cdot\left|\begin{array}{rr}
z & z \\
y & -y
\end{array}\right|\) [expanded by R1]

= (-2x).1.(-yz – yz) = (-2x)(-2yz) = 4xyz.

Common Questions on Determinants and Their Solutions

Example 15 Prove that \(\left|\begin{array}{ccc}
a+b+2 c & a & b \\
c & b+c+2 a & b \\
c & a & c+a+2 b
\end{array}\right|=2(a+b+c)^3\)

Solution

Let the given determinant be △. Then,

△ = \(\left|\begin{array}{ccc}
a+b+2 c & a & b \\
c & b+c+2 a & b \\
c & a & c+a+2 b
\end{array}\right|\)

= \(\left|\begin{array}{ccc}
a+b+c & -(a+b+c) & 0 \\
c & b+c+2 a & b \\
0 & -(a+b+c) & (a+b+c)
\end{array}\right|\)

\(\left\{\begin{array}{l}
\text { by } R_1 \rightarrow\left(R_1-R_2\right) \\
\text { and } R_3 \rightarrow\left(R_3-R_2\right)
\end{array}\right\}\)

= \((a+b+c)^2 \cdot\left|\begin{array}{ccc}
1 & -1 & 0 \\
c & b+c+2 a & b \\
0 & -1 & 1
\end{array}\right|\)

[taking (a + b + c) common from each one of R1 and R3]

= \((a+b+c)^2 \cdot\left|\begin{array}{ccc}
1 & -1 & 0 \\
0 & b+2 c+2 a & b \\
0 & -1 & 1
\end{array}\right|\)

\(\left\{R_2 \rightarrow R_2-c R_1\right\}\)

= \((a+b+c)^2 \cdot 1 \cdot\left|\begin{array}{cc}
b+2 c+2 a & b \\
-1 & 1
\end{array}\right|\) [expanded by C1]

= \((a+b+c)^2.(b+2 c+2 a+b)=2(a+b+c)^3 .\)

Example 16 Prove that \(\left|\begin{array}{lll}
1 & 1 & 1 \\
a & b & c \\
a^3 & b^3 & c^3
\end{array}\right|=(a-b)(b-c)(c-a)(a+b+c)\)

Solution

The given determinant

= \(\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^3 & b^3 & c^3
\end{array}\right|\)

= \(\left|\begin{array}{ccc}
0 & 0 & 1 \\
a-c & b-c & c \\
a^3-c^3 & b^3-c^3 & c^3
\end{array}\right|\)

\(\left[C_1 \rightarrow\left(C_1-C_3\right) \text { and } C_2 \rightarrow\left(C_2-C_3\right)\right]\)

= \((a-c)(b-c) \cdot\left|\begin{array}{ccc}
0 & 0 & 1 \\
1 & 1 & c \\
a^2+a c+c^2 & b^2+b c+c^2 & c^3
\end{array}\right|\)

[taking out (a-c) and (b-c) common from C1 and C2]

= \((a-c)(b-c) \cdot 1 \cdot\left|\begin{array}{cc}
1 & 1 \\
a^2+a c+c^2 & b^2+b c+c^2
\end{array}\right|\) [expanded by R1]

= \((a-c)(b-c) \cdot\left[\left(b^2+b c+c^2\right)-\left(a^2+a c+c^2\right)\right]\)

= \((a-c)(b-c)\left[\left(b^2-a^2\right)+(b c-a c)\right]\)

= \((a-c)(b-c)\left[\left(b^2-a^2\right)+(b-a) c\right]\)

= (a-c)(b-c)(b-a)(b+a+c)

= (a-b)(b-c)(c-a)(a+b+c).

Example 17 Prove that \(\left|\begin{array}{ccc}
x & y & z \\
x^2 & y^2 & z^2 \\
y+z & z+x & x+y
\end{array}\right|=(x+y+z)(x-y)(y-z)(z-x)\)

Solution

The given determinant

= \(\left|\begin{array}{ccc}
x & y & z \\
x^2 & y^2 & z^2 \\
y+z & z+x & x+y
\end{array}\right|\)

= \(\left|\begin{array}{ccc}
x+y+z & x+y+z & x+y+z \\
x^2 & y^2 & z^2 \\
y+z & z+x & x+y
\end{array}\right|\)

\(\left[R_1 \rightarrow\left(R_1+R_3\right)\right]\)

= \((x+y+z) \cdot\left|\begin{array}{ccc}
1 & 1 & 1 \\
x^2 & y^2 & z^2 \\
y+z & z+x & x+y
\end{array}\right|\) [taking out (x + y + z) common from R1]

= \((x+y+z)\left|\begin{array}{ccc}
1 & 0 & 0 \\
x^2 & y^2-x^2 & z^2-x^2 \\
y+z & x-y & x-z
\end{array}\right|\)

\(\left[C_2 \rightarrow\left(C_2-C_1\right) \text { and } C_3 \rightarrow\left(C_3-C_1\right)\right]\)

= \((x+y+z)(x-y)(z-x) \cdot\left|\begin{array}{ccc}
1 & 0 & 0 \\
x^2 & -(x+y) & z+x \\
y+z & 1 & -1
\end{array}\right|\)

= \((x+y+z)(x-y)(z-x) \cdot 1 \cdot\left|\begin{array}{cc}
-(x+y) & z+x \\
1 & -1
\end{array}\right|\)

= (x + y + z)(x-y)(z-x).[(x+y)-(z+x)]

= (x + y + z)(x-y)(y-z)(z-x).

Example 18 Using properties of determinants, prove that \(\left|\begin{array}{ccc}
a & b & c \\
a^2 & b^2 & c^2 \\
b c & c a & a b
\end{array}\right|=(a-b)(b-c)(c-a)(a b+b c+c a) \text {. }\)

Solution

Let the given determinant be △. Then

△ = \(\left|\begin{array}{ccc}
a & b & c \\
a^2 & b^2 & c^2 \\
b c & c a & a b
\end{array}\right|\)

= \(\left|\begin{array}{ccc}
a-c & b-c & c \\
a^2-c^2 & b^2-c^2 & c^2 \\
b(c-a) & a(c-b) & a b
\end{array}\right|\)

\(\left\{C_1 \rightarrow\left(C_1-C_3\right), C_2 \rightarrow\left(C_2-C_3\right)\right\}\)

= \((a-c)(b-c) \cdot\left|\begin{array}{ccc}
1 & 1 & c \\
a+c & b+c & c^2 \\
-b & -a & a b
\end{array}\right|\)

[taking (a-c) common from C1 and (b-c) common from C2]

= \((a-c)(b-c) \cdot\left|\begin{array}{ccc}
1 & 0 & 0 \\
a+c & b-a & -c a \\
-b & b-a & (a+c) b
\end{array}\right|\)

\(\left\{C_2 \rightarrow\left(C_2-C_1\right), C_3 \rightarrow\left(C_3-c C_1\right)\right\}\)

= \((a-c)(b-c) \cdot 1 \cdot\left|\begin{array}{cc}
b-a & -c a \\
b-a & (a+c) b
\end{array}\right|\) [expanded by R1]

= \((a-c)(b-c) \cdot(b-a)\left|\begin{array}{cc}
1 & -c a \\
1 & (a+c) b
\end{array}\right|\)

= (a – b)(b – c)(c – a)(ab + bc + ca).

Example 19 Prove that \(\left|\begin{array}{ccc}
1+a & 1 & 1 \\
1 & 1+b & 1 \\
1 & 1 & 1+c
\end{array}\right|=(a b c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1\right)=(b c+c a+a b+a b c)\)

Solution

The given determinant

= \(\left|\begin{array}{ccc}
1+a & 1 & 1 \\
1 & 1+b & 1 \\
1 & 1 & 1+c
\end{array}\right|\)

= \((a b c) \cdot\left|\begin{array}{ccc}
\frac{1}{a}+1 & \frac{1}{a} & \frac{1}{a} \\
\frac{1}{b} & \frac{1}{b}+1 & \frac{1}{b} \\
\frac{1}{c} & \frac{1}{c} & \frac{1}{c}+1
\end{array}\right|\)

[taking a, b, c common from R1, R2 and R3 respectively]

= \((a b c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1\right) \cdot\left|\begin{array}{ccc}
1 & 1 & 1 \\
\frac{1}{b} & \frac{1}{b}+1 & \frac{1}{b} \\
\frac{1}{c} & \frac{1}{c} & \frac{1}{c}+1
\end{array}\right|\)

\([performing R_1 \rightarrow R_1+R_2+R_3 \text { and taking }\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1\right) common outside]\)

= \((a b c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1\right)\left|\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & \frac{1}{b} \\
-1 & -1 & \frac{1}{c}+1
\end{array}\right|\)

\(\left[C_1 \rightarrow\left(C_1-C_3\right) \text { and } C_2 \rightarrow\left(C_2-C_3\right)\right]\)

= \((a b c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1\right) \cdot(1) \cdot\left|\begin{array}{rr}
0 & 1 \\
-1 & -1
\end{array}\right|\) [expanding by 1st row]

= \((a b c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1\right) \cdot 1\)

= \((a b c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1\right)=(b c+c a+a b+a b c) .\)

Applications of Determinants in Mathematics

Example 20 Prove that \(\left|\begin{array}{ccc}
a^2 & b c & c^2+a c \\
a^2+a b & b^2 & a c \\
a b & b^2+b c & c^2
\end{array}\right|=4 a^2 b^2 c^2 .\)

Solution

\(\left|\begin{array}{ccc}
a^2 & b c & c^2+a c \\
a^2+a b & b^2 & a c \\
a b & b^2+b c & c^2
\end{array}\right|\)

= \(\text { (abc) }\left|\begin{array}{ccc}
a & c & c+a \\
a+b & b & a \\
b & b+c & c
\end{array}\right|\)

[taking a, b, c common from C1, C2 and C3 respectively]

= \(\text { (abc) }\left|\begin{array}{ccc}
a & c & c+a \\
0 & -2 c & -2 c \\
b & b+c & c
\end{array}\right|\)

\(\left[R_2 \rightarrow R_2-\left(R_1+R_3\right)\right]\)

= \((a b c) \cdot\left|\begin{array}{ccc}
a & -a & c+a \\
0 & 0 & -2 c \\
b & b & c
\end{array}\right|\)

\(\left[C_2 \rightarrow C_2-C_3\right]\)

= \((a b c)(2 c) \cdot\left|\begin{array}{rr}
a & -a \\
b & b
\end{array}\right|\) [expansion by R2]

= \(2 a b c^2 \cdot(a b+a b)=2 a b c^2(2 a b)\)

= \(4 a^2 b^2 c^2 .\)

Example 21 If a, b, c are positive and unequal, show that the value of the determinant \(\left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right|\) is negative.

Solution

The given determinant

= \(\left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right|\)

= \(\left|\begin{array}{lll}
a+b+c & b & c \\
a+b+c & c & a \\
a+b+c & a & b
\end{array}\right|\)

\(\left[C_1 \rightarrow\left(C_1+C_2+C_3\right)\right]\)

= \((a+b+c) \cdot\left|\begin{array}{lll}
1 & b & c \\
1 & c & a \\
1 & a & b
\end{array}\right|\)

= \((a+b+c) \cdot\left|\begin{array}{ccc}
1 & b & c \\
0 & c-b & a-c \\
0 & a-b & b-c
\end{array}\right|\left[R_2 \rightarrow\left(R_2-R_1\right) \text { and } R_3 \rightarrow\left(R_3-R_1\right)\right]\)

= (a + b + c).[(c-b)(b-c) – (a-b)(a-c)] [expanded by C1]

= \((a+b+c) \cdot\left(-a^2-b^2-c^2+a b+b c+c a\right)\)

= \(-\frac{1}{2}(a+b+c)\left(2 a^2+2 b^2+2 c^2-2 a b-2 b c-2 c a\right)\)

= \(-\frac{1}{2}(a+b+c)\left[(a-b)^2+(b-c)^2+(c-a)^2\right]\), which is negative

[∵ \((a+b+c)>0,(a-b)^2>0,(b-c)^2>0 \text { and }(c-a)^2>0\)].

Example 22 Evaluate \(\left|\begin{array}{lll}
{ }^m C_1 & { }^m C_2 & { }^m C_3 \\
{ }^n C_1 & { }^n C_2 & { }^n C_3 \\
{ }^p C_1 & { }^p C_2 & { }^m C_3
\end{array}\right| .\)

Solution

Let the given determinant be △. Then

△ = \(\left|\begin{array}{lll}
m & \frac{1}{2} m(m-1) & \frac{1}{6} \cdot m(m-1)(m-2) \\
n & \frac{1}{2} n(n-1) & \frac{1}{6} \cdot n(n-1)(n-2) \\
p & \frac{1}{2} p(p-1) & \frac{1}{6} \cdot p(p-1)(p-2)
\end{array}\right|\)

= \(\left(\frac{1}{2} \times \frac{1}{6} \times m n p\right) \cdot\left|\begin{array}{lll}
1 & (m-1) & (m-1)(m-2) \\
1 & (n-1) & (n-1)(n-2) \\
1 & (p-1) & (p-1)(p-2)
\end{array}\right|\)

= \(\frac{1}{12} \cdot m n p \cdot\left|\begin{array}{lll}
1 & m-1 & (m-1)(m-2) \\
0 & n-m & (n-m)(n+m-3) \\
0 & p-m & (p-m)(p+m-3)
\end{array}\right|\)

\(\left[R_2 \rightarrow\left(R_2-R_1\right) \text { and } R_3 \rightarrow\left(R_3-R_1\right)\right]\)

= \(\frac{1}{12} \cdot(m n p)(n-m)(p-m) \cdot\left|\begin{array}{ccl}
1 & m-1 & (m-1)(m-2) \\
0 & 1 & (n+m-3) \\
0 & 1 & (p+m-3)
\end{array}\right|\)

[taking (n – m) common from R2 and (p – m) common from R3]

= \(\frac{1}{12} \cdot(m n p)(n-m)(p-m) \cdot 1 \cdot\left|\begin{array}{ll}
1 & (n+m-3) \\
1 & (p+m-3)
\end{array}\right|\)

= \(\frac{1}{12} \cdot(m n p)(n-m)(p-m)[(p+m-3)-(n+m-3)]\)

= \(\frac{1}{12} \cdot(m n p)(n-m)(p-m)(p-n)\)

= \(\frac{1}{12} \cdot(m n p)(m-n)(n-p)(p-m) .\)

Example 23 Prove that \(\left|\begin{array}{lll}
b+c & a & b \\
c+a & c & a \\
a+b & b & c
\end{array}\right|=(a+b+c)(a-c)^2 \text {. }\)

Solution

Let the given determinant be △. Then

△ = \(\left|\begin{array}{lll}
b+c & a & b \\
c+a & c & a \\
a+b & b & c
\end{array}\right|\)

= \(\left|\begin{array}{lll}
b & a & b \\
c & c & a \\
a & b & c
\end{array}\right|+\left|\begin{array}{lll}
c & a & b \\
a & c & a \\
b & b & c
\end{array}\right|\)

= \(\left|\begin{array}{ccc}
a+b+c & a+b+c & a+b+c \\
c & c & a \\
a & b & c
\end{array}\right|+\left|\begin{array}{ccc}
a+b+c & a+b+c & a+b+c \\
a & c & a \\
b & b & c
\end{array}\right|\)

\(\left[R_1 \rightarrow\left(R_1+R_2+R_3\right) \text { in each determinant }\right]\)

= \((a+b+c) \cdot\left|\begin{array}{lll}
1 & 1 & 1 \\
c & c & a \\
a & b & c
\end{array}\right|+(a+b+c) \cdot\left|\begin{array}{lll}
1 & 1 & 1 \\
a & c & a \\
b & b & c
\end{array}\right|\)

[taking out (a + b + c) common from R1 in each determinant]

= \((a+b+c) \cdot\left|\begin{array}{ccc}
1 & 0 & 0 \\
c & 0 & a-c \\
a & b-a & c-a
\end{array}\right|+(a+b+c) \cdot\left|\begin{array}{ccc}
1 & 0 & 0 \\
a & c-a & 0 \\
b & 0 & c-b
\end{array}\right|\)

\(\left[C_2 \rightarrow\left(C_2-C_1\right) \text { and } C_3 \rightarrow\left(C_3-C_1\right) \text { in each }\right]\)

= (a + b + c).1.{0-(b-a)(a-c)} + (a + b + c).1.{(c-a)(c-b)-0}

= (a + b + c)(a – b)(a – c) + (a + b + c)(c – a)(c – b)

= \((a+b+c)(a-c)\{(a-b)-(c-b)\}=(a+b+c)(a-c)^2\)

Hence, △ = \((a+b+c)(a-c)^2\).

Example 24 Prove that \(\left|\begin{array}{lll}
1 & a & a^2-b c \\
1 & b & b^2-c a \\
1 & c & c^2-a b
\end{array}\right|=0\)

Solution

Let the given determinant be △. Then

△ = \(\left|\begin{array}{lll}
1 & a & a^2-b c \\
1 & b & b^2-c a \\
1 & c & c^2-a b
\end{array}\right|\)

= \(\left|\begin{array}{lll}
1 & a & a^2 \\
1 & b & b^2 \\
1 & c & c^2
\end{array}\right|+\left|\begin{array}{ccc}
1 & a & -b c \\
1 & b & -c a \\
1 & c & -a b
\end{array}\right|\)

= \(\left|\begin{array}{ccc}
1 & a & a^2 \\
0 & b-a & b^2-a^2 \\
0 & c-a & c^2-a^2
\end{array}\right|+\left|\begin{array}{ccc}
1 & a & -b c \\
0 & b-a & c(b-a) \\
0 & c-a & b(c-a)
\end{array}\right|\)

\(\left[R_2 \rightarrow\left(R_2-R_1\right) \text { and } R_3 \rightarrow\left(R_3-R_1\right) \text { in each determinant }\right]\)

= \((b-a)(c-a) \cdot\left|\begin{array}{ccc}
1 & a & a^2 \\
0 & 1 & b+a \\
0 & 1 & c+a
\end{array}\right|+(b-a)(c-a) \cdot\left|\begin{array}{ccc}
1 & a & -b c \\
0 & 1 & c \\
0 & 1 & b
\end{array}\right|\)

= (b-a)(C-a).1.{(c+a)-(b+a)}+(b-a)(c-a).1.(b-c)

= (b-a)(c-a)(c-b)+(b-a)(c-a)(b-c)

= (a-b)(b-c)(c-a)-(A-b)(b-c)(C-a) = 0.

Hence, △ = 0.

Real-Life Applications of Determinants

Example 25 If x ≠ y ≠ z and \(\left|\begin{array}{lll}
x & x^2 & 1+x^3 \\
y & y^2 & 1+y^3 \\
z & z^2 & 1+z^3
\end{array}\right|=0\) then prove that xyz = -1.

Solution

Let the given determinant be △. Then,

△ = \(\left|\begin{array}{lll}
x & x^2 & 1+x^3 \\
y & y^2 & 1+y^3 \\
z & z^2 & 1+z^3
\end{array}\right|=\left|\begin{array}{lll}
x & x^2 & 1 \\
y & y^2 & 1 \\
z & z^2 & 1
\end{array}\right|+\left|\begin{array}{lll}
x & x^2 & x^3 \\
y & y^2 & y^3 \\
z & z^2 & z^3
\end{array}\right|\)

= \(\left|\begin{array}{lll}
x & x^2 & 1 \\
y & y^2 & 1 \\
z & z^2 & 1
\end{array}\right|+(x y z) \cdot\left|\begin{array}{lll}
1 & x & x^2 \\
1 & y & y^2 \\
1 & z & z^2
\end{array}\right|\)

= \(\left|\begin{array}{lll}
x & x^2 & 1 \\
y & y^2 & 1 \\
z & z^2 & 1
\end{array}\right|+(x y z)(-1)^2 \cdot\left|\begin{array}{lll}
x & x^2 & 1 \\
y & y^2 & 1 \\
z & z^2 & 1
\end{array}\right|\)

[interchanging the columns of 2nd det. twice]

= \((1+x y z)\left|\begin{array}{lll}
x & x^2 & 1 \\
y & y^2 & 1 \\
z & z^2 & 1
\end{array}\right|\)

= \((1+x y z)\left|\begin{array}{ccc}
x & x^2 & 1 \\
(y-x) & \left(y^2-x^2\right) & 0 \\
(z-x) & \left(z^2-x^2\right) & 0
\end{array}\right|\)

\(\left[R_2 \rightarrow\left(R_2-R_1\right), R_3 \rightarrow\left(R_3-R_1\right)\right]\)

= \((1+x y z)(y-x)(z-x)\left|\begin{array}{ccc}
x & x^2 & 1 \\
1 & y+x & 0 \\
1 & z+x & 0
\end{array}\right|\)

= \((1+x y z)(y-x)(z-x) \cdot 1 \cdot\left|\begin{array}{ll}
1 & y+x \\
1 & z+x
\end{array}\right|\) [expanding by C3].

= (1 + xyz)(y – z)(z – x)(z – y).

∴ △ = 0 ⇒ (1 + xyz)(y – z)(z – x)(z – y) = 0

⇒ (1 + xyz) = 0 [∵ (y-x) ≠ 0, (z-x) ≠0, (z-y) ≠0]

⇒ xyz = -1.

Hence, xyz = -1.

Example 26 Prove that \(\left|\begin{array}{ccc}
(b+c)^2 & a^2 & a^2 \\
b^2 & (c+a)^2 & b^2 \\
c^2 & c^2 & (a+b)^2
\end{array}\right|=2 a b c(a+b+c)^3 \text {. }\)

Solution

Let the given determinant be △. Then,

△ = \(\left|\begin{array}{ccc}
(b+c)^2 & a^2 & a^2 \\
b^2 & (c+a)^2 & b^2 \\
c^2 & c^2 & (a+b)^2
\end{array}\right|\)

= \(\left|\begin{array}{ccc}
(b+c)^2-a^2 & 0 & a^2 \\
0 & (c+a)^2-b^2 & b^2 \\
c^2-(a+b)^2 & c^2-(a+b)^2 & (a+b)^2
\end{array}\right|\)

\(\left[C_1 \rightarrow C_1-C_3 \text { and } C_2 \rightarrow C_2-C_3\right]\)

= \(\left|\begin{array}{ccc}
(a+b+c)(b+c-a) & 0 & a^2 \\
0 & (a+b+c)(c+a-b) & b^2 \\
(a+b+c)(c-a-b) & (a+b+c)(c-a-b) & (a+b)^2
\end{array}\right|\)

= \((a+b+c)^2 \cdot\left|\begin{array}{ccc}
(b+c-a) & 0 & a^2 \\
0 & c+a-b & b^2 \\
c-a-b & c-a-b & (a+b)^2
\end{array}\right|\)

[taking (a+b+c) common from C1 and C2 both]

= \(\left.(a+b+c)^2\left[(b+c-a) \mid(c+a-b) \cdot 2 a b+2 a b^2\right)+a^2(0+2 b(c+a-b))\right]\)

= \((a+b+c)^2\left[(b+c-a) \cdot 2 a b|(c+a-b+b)|+2 a^2 b(c+a-b)\right]\)

= \(2 a b(a+b+c)^2\{(b+c-a)(c+a)+a(c+a-b)\}\)

= \(2 a b(a+b+c)^2 \cdot\left\{b c+a b+c^2+a c-a c-a^2+a c+a^2-a b\right\}\)

= \(2 a b(a+b+c)^2\left\{b c+c^2+a c\right\}=2 a b c(a+b+c)^3 .\)

Hence, △ = \(2 a b c(a+b+c)^3 .\)

Example 27 Prove that \(\left|\begin{array}{lll}
\frac{1}{a} & a^2 & b c \\
\frac{1}{b} & b^2 & c a \\
\frac{1}{c} & c^2 & a b
\end{array}\right|=0 .\)

Solution

Let the given determinant be △. Then,

△ = \(\left|\begin{array}{lll}
\frac{1}{a} & a^2 & b c \\
\frac{1}{b} & b^2 & c a \\
\frac{1}{c} & c^2 & a b
\end{array}\right|\)

= \(\frac{1}{a b c} \cdot\left|\begin{array}{lll}
1 & a^3 & a b c \\
1 & b^3 & a b c \\
1 & c^3 & a b c
\end{array}\right|\) [multiplying R1, R2, R3 by a, b, c respectively and dividing △ by abc]

= \(\frac{1}{a b c} \cdot a b c \cdot\left|\begin{array}{lll}
1 & a^3 & 1 \\
1 & b^3 & 1 \\
1 & c^3 & 1
\end{array}\right|\)

= (1 x 0) = 0 [∵ C1 and C3 are identical].

Hence, △ = 0.

Example 28 Prove that \(\left|\begin{array}{ccc}
-b c & b^2+b c & c^2+b c \\
a^2+a c & -a c & c^2+a c \\
a^2+a b & b^2+a b & -a b
\end{array}\right|=(a b+b c+a c)^3 \text {. }\)

Solution

We have

\(\left|\begin{array}{ccc}
-b c & b^2+b c & c^2+b c \\
a^2+a c & -a c & c^2+a c \\
a^2+a b & b^2+a b & -a b
\end{array}\right|=\frac{1}{a b c}\left|\begin{array}{ccc}
-a b c & a b^2+a b c & a c^2+a b c \\
a^2 b+a b c & -a b c & c^2 b+a b c \\
a^2 c+a b c & b^2 c+a b c & -a b c
\end{array}\right|\) \(\left[R_1 \rightarrow a R_1, R_2 \rightarrow b R_2 \text { and } R_3 \rightarrow c R_3 \text { and so divide the det. by } a b c\right]\)

= \(\left(\frac{a b c}{a b c}\right)\left|\begin{array}{ccc}
-b c & a b+a c & a c+a b \\
a b+b c & -a c & b c+a b \\
a c+b c & b c+a c & -a b
\end{array}\right|\)

[taking out a, b, c common from C1, C2, C3 respectively]

= \(\left|\begin{array}{ccc}
a b+b c+a c & a b+b c+a c & a b+b c+a c \\
a b+b c & -a c & b c+a b \\
a c+b c & b c+a c & -a b
\end{array}\right|\)

\(\left[R_1 \rightarrow\left(R_1+R_2+R_3\right)\right]\)

= \((a b+b c+a c) \cdot\left|\begin{array}{ccc}
1 & 1 & 1 \\
a b+b c & -a c & b c+a b \\
a c+b c & b c+a c & -a b
\end{array}\right|\)

= \((a b+b c+a c) \cdot\left|\begin{array}{ccc}
0 & 0 & 1 \\
0 & -(a b+b c+a c) & b c+a b \\
(a b+b c+a c) & (a b+b c+a c) & -a b
\end{array}\right|\)

\(\left[C_1 \rightarrow\left(C_1-C_3\right) \text { and } C_2 \rightarrow\left(C_2-C_3\right)\right]\)

= \((a b+b c+a c)^3\) [expanding by R1].

Example 29 Show that \(\left|\begin{array}{lll}
x+1 & x+2 & x+a \\
x+2 & x+3 & x+b \\
x+3 & x+4 & x+c
\end{array}\right|=0\), where a, b, c are in AP.

Solution

Since a, b, c are in AP, we have 2b = (a + c)

Let the given determinant be △. Then,

applying \(R_1 \rightarrow R_1+R_3-2 R_2\), we get

△ = \(\left|\begin{array}{ccc}
0 & 0 & (a+c)-2 b \\
x+2 & x+3 & x+b \\
x+3 & x+4 & x+c
\end{array}\right|\)

= \(\left|\begin{array}{lcc}
0 & 0 & 0 \\
x+2 & x+3 & x+b \\
x+3 & x+4 & x+c
\end{array}\right|\)

[∵ (a+c) – 2b = 0]

= 0 [expanded by R1].

Hence, △ = 0.

Example 30 Prove that \(\left|\begin{array}{lll}
b+c & c+a & a+b \\
c+a & a+b & b+c \\
a+b & b+c & c+a
\end{array}\right|=2(a+b+c)\left(a b+b c+c a-a^2-b^2-c^2\right)\)

Solution

Let the given determinant be △. Then,

△ = \(\left|\begin{array}{lll}
b+c & c+a & a+b \\
c+a & a+b & b+c \\
a+b & b+c & c+a
\end{array}\right|\)

= \(\left|\begin{array}{ccc}
2(a+b+c) & 2(a+b+c) & 2(a+b+c) \\
c+a & a+b & b+c \\
a+b & b+c & c+a
\end{array}\right|\)

\(\left[R_1 \rightarrow\left(R_1+R_2+R_3\right)\right]\)

= \(2(a+b+c) \cdot\left|\begin{array}{ccc}
1 & 1 & 1 \\
c+a & a+b & b+c \\
a+b & b+c & c+a
\end{array}\right|\)

= \(2(a+b+c) \cdot\left|\begin{array}{ccc}
1 & 0 & 0 \\
c+a & b-c & b-a \\
a+b & c-a & c-b
\end{array}\right|\)

\(\left[\begin{array}{l}
C_2 \rightarrow\left(C_2-C_1\right) \text { and } \\
C_3 \rightarrow\left(C_3-C_1\right)
\end{array}\right]\)

= \(2(a+b+c) \cdot 1 \cdot\left|\begin{array}{ll}
b-c & b-a \\
c-a & c-b
\end{array}\right|\)

2(a+b+c).[(b-c)(c-b)-(c-a)(b-a)]

= \(2(a+b+c)\left(a b+b c+c a-a^2-b^2-c^2\right)\)

Hence, △ = \(2(a+b+c)\left(a b+b c+c a-a^2-b^2-c^2\right)\)

Example 31 Prove that \(\left|\begin{array}{ccc}
a^2+1 & a b & a c \\
a b & b^2+1 & b c \\
c a & c b & c^2+1
\end{array}\right|=\left(1+a^2+b^2+c^2\right)\)

Solution

Let the given determinant be △. Then,

△ = \(\left|\begin{array}{ccc}
a\left(a+\frac{1}{a}\right) & a b & a c \\
a b & \left(b+\frac{1}{b}\right) b & b c \\
a c & c b & \left(c+\frac{1}{c}\right) c
\end{array}\right|\)

= \((a b c) \cdot\left|\begin{array}{ccc}
a+\frac{1}{a} & a & a \\
b & b+\frac{1}{b} & b \\
c & c & c+\frac{1}{c}
\end{array}\right|\)

[taking a, b, c common from C1, C2, C3 respectively]

= \(\frac{(a b c)}{(a b c)} \cdot\left|\begin{array}{ccc}
a^2+1 & a^2 & a^2 \\
b^2 & b^2+1 & b^2 \\
c^2 & c^2 & c^2+1
\end{array}\right|\)

= \(\left|\begin{array}{ccc}
1+a^2+b^2+c^2 & 1+a^2+b^2+c^2 & 1+a^2+b^2+c^2 \\
b^2 & b^2+1 & b^2 \\
c^2 & c^2 & c^2+1
\end{array}\right|\)

\(\text { \{by } R_1 \rightarrow R_1+R_2+R_3 \text { \} }\)

= \(\left(1+a^2+b^2+c^2\right) \cdot\left|\begin{array}{ccc}
1 & 1 & 1 \\
b^2 & b^2+1 & b^2 \\
c^2 & c^2 & c^2+1
\end{array}\right|\)

[taking out (1 + a^2 + b^2 + c^2) common from R1]

= \(\left(1+a^2+b^2+c^2\right) \cdot\left|\begin{array}{ccc}
1 & 0 & 0 \\
b^2 & 1 & 0 \\
c^2 & 0 & 1
\end{array}\right|\)

\(\text { (by } C_2 \rightarrow C_2-C_1 \text { and } C_3 \rightarrow C_3-C_1 \text { ) }\)

= \(\left(1+a^2+b^2+c^2\right) \cdot 1 \cdot\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|\) {expanded by R1}

= \(\left(1+a^2+b^2+c^2\right) \cdot 1 \cdot(1-0)=\left(1+a^2+b^2+c^2\right) .\)

Example 32 If A + B + C = π, show that \(\left|\begin{array}{lll}
\sin ^2 A & \sin A \cos A & \cos ^2 A \\
\sin ^2 B & \sin B \cos B & \cos ^2 B \\
\sin ^2 C & \sin C \cos C & \cos ^2 C
\end{array}\right|=-\sin (A-B) \sin (B-C) \sin (C-A)\)

Solution

The given determinant

= \(\left|\begin{array}{lll}
1 & (1 / 2) \sin 2 A & (1 / 2)(1+\cos 2 A) \\
1 & (1 / 2) \sin 2 B & (1 / 2)(1+\cos 2 B) \\
1 & (1 / 2) \sin 2 C & (1 / 2)(1+\cos 2 C)
\end{array}\right|\)

\(\left[C_1 \rightarrow C_1+C_3\right]\)

= \(\frac{1}{4} \cdot\left|\begin{array}{ccc}
1 & \sin 2 A & 1+\cos 2 A \\
1 & \sin 2 B & 1+\cos 2 B \\
1 & \sin 2 C & 1+\cos 2 C
\end{array}\right|\)

= \(\frac{1}{4} \cdot\left|\begin{array}{ccc}
1 & \sin 2 A & 1+\cos 2 A \\
0 & \sin 2 B-\sin 2 A & \cos 2 B-\cos 2 A \\
0 & \sin 2 C-\sin 2 A & \cos 2 C-\cos 2 A
\end{array}\right|\)

\(\left\{\begin{array}{l}
R_2 \rightarrow R_2-R_1 \\
R_3 \rightarrow R_3-R_1
\end{array}\right\}\)

= \(\frac{1}{4} \cdot\left|\begin{array}{ccc}
1 & \sin 2 A & 1+\cos 2 A \\
0 & 2 \cos (A+B) \sin (B-A) & 2 \sin (A+B) \sin (A-B) \\
0 & 2 \cos (A+C) \sin (C-A) & 2 \sin (A+C) \sin (A-C)
\end{array}\right|\)

= \(\sin (A-B) \sin (A-C) \cdot\left|\begin{array}{ccc}
1 & \sin 2 A & 1+\cos 2 A \\
0 & -\cos (A+B) & \sin (A+B) \\
0 & -\cos (A+C) & \sin (A+C)
\end{array}\right|\)

[taking 2sin(A – B) and 2sin(A – C) common factors from R2 and R3 respectively]

= \(\sin (A-B) \sin (A-C) \cdot\left|\begin{array}{ccc}
1 & \sin 2 A & 1+\cos 2 A \\
0 & -\cos (\pi-C) & \sin (\pi-C) \\
0 & -\cos (\pi-B) & \sin (\pi-B)
\end{array}\right|\) [∵ A + B + C = π]

= \(\sin (A-B) \sin (A-C)\left|\begin{array}{ccc}
1 & \sin 2 A & 1+\cos 2 A \\
0 & \cos C & \sin C \\
0 & \cos B & \sin B
\end{array}\right|\)

= sin(A – B)sin(A – C)[sin B cos C – cos B sin C]

= sin(A – B)sin(A – C)sin(B – C)

= -sin(A – B)sin(B – C)sin(C – A).

Example 33 If A + B + C = π, prove that \(\left|\begin{array}{ccc}
\sin (A+B+C) & \sin (A+C) & \cos C \\
-\sin B & 0 & \tan A \\
\cos (A+B) & \tan (B+C) & 0
\end{array}\right|=0\)

Solution

Let the given determinant be △. Then,

△ = \(\left|\begin{array}{ccc}
\sin (A+B+C) & \sin (A+C) & \cos C \\
-\sin B & 0 & \tan A \\
\cos (A+B) & \tan (B+C) & 0
\end{array}\right|\)

= \(\left|\begin{array}{ccc}
\sin \pi & \sin (\pi-B) & \cos C \\
-\sin B & 0 & \tan A \\
\cos (\pi-C) & \tan (\pi-A) & 0
\end{array}\right|\)

= \(\left|\begin{array}{ccc}
0 & \sin B & \cos C \\
-\sin B & 0 & \tan A \\
-\cos C & -\tan A & 0
\end{array}\right|\) {∵ sin π = 0, sin(π – B) = sin B; cos(π – C) = -cos C, tan(π – A) = tan A}

= \(\sin B \cdot\left|\begin{array}{cc}
\sin B & \cos C \\
-\tan A & 0
\end{array}\right|-\cos C \cdot\left|\begin{array}{cc}
\sin B & \cos C \\
0 & \tan A
\end{array}\right|\)

= (sin B.tan A cos C – sin B tan A. cos C) = 0.

Example 34 Prove that \(\left|\begin{array}{ccc}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha
\end{array}\right|=1\)

Solution

Let the given determinant be △. Then,

△ = \(\left|\begin{array}{ccc}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha
\end{array}\right|\)

= \(\frac{1}{\sin \alpha \cos \alpha} \cdot\left|\begin{array}{ccc}
\sin \alpha \cos \alpha \cos \beta & \sin \alpha \cos \alpha \sin \beta & -\sin ^2 \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \alpha \cos \beta & \sin \alpha \cos \alpha \sin \beta & \cos ^2 \alpha
\end{array}\right|\)

[multiplying R1 by sin α, R3 by cos α and dividing △ by sin α cos α]

= \(\frac{1}{\sin \alpha \cos \alpha} \cdot\left|\begin{array}{ccc}
0 & 0 & -1 \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \alpha \cos \beta & \sin \alpha \cos \alpha \sin \beta & \cos ^2 \alpha
\end{array}\right|\)

\(\left[R_1 \rightarrow\left(R_1-R_3\right)\right]\)

= \(\frac{-1}{\sin \alpha \cos \alpha} \cdot\left[-\sin \alpha \cos \alpha \sin ^2 \beta-\sin \alpha \cos \alpha \cos ^2 \beta\right]\)

= \(\frac{-1}{\sin \alpha \cos \alpha} \cdot(-\sin \alpha \cos \alpha)\left[\sin ^2 \beta+\cos ^2 \beta\right]=1\)

Example 35 Prove that \(\left|\begin{array}{ccc}
x & \sin \theta & \cos \theta \\
-\sin \theta & -x & 1 \\
\cos \theta & 1 & x
\end{array}\right|\) is independent of θ.

Solution

Let the given determinant be △. Then,

△ = \(\left|\begin{array}{ccc}
x & \sin \theta & \cos \theta \\
-\sin \theta & -x & 1 \\
\cos \theta & 1 & x
\end{array}\right|\)

= \(x\left(-x^2-1\right)-\sin \theta(-x \sin \theta-\cos \theta)+\cos \theta(-\sin \theta+x \cos \theta)\)

= \(-x^3-x+x\left(\sin ^2 \theta+\cos ^2 \theta\right)=-x^3-x+x=-x^3\), which is independent of θ.

Example 36 Using properties of determinants, prove that \(\left|\begin{array}{lll}
b+c & q+r & y+z \\
c+a & r+p & z+x \\
a+b & p+q & x+y
\end{array}\right|=2\left|\begin{array}{lll}
a & p & x \\
b & q & y \\
c & r & z
\end{array}\right| .\)

Solution

We have

LHS = \(\left|\begin{array}{lll}
b+c & q+r & y+z \\
c+a & r+p & z+x \\
a+b & p+q & x+y
\end{array}\right|\)

= \(2\left|\begin{array}{ccc}
a+b+c & p+q+r & x+y+z \\
c+a & r+p & z+x \\
a+b & p+q & x+y
\end{array}\right|\)

\(\left[R_1 \rightarrow\left(R_1+R_2+R_3\right) \text { and taking } 2 \text { common }\right]\)

= \(2\left|\begin{array}{ccc}
a+b+c & p+q+r & x+y+z \\
-b & -q & -y \\
-c & -r & -z
\end{array}\right|\)

\(\left[\begin{array}{r}
R_2 \rightarrow\left(R_2-R_1\right) \\
\text { and } R_3 \rightarrow\left(R_3-R_1\right)
\end{array}\right]\)

= \(2\left|\begin{array}{ccc}
a & p & x \\
-b & -q & -y \\
-c & -r & -z
\end{array}\right|\)

\(\left[R_1 \rightarrow\left(R_1+R_2+R_3\right)\right]\)

= \(2(-1) \cdot(-1) \cdot\left|\begin{array}{lll}
a & p & x \\
b & q & y \\
c & r & z
\end{array}\right|\)

[taking (-1) common from each one of R2 and R3]

= \(2\left|\begin{array}{lll}
a & p & x \\
b & q & y \\
c & r & z
\end{array}\right|\) = RHS.

Hence, LHS = RHS.

Example 37 Without expanding the determinant, prove that \(\left|\begin{array}{lll}
a & a^2 & b c \\
b & b^2 & c a \\
c & c^2 & a b
\end{array}\right|=\left|\begin{array}{lll}
1 & a^2 & a^3 \\
1 & b^2 & b^3 \\
1 & c^2 & c^3
\end{array}\right| .\)

Solution

We have

LHS = \(\left|\begin{array}{lll}
a & a^2 & b c \\
b & b^2 & c a \\
c & c^2 & a b
\end{array}\right|\)

= \(\frac{1}{a b c} \cdot\left|\begin{array}{lll}
a^2 & a^3 & a b c \\
b^2 & b^3 & a b c \\
c^2 & c^3 & a b c
\end{array}\right|\)

\(\left[R_1 \rightarrow a R_1, R_2 \rightarrow b R_2, R_3 \rightarrow c R_3 \text { and dividing the whole det. by } a b c\right]\)

= \(\frac{1}{a b c} \cdot a b c=\left|\begin{array}{lll}
a^2 & a^3 & 1 \\
b^2 & b^3 & 1 \\
c^2 & c^3 & 1
\end{array}\right|\) [taking abc common from C3]

= \(\left|\begin{array}{lll}
1 & a^2 & a^3 \\
1 & b^2 & b^3 \\
1 & c^2 & c^3
\end{array}\right|\)

\(\left[C_2 \leftrightarrow C_3 \text { and } C_1 \leftrightarrow C_2\right]\)

= RHS.

Hence, LHS = RHS.

Comparative Analysis of Different Types of Matrices and Their Determinants

Example 38 Solve for x: \(\left|\begin{array}{lll}
a+x & a-x & a-x \\
a-x & a+x & a-x \\
a-x & a-x & a+x
\end{array}\right|=0 .\)

Solution

Let the given determinant be △. Then,

△ = \(\left|\begin{array}{lll}
a+x & a-x & a-x \\
a-x & a+x & a-x \\
a-x & a-x & a+x
\end{array}\right|\)

= \(\left|\begin{array}{lll}
3 a-x & a-x & a-x \\
3 a-x & a+x & a-x \\
3 a-x & a-x & a+x
\end{array}\right|\)

\(\left[C_1 \rightarrow\left(C_1+C_2+C_3\right)\right]\)

= \((3 a-x) \cdot\left|\begin{array}{lll}
1 & a-x & a-x \\
1 & a+x & a-x \\
1 & a-x & a+x
\end{array}\right|\) [taking (3a – x) common from C1]

= \((3 a-x) \cdot\left|\begin{array}{ccc}
1 & a-x & a-x \\
0 & 2 x & 0 \\
0 & 0 & 2 x
\end{array}\right|\)

\(\left[R_2 \rightarrow\left(R_2-R_1\right) \text { and } R_3 \rightarrow\left(R_3-R_1\right)\right]\)

= \((3 a-x) \cdot 1 \cdot\left|\begin{array}{cc}
2 x & 0 \\
0 & 2 x
\end{array}\right|\) [expanding by C1]

= 4(3 a-x) x^2

∴ △ = 0 ⇔ 4(3 a-x) x^2=0

⇔ x = 0 or x = 3a.

Example 39 Solve \(\left|\begin{array}{lll}
x-2 & 2 x-3 & 3 x-4 \\
x-4 & 2 x-9 & 3 x-16 \\
x-8 & 2 x-27 & 3 x-64
\end{array}\right|=0 .\)

Solution

Let the given determinant be △. Then,

△ = \(\left|\begin{array}{lll}
x-2 & 2 x-3 & 3 x-4 \\
x-4 & 2 x-9 & 3 x-16 \\
x-8 & 2 x-27 & 3 x-64
\end{array}\right|\)

= \(\left|\begin{array}{rrr}
x-2 & 1 & 2 \\
x-4 & -1 & -4 \\
x-8 & -11 & -40
\end{array}\right|\)

\(\left[C_2 \rightarrow\left(C_2-2 C_1\right), C_3 \rightarrow\left(C_3-3 C_1\right)\right]\)

= \(\left|\begin{array}{crr}
x-2 & 1 & 2 \\
-2 & -2 & -6 \\
-6 & -12 & -42
\end{array}\right|\)

\(\left[R_2 \rightarrow\left(R_2-R_1\right), R_3 \rightarrow\left(R_3-R_1\right)\right]\)

= \((-2) \cdot(-6) \cdot\left|\begin{array}{ccc}
x-2 & 1 & 2 \\
1 & 1 & 3 \\
1 & 2 & 7
\end{array}\right|\)

= \(\text { 12. }\left|\begin{array}{ccc}
x-3 & 1 & 2 \\
0 & 1 & 3 \\
-1 & 2 & 7
\end{array}\right|\)

\(\left[C_1 \rightarrow\left(C_1-C_2\right)\right]\)

= 12.[(x-3)(7-6) – 1.(3-2)]

= 12.(x-4).

∴ △ = 0 ⇔ 12(x-4) = 0 ⇔ x = 4.

Hence, solution set = {4}.

Example 40 If a + b + c = 0 and \(\left|\begin{array}{ccc}
a-x & c & b \\
c & b-x & a \\
b & a & c-x
\end{array}\right|=0\) then show that x = 0 or \(x=\sqrt{(3 / 2)\left(a^2+b^2+c^2\right)} .\)

Solution

Let the given determinant be △. Then,

△ = \(\left|\begin{array}{ccc}
a+b+c-x & c & b \\
a+b+c-x & b-x & a \\
a+b+c-x & a & c-x
\end{array}\right|\)

\(\left[C_1 \rightarrow\left(C_1+C_2+C_3\right)\right]\)

= \((a+b+c-x)\left|\begin{array}{ccc}
1 & c & b \\
1 & b-x & a \\
1 & a & c-x
\end{array}\right|\)

= \((a+b+c-x)\left|\begin{array}{ccc}
1 & c & b \\
0 & b-x-c & a-b \\
0 & a-c & c-x-b
\end{array}\right|\)

\(\left[R_2 \rightarrow\left(R_2-R_1\right) \text { and } R_3 \rightarrow\left(R_3-R_1\right)\right]\)

= (a + b + c – x)[(b – x – c)(c – x – b)-(a – c)(a – b)]

= \((a+b+c-x)\left[x^2-\left(a^2+b^2+c^2-a b-b c-c a\right)\right] .\)

Now, △ = 0 ⇔ \((a+b+c-x)\left[x^2-\left(a^2+b^2+c^2-a b-b c-a c\right)\right]=0\)

⇔ \(x=a+b+c \text { or } x= \pm \sqrt{\left(a^2+b^2+c^2-a b-b c-c a\right)}\)

⇔ \(x=0 \text { or } x= \pm \sqrt{(3 / 2)\left(a^2+b^2+c^2\right)}\)

[∵ a + b + c = 0 ⇔ \(\left(a^2+b^2+c^2\right)\)=\(-2(a b+b c+c a) \Leftrightarrow(a b+b c+c a)=-(1 / 2)\left(a^2+b^2+c^2\right)\)].

Applications of Determinants

Area Of A Triangle In Determinant Form We know that the area of a triangle whose vertices are (x1, y1), (x2,y2) and (x3,y3) is given by

△ = \(\frac{1}{2}\left[x_1\left(y_2-y_3\right)-x_2\left(y_1-y_3\right)+x_3\left(y_1-y_2\right)\right]\)

= \(\frac{1}{2}\left|\begin{array}{lll}
x_1 & y_1 & 1 \\
x_2 & y_2 & 1 \\
x_3 & y_3 & 1
\end{array}\right|\) (in determinant form).

Remark 1 Since area is a positive quantity, we always take the absolute value of the above determinant for the area.

Remark 2. If three points A, B, C are collinear then ar(△ ABC) = 0.

Condition For Collinearity Of Three Points

Let A(x1, y1), B(x2,y2) and C(x3, y3) be three given points.

Then, A, B, C are collinear

⇔ ar(△ ABC) = 0

⇔ \(\frac{1}{2}\left|\begin{array}{lll}
x_1 & y_1 & 1 \\
x_2 & y_2 & 1 \\
x_3 & y_3 & 1
\end{array}\right|=0\) ⇔ \(\left|\begin{array}{lll}
x_1 & y_1 & 1 \\
x_2 & y_2 & 1 \\
x_3 & y_3 & 1
\end{array}\right|=0\)

⇔ \(x_1\left(y_2-y_3\right)+x_2\left(y_3-y_1\right)+x_3\left(y_1-y_2\right)=0 .\)

∴ A, B, C are collinear ⇔ \(x_1\left(y_2-y_3\right)+x_2\left(y_3-y_1\right)+x_3\left(y_1-y_2\right)=0 .\)

Solved Examples

Example 1 Find the area of a triangle whose vertices are A(-2,-3,), B(3,2) and C(-1,-8).

Solution

Here, \(\left(x_1=-2, y_1=-3\right),\left(x_2=3, y_2=2\right) \text { and }\left(x_3=-1, y_3=-8\right) \text {. }\)

∴ \(\frac{1}{2}\left|\begin{array}{lll}
x_1 & y_1 & 1 \\
x_2 & y_2 & 1 \\
x_3 & y_3 & 1
\end{array}\right|=\frac{1}{2} \cdot\left|\begin{array}{rrr}
-2 & -3 & 1 \\
3 & 2 & 1 \\
-1 & -8 & 1
\end{array}\right|\)

= \(\frac{1}{2} \cdot\left|\begin{array}{rrr}
-2 & -3 & 1 \\
5 & 5 & 0 \\
1 & -5 & 0
\end{array}\right|\)

\(\left[R_2 \rightarrow\left(R_2-R_1\right) \text { and } R_3 \rightarrow\left(R_3-R_1\right)\right]\)

= \(\frac{1}{2} \cdot 1 \cdot\left|\begin{array}{rr}
5 & 5 \\
1 & -5
\end{array}\right|=\frac{1}{2} \times(-25-5)=-15 .\)

Hence, ar(△ ABC) = |-15| = 15 square units.

Example 2 Show that the points A(a, b+c), B(b, c+a) and C(c, a+b) are collinear.

Solution

Points A, B, C are collinear ⇔ ar(△ ABC) = 0.

Now, ar(△ ABC) = \(\frac{1}{2} \cdot\left|\begin{array}{lll}
a & b+c & 1 \\
b & c+a & 1 \\
c & a+b & 1
\end{array}\right|\)

= \(\frac{1}{2} \cdot\left|\begin{array}{lll}
a & a+b+c & 1 \\
b & a+b+c & 1 \\
c & a+b+c & 1
\end{array}\right|\)

\(\left[C_2 \rightarrow\left(C_2+C_1\right)\right]\)

= \(\frac{1}{2}(a+b+c) \cdot\left|\begin{array}{lll}
a & 1 & 1 \\
b & 1 & 1 \\
c & 1 & 1
\end{array}\right|\)

= \(\frac{1}{2}(a+b+c) \times 0=0\) [∵ C2 and C3 are identical].

Example 3 If the points (a, b), (a’, b’) and (a-a’, b-b’) are collinear, show that ab’ = a’b.

Solution

The given points are collinear

⇔ \(\left|\begin{array}{ccc}
a & b & 1 \\
a^{\prime} & b^{\prime} & 1 \\
a-a^{\prime} & b-b^{\prime} & 1
\end{array}\right|=0\)

⇔ \(\left|\begin{array}{ccc}
a & b & 1 \\
a^{\prime}-a & b^{\prime}-b & 0 \\
-a^{\prime} & -b^{\prime} & 0
\end{array}\right|=0\)

\(\left[R_2 \rightarrow R_2-R_1 \text { and } R_3 \rightarrow R_3-R_1\right]\)

⇔ \(\text { 1. }\left[\left(a^{\prime}-a\right)\left(-b^{\prime}\right)+a^{\prime}\left(b^{\prime}-b\right)\right]=0\)

[expanding by C3]

⇔ ab’ – a’b = 0

⇔ ab’ = a’b.

Example 4 Find the value of k in order that the points (5,5), (k,1) and (10,7) are collinear.

Solution

The given points are collinear

⇔ \(\left|\begin{array}{rrr}
5 & 5 & 1 \\
k & 1 & 1 \\
10 & 7 & 1
\end{array}\right|=0\)

⇔ \(\left|\begin{array}{crc}
5 & 5 & 1 \\
k-5 & -4 & 0 \\
5 & 2 & 0
\end{array}\right|=0\)

\(\left[R_2 \rightarrow R_2-R_1 \text { and } R_3 \rightarrow R_3-R_1\right]\)

⇔ 1.[2(k-5) + 20] = 0

⇔ 2k + 10 = 0 ⇔ k = -5.

The value of k = -5.

Example 5 Let A(1,3), B(0,0) and C(k,0) be three points such that ar(△ ABC) = 3 sq units. Find the value of k.

Solution

We have

ar(△ ABC) = 3 sq units

⇔ \(\frac{1}{2} \cdot\left|\begin{array}{lll}
1 & 3 & 1 \\
0 & 0 & 1 \\
k & 0 & 1
\end{array}\right|= \pm 3\) ⇔ \(\left|\begin{array}{lll}
1 & 3 & 1 \\
0 & 0 & 1 \\
k & 0 & 1
\end{array}\right|= \pm 6\)

⇔\((-1) \cdot\left|\begin{array}{ll}
1 & 3 \\
k & 0
\end{array}\right|= \pm 6\) ⇔ 3k = ±6 ⇔ k = ±2.

Hence, k = ±2.

The value of k = ±2.

Example 6 Find the equation of the line joining the points A(1,2) and B(3,6), using determinants.

Solution

Let P(x,y) be a point on AB.

Then, the points A, P and B are collinear.

∴ ar(△ APB) = 0

⇒ \(\frac{1}{2} \cdot\left|\begin{array}{lll}
1 & 2 & 1 \\
x & y & 1 \\
3 & 6 & 1
\end{array}\right|=0\) ⇒ \(\left|\begin{array}{lll}
1 & 2 & 1 \\
x & y & 1 \\
3 & 6 & 1
\end{array}\right|=0\)

⇒ \(\left|\begin{array}{rrr}
1 & 2 & 1 \\
x & y & 1 \\
0 & 0 & -2
\end{array}\right|=0\)

\(\left[R_3 \rightarrow R_3-3 R_1\right]\)

⇒ \((-2) \cdot\left|\begin{array}{ll}
1 & 2 \\
x & y
\end{array}\right|=0\) ⇒ (y-2x) = 0 ⇒ y = 2x.

Hence, the required equation is y = 2x.

The equation of the line joining the points y = 2x.

WBCHSE Solutions For Class 12 Maths

Relations and Functions

Algebra

Differential Calculus

WBCHSE Solutions For Class 12 Maths

Integral Calculus

Differential Equations

Vector Algebra

3D Geometry

Probability

Linear Programming

WBCHSE Class 12 Maths Solutions For Inverse Trigonometric Functions

Chapter 4 Inverse Trigonometric Functions

Invertible Functions A one-one onto function is called an invertible function.

Inverse Of A Function Let f: X → Y be a one-one onto function. Then, for each y ∈ Y, there exists a unique element x ∈ X such that f(x) = y.

So, we define a new function, denoted by f-1, called the inverse of f, as f-1: Y → X: f-1(y) = x ⇔ f(x) = y.

Clearly, domain(f-1) = range(f) and range (f-1) = domain (f).

Trigonometric functions are, in general, not one-on-one.

Therefore, their inverses do not exist.

However, if we restrict their domains, we can make them one-on-one, enabling us to have their inverses.

WBCHSE Class 12 Maths Solutions For Inverse Trigonometric Functions

Example The sine function restricted to any of the intervals [-π/2, π/2], [3π/2, 5π/2], etc., is one-one onto, and in each case, the range is [-1,1].

Therefore, we can define the inverse of the sine function, denoted by sin-1x, in each of these intervals. Corresponding to each such interval, we get a branch of sin-1x.

The branch [-π/2. π/2], is called the principal-value branch and the value belonging to it is called the principal value.

We denote the inverse of the sine function as sin-1x, called sine inverse x.

∴ sin-1: [-1,1] → \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\) and sin-1x = θ ⇔ x = sin θ.

Thus, sin-1x is a function whose domain is [-1,1] and range is \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\).

Note that sin-1x does not mean (sin x)-1.

Similarly, we can define the principal-value branches of the remaining five trigonometrical functions.

The following table shows the inverse trigonometric functions and their principal-value branches.

Read and Learn More  Class 12 Math Solutions

Class 12 Maths Inverse Trigonometric Function

Solved Examples

Example 1 Find the principal value of each of the following:

(1) \(\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)\)

(2) \(\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)\)

(3) tan-1(√3)

(4) cosec-1(2)

Solution

(1) We know that the range of the principal-value branch of sin-1 is \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\).

Let \(\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)\) = θ. Then,

Sin θ = \(\frac{1}{\sqrt{2}}=\sin \frac{\pi}{4} \Rightarrow \theta=\frac{\pi}{4} \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] \text {. }\)

Hence, the principal value of \(\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)\) is \(\frac{\pi}{4}\).

(2) We know that the range of the principal-value branch of cos-1 is [0, π].

Let \(\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)\) = θ. Then,

\(\cos \theta=\frac{\sqrt{3}}{2}=\cos \frac{\pi}{6} \Rightarrow \theta=\frac{\pi}{6} \in[0, \pi] .\)

Hence, the principal value of \(\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)\) is \(\frac{\pi}{6}\).

(3) We know that the range of the principal-value branch of tan-1 is \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\).

Let tan-1(√3) = θ. Then,

\(\tan \theta=\sqrt{3}=\tan \frac{\pi}{3} \Rightarrow \theta=\frac{\pi}{3} \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right) .\)

Hence, the principal value of tan-1(√3) is \(\frac{\pi}{3}\).

(4) We know that the range of the principal-value branch of cosec-1 is \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\) – {0}.

Let cosec-1(2) = θ. Then,

cosec θ = 2 = \({cosec} \frac{\pi}{6} \Rightarrow \theta=\frac{\pi}{6} \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]-\{0\} .\)

Hence, the principal value of cosec-1(2) is \(\frac{\pi}{6}\).

WBBSE Class 12 Inverse Trigonometric Functions Solutions

Example 2 Find the principal value of each of the following:

(1) \(\sin ^{-1}\left(\frac{-1}{2}\right)\)

(2) \(\sin ^{-1}\left(\frac{-\sqrt{3}}{2}\right)\)

(3) \(\tan ^{-1}\left(\frac{-1}{\sqrt{3}}\right)\)

(4) tan-1(-)

(5) cosec-1(-2)

(6) tan-1(-√3)

Solution

(1) We know that the principal-value branch of sin-1 is \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\).

Let \(\sin ^{-1}\left(\frac{-1}{2}\right)\) = θ. Then,

sin θ = \(-\frac{1}{2}=\sin \left(\frac{-\pi}{6}\right), \text { where } \frac{-\pi}{6} \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] \text {. }\)

Hence, the principal value of \(\sin ^{-1}\left(\frac{-1}{2}\right)\) is \(\frac{-\pi}{6} .\)

(2) We know that the principal-value branch of sin-1 is \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\).

Let \(\sin ^{-1}\left(\frac{-\sqrt{3}}{2}\right)\) = θ. Then,

\(\sin \theta=\frac{-\sqrt{3}}{2}=\sin \left(\frac{-\pi}{3}\right) \text {, where } \frac{-\pi}{3} \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] \text {. }\)

Hence, the principal value of \(\sin ^{-1}\left(\frac{-\sqrt{3}}{2}\right)\) is \(\frac{-\pi}{3}\).

(3) We know that the principal-value branch of tan-1 is \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\).

Let \(\tan ^{-1}\left(\frac{-1}{\sqrt{3}}\right)\) = θ. Then,

\(\tan \theta=\frac{-1}{\sqrt{3}}=\tan \left(\frac{-\pi}{6}\right) \text {, where } \frac{-\pi}{6} \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right) \text {. }\)

Hence, the principal value of \(\tan ^{-1}\left(\frac{-1}{\sqrt{3}}\right)\) is \(\frac{-\pi}{6}\).

(4) We know that the principal-value branch of tan-1 is \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\) – {0}.

Let tan-1(-1) = θ. Then,

tan θ = -1 = \(\tan \left(\frac{-\pi}{4}\right) \text {, where } \frac{-\pi}{4} \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right).\)

Hence, the principal value of tan-1(-1) is \(\frac{-\pi}{4}\).

(5) We know that the principal-value branch of cosec-1 is \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\) – {0}.

Let cosec-1(-2) = θ. Then,

cosec θ = -2 = \({cosec}\left(\frac{-\pi}{6}\right), \text { where } \frac{-\pi}{6} \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]-\{0\} \text {. }\)

Hence, the principal value of cosec-1(2) is \(\frac{-\pi}{6}\).

(6) We know that the principal-value branch of tan-1 is \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\).

Let tan-1(-√3) = θ. Then,

tan θ = -√3 = \(\tan \left(\frac{-\pi}{3}\right) \text {, where } \frac{-\pi}{3} \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right) \text {. }\)

Hence, the principal value of tan-1(-√3) is \(\frac{-\pi}{3}\).

Example 3 Find the principal value of each of the following:

(1) \(\cos ^{-1}\left(\frac{-1}{\sqrt{2}}\right)\)

(2) \(\cos ^{-1}\left(\frac{-1}{2}\right)\)

(3) \(\cot ^{-1}\left(\frac{-1}{\sqrt{3}}\right)\)

Solution

(1) We know that the range of the principal value of cos-1 is [0, π].

Let \(\cos ^{-1}\left(\frac{-1}{\sqrt{2}}\right)\) = θ. Then,

\(\cos \theta=\frac{-1}{\sqrt{2}}=-\cos \frac{\pi}{4}=\cos \left(\pi-\frac{\pi}{4}\right)=\cos \frac{3 \pi}{4}\)

∴ \(\theta=\frac{3 \pi}{4} \in[0, \pi]\)

Hence, the principal value of \(\cos ^{-1}\left(\frac{-1}{\sqrt{2}}\right)\) is \(\frac{3 \pi}{4}\).

(2) We know that the range of the principal value of cos-1 is [0, π].

Let \(\cos ^{-1}\left(\frac{-1}{2}\right)\) = θ. Then,

\(\cos \theta=\frac{-1}{2}=-\cos \frac{\pi}{3}=\cos \left(\pi-\frac{\pi}{3}\right)=\cos \frac{2 \pi}{3} .\)

∴ \(\theta=\frac{2 \pi}{3} \in[0, \pi] .\)

Hence, the principal value of \(\cos ^{-1}\left(\frac{-1}{2}\right)\) is \(\frac{2 \pi}{3}\).

(3) We know that the range of the principal value of cot-1 is (0, π).

Let \(\cot ^{-1}\left(\frac{-1}{\sqrt{3}}\right)\) = θ. Then,

\(\cot \theta=\frac{-1}{\sqrt{3}}=-\cot \frac{\pi}{3}=\cot \left(\pi-\frac{\pi}{3}\right)=\cot \frac{2 \pi}{3} .\)

∴ \(\theta=\frac{2 \pi}{3} \in(0, \pi) .\)

Hence, the principal value of \(\cot ^{-1}\left(\frac{-1}{\sqrt{3}}\right)\) is \(\frac{2 \pi}{3}\).

Example 4 Find the principal value of each of the following:

(1) cot-1(-√3)

(2) sec-1(-√2)

(3) cosec-1(-1)

Solution

(1) We know that the range of the principal value of cot-1 is (0, π).

Let cot-1(-√3) = θ. Then,

\(\cot \theta=-\sqrt{3}=-\cot \frac{\pi}{6}=\cot \left(\pi-\frac{\pi}{6}\right)=\cot \frac{5 \pi}{6} .\)

∴ \(\theta=\frac{5 \pi}{6} \in(0, \pi) .\)

Hence, the principal value of cot-1(-√3) is \(\frac{5 \pi}{6}\).

(2) We know that the range of principal value of sec-1 is [0, π] \(– \left\{\frac{\pi}{2}\right\}\).

Let sec-1(-√2) = θ. Then,

\(\sec \theta=-\sqrt{2}=-\sec \frac{\pi}{4}=\sec \left(\pi-\frac{\pi}{4}\right)=\sec \frac{3 \pi}{4} .\)

∴ \(\theta=\frac{3 \pi}{4} \in[0, \pi]-\left\{\frac{\pi}{2}\right\} .\)

Hence, the principal value of sec-1(-√2) is \(\frac{3 \pi}{4}\).

(3) We know that the range of principal value of cosec-1 is \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\) – {0}.

Let cosec-1(-1) = θ. Then, cosec θ = -1.

cosec θ = -1 = \(-{cosec} \frac{\pi}{2}={cosec}\left(\frac{-\pi}{2}\right)\)

∴ \(\theta=\frac{-\pi}{2} \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]-\{0\} .\)

Hence, the principal value of cosec-1(-1) is \(\frac{-\pi}{2}\).

Step-by-Step Solutions to Inverse Trigonometric Problems

Example 5 Find the value of \(\cos ^{-1}\left(\frac{1}{2}\right)+2 \sin ^{-1}\left(\frac{1}{2}\right)\)

Solution:

Given:

\(\cos ^{-1}\left(\frac{1}{2}\right)+2 \sin ^{-1}\left(\frac{1}{2}\right)\)

We know that the ranges of principal values of cos-1 and sin-1 are [0, π] and \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\) respectively.

Let \(\cos ^{-1}\left(\frac{1}{2}\right)\) = θ1. Then,

\(\cos \theta_1=\frac{1}{2}=\cos \frac{\pi}{3} \Rightarrow \theta_1=\frac{\pi}{3} \in[0, \pi] .\)

Let \(\sin ^{-1}\left(\frac{1}{2}\right)\) = θ2. Then,

\(\sin \theta_2=\frac{1}{2}=\sin \frac{\pi}{6} \Rightarrow \theta_2=\frac{\pi}{6} \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\)

∴ \(\cos ^{-1}\left(\frac{1}{2}\right)+2 \sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}+\left(2 \times \frac{\pi}{6}\right)=\left(\frac{\pi}{3}+\frac{\pi}{3}\right)=\frac{2 \pi}{3} \text {. }\)

Example 6 Find the value of \(\tan ^{-1}(1)+\cos ^{-1}\left(\frac{-1}{2}\right)+\sin ^{-1}\left(\frac{-1}{2}\right) \text {. }\)

Solution

Given

\(\tan ^{-1}(1)+\cos ^{-1}\left(\frac{-1}{2}\right)+\sin ^{-1}\left(\frac{-1}{2}\right) \text {. }\)

We know that the ranges of principal values of tan-1, cos-1 and sin-1 are \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\), [0, π] and \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\) respectively.

Let tan-1(1) = θ1. Then,

\(\tan \theta_1=1=\tan \frac{\pi}{4} \Rightarrow \theta_1=\frac{\pi}{4} \in[0, \pi]\)

Let \(\cos ^{-1}\left(\frac{-1}{2}\right)\) = θ2. Then,

\(\cos \theta_2=\frac{-1}{2}=-\cos \frac{\pi}{3}=\cos \left(\pi-\frac{\pi}{3}\right)=\cos \frac{2 \pi}{3} .\)

∴ \(\theta_2=\frac{2 \pi}{3} \in[0, \pi] .\)

Let \(\sin ^{-1}\left(\frac{-1}{2}\right)\) = θ3. Then,

\(\sin \theta_3=\frac{-1}{2}=-\sin \frac{\pi}{6}=\sin \left(\frac{-\pi}{6}\right) \Rightarrow \theta_3=\frac{-\pi}{6} \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] .\)

∴ \(\tan ^{-1}(1)+\cos ^{-1}\left(\frac{-1}{2}\right)+\sin ^{-1}\left(\frac{-1}{2}\right)=\left(\frac{\pi}{4}+\frac{2 \pi}{3}-\frac{\pi}{6}\right)=\frac{3 \pi}{4}\)

Example 7 Find the value of tan-1√3 – sec-1(-2).

Solution

Given

tan-1√3 – sec-1(-2)

We know that the ranges of principal values of tan-1 and sec-1 are \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\) and [0, π] – \(\left\{\frac{\pi}{2}\right\}\) respectively.

Let tan-1√3 = θ1. Then,

\(\tan \theta_1=\sqrt{3}=\tan \frac{\pi}{3} \Rightarrow \theta_1=\frac{\pi}{3} \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)\)

Let sec-1(-2) = θ2. Then,

\(\sec \theta_2=-2=-\sec \frac{\pi}{3}=\sec \left(\pi-\frac{\pi}{3}\right)=\sec \frac{2 \pi}{3}\)

∴ \(\theta_2=\frac{2 \pi}{3} \in[0, \pi]-\left\{\frac{\pi}{2}\right\} .\)

Hence, tan-1√3 – sec-1(-2) = \(\left(\frac{\pi}{3}-\frac{2 \pi}{3}\right)=\frac{-\pi}{3} .\)

Properties Of Inverse Functions

Theorem 1 Prove that:

(1) sin-1(sin x) = x, x ∈ \(\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\)

(2) cos-1(cos x) = x, x ∈ [0, π]

(3) tan-1(tan x) = x, x ∈ \(\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\)

(4) cosec-1(cosec x) = x, x ∈ \(\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\) – {0}

(5) sec-1(sec x) = x, x ∈ [0, π] – \(\left\{\frac{\pi}{2}\right\}\)

(6) cot-1(cot x) = x, x ∈ (0, π)

Proof

(1) Let sin x = y, where x ∈ \(\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\).

Then, sin-1y = x ⇒ sin-1(sin x) = x [∵ y = sin x]

∴ sin-1(sin x) = x.

(2) Let cos x = y, where x x ∈ [0, π].

Then, cos-1y = x ⇒ cos-1(cos x) = x [∵ y = cos x].

∴ cos-1(cos x) = x.

Similarly, the other results may be proved.

Theorem 2 Prove that:

(1) sin(sin-1x) = x, x ∈ [-1,1]

(2) cos(cos-1x) = x, x ∈ [-1,1]

(3) tan(tan-1x) = x, x ∈ R

(4) cosec(cosec-1x) = x, x ∈ R – [-1,1]

(5) sec(sec-1x) = x, x ∈ R – [-1,1]

(6) cot(cot-1x) = x, x ∈ R

Proof

(1) Let sin-1x = θ, where x ∈ [-1,1].

Then, sin θ = x ⇒ sin(sin-1x) = x [∵ θ = sin-1 x].

∴ sin(sin-1x) = x.

(2) Let cos-1x = θ, where x ∈ [-1,1]

Then, cos θ = x ⇒ cos(cos-1x) = x [∵ θ = cos-1 x].

∴ cos(cos-1x) = x.

Similarly, the other results may be proved.

Theorem 3 Prove that:

(1) \(\sin ^{-1} \frac{1}{x}={cosec}^{-1} x\), (x ≥ 1 or x ≤ -1)

(2) \(\cos ^{-1} \frac{1}{x}=\sec ^{-1} x\), (x ≥ 1 or x ≤ -1)

(3) \(\tan ^{-1} \frac{1}{x}=\cot ^{-1} x\), (x > 0)

Proof

(1) \(\sin ^{-1} \frac{1}{x}\) = θ ⇒ sin θ = \(\frac{1}{2}\)

⇒ cosec θ = x

⇒ θ = cosec-1x

⇒ \(\sin ^{-1} \frac{1}{x}={cosec}^{-1} x\).

Hence, \(\sin ^{-1} \frac{1}{x}={cosec}^{-1} x\).

(2) \(\cos ^{-1} \frac{1}{x} = θ ⇒ cos θ = \frac{1}{x}\)

⇒ sec θ = x

⇒ θ = sec-1x

⇒ \(\cos ^{-1} \frac{1}{x}=\sec ^{-1} x\).

Hence, \(\cos ^{-1} \frac{1}{x}=\sec ^{-1} x\).

(3) \(\tan ^{-1} \frac{1}{x}\) = θ ⇒ tan θ = \(\frac{1}{x}\)

⇒ cot θ = x

⇒ θ = cot-1x

⇒ \(\tan ^{-1} \frac{1}{x}=\cot ^{-1} x\).

Hence, \(\tan ^{-1} \frac{1}{x}=\cot ^{-1} x\).

Theorem 4 Prove that:

(1) sin-1(-x) = -sin-1x, x ∈ [-1,1]

(2) tan-1(-x) = -tan-1x, x ∈ R

(3) cosec-1(-x) = -cosec-1x, |x| ≥ 1

Proof

(1) Let sin-1(-x) = θ. Then,

sin-1(-x) = θ ⇒ -x = sin θ

⇒ x = -sin θ = sin(-θ)

⇒ -θ = sin-1x

⇒ θ = -sin-1x

⇒ sin-1(-x) = -sin-1x.

∴ sin-1(-x) = -sin-1x.

Similarly, the other results may be proved.

Theorem 5 Prove that:

(1) cos-1(-x) = π – cos-1x, x ∈ [-1,1]

(2) sec-1(-x) = π – sec-1x, |x| ≥ 1

(3) cot-1(-x) = π – cot-1x, x ∈ R

Proof

(1) Let cos-1(-x) = θ. Then,

cos-1(-x) = θ ⇒ -x = cos θ

⇒ x = -cos θ = cos(π – θ)

⇒ cos-1x = (π – θ) = π – cos-1(-x)

⇒ cos-1(-x) = π – cos-1x.

∴ cos-1(-x) = π – cos-1x.

Similarly, the other results may be proved.

Properties of Inverse Trigonometric Functions Explained

Theorem 6 Prove that:

(1) \(\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}, x \in[-1,1]\)

(2) \(\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}, x \in R\)

(3) \({cosec}^{-1} x+\sec ^{-1} x=\frac{\pi}{2}, \quad|x| \geq 1\)

Proof

(1) Let sin-1x = θ. Then,

sin-1x = θ ⇒ x = sin θ = \(\cos \left(\frac{\pi}{2}-\theta\right)\)

⇒ \(\cos ^{-1} x=\frac{\pi}{2}-\theta\)

⇒ \(\cos ^{-1} x=\frac{\pi}{2}-\sin ^{-1} x\)

⇒ \(\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}\).

∴ \(\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}\).

Similarly, the other results may be proved.

Theorem 7 Prove that:

(1) \(\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right) \text {, if } x y<1\)

(2) \(\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right) \text {, if } x y>-1\)

(3) \(2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^2}\right), \text { if }|x|<1\)

Proof

(1) Let xy < 1, tan-1x = θ and tan-1y = Φ. Then,

tan θ = x and tan Φ = y

⇒ \(\tan (\theta+\phi)=\frac{\tan \theta+\tan \phi}{1-\tan \theta \tan \phi}=\frac{x+y}{1-x y}\)

⇒ \(\theta+\phi=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)\)

⇒ \(\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)\)

∴ \(\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)\).

(2) Let xy > -1.

On replacing y by -y in (1), we get

\(\tan ^{-1} x+\tan ^{-1}(-y)=\tan ^{-1}\left(\frac{x-y}{1+x y}\right)\)

⇒ \(\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right)\).

(3) Let |x| < 1.

Replacing y by x in (1), we get

\(2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^2}\right)\)

Theorem 8 Prove that:

(1) \(2 \tan ^{-1} x=\sin ^{-1}\left(\frac{2 x}{1+x^2}\right),|x|<1\)

(2) \(2 \tan ^{-1} x=\cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right),|x| \geq 0\)

(3) \(2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^2}\right),|x|<1\)

Proof

Let tan-1x = θ. Then x = tan θ.

(1) \(\sin ^{-1}\left(\frac{2 x}{1+x^2}\right)=\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^2 \theta}\right)\) [∵ x = tan θ]

= sin-1(sin 2θ)

= 2θ = 2 tan-1x.

∴ \(2 \tan ^{-1} x=\sin ^{-1}\left(\frac{2 x}{1+x^2}\right)\)

(2) \(\cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right)=\cos ^{-1}\left(\frac{1-\tan ^2 \theta}{1+\tan ^2 \theta}\right)\) [∵ x = tan θ]

= cos-1(cos 2θ)

= 2θ = 2tan-1x.

∴ \(2 \tan ^{-1} x=\cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right)\)

(3) \(\tan ^{-1}\left(\frac{2 x}{1-x^2}\right)=\tan ^{-1}\left(\frac{2 \tan \theta}{1-\tan ^2 \theta}\right)\) [∵ x = tan θ]

= tan-1(tan 2θ)

= 2θ = 2 tan-1x.

∴ \(2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^2}\right)\).

Theorem 9 Prove that \(2 \sin ^{-1} x=\sin ^{-1}\left[2 x \sqrt{1-x^2}\right], \frac{-1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}} .\)

Proof

Given

\(2 \sin ^{-1} x=\sin ^{-1}\left[2 x \sqrt{1-x^2}\right], \frac{-1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}} .\)

Let sin-1x = θ. Then, x = sin θ.

∴ sin 2θ = 2 sinθ cosθ

= \(2 \sin \theta \cdot \sqrt{\left(1-\sin ^2 \theta\right)}\)

= \(2 x \sqrt{1-x^2}\)

⇒ \(2 \theta=\sin ^{-1}\left\{2 x \sqrt{1-x^2}\right\}\)

⇒ \(2 \sin ^{-1} x=\sin ^{-1}\left\{2 x \sqrt{1-x^2}\right\} \text {. }\)

Hence, \(2 \sin ^{-1} x=\sin ^{-1}\left\{2 x \sqrt{1-x^2}\right\} \text {. }\)

Theorem 10 Prove that \(2 \cos ^{-1} x=\cos ^{-1}\left(2 x^2-1\right), \frac{1}{\sqrt{2}} \leq x \leq 1 .\)

Proof

Let cos-1x = θ. Then, x = cos θ.

∴ cos 2θ = (2cos2θ – 1) = (2x2 – 1)

⇒ 2θ = cos-1(2x2 – 1)

⇒ 2cos-1x = cos-1(2x2 – 1) [∵ θ = cos-1x].

Hence, 2cos-1x = cos-1(2x2 – 1).

Theorem 11 Prove that 3sin-1x = sin-1(3x – 4x3), x ∈ \(\left[-\frac{1}{2}, \frac{1}{2}\right]\)

Proof

Given

3sin-1x = sin-1(3x – 4x3)

Put sin-1x = θ. Then, x = sinθ.

Now, sin 3θ = (3 sin θ – 4 sin3θ) = (3x – 4x3)

⇒ 3θ = sin-1(3x – 4x3)

⇒ 3sin-1x = sin-1(3x – 4x3) [∵ θ = sin-1x].

Hence, 3sin-1x = sin-1(3x – 4x3).

Theorem 12 Prove that 3cos-1x = cos-1(4x3 – 3x), x ∈ [\(\frac{1}{2}\), 1].

Proof

3cos-1x = cos-1(4x3 – 3x)

Put cos-1x = θ. Then, x = cosθ.

Now, cos 3θ = (4cos3θ – 3 cosθ) = (4x3 – 3x)

⇒ 3θ = cos-1(4x3 – 3x)

⇒ 3cos-1x = cos-1(4x3 – 3x) [∵ θ = cos-1x]

Hence, 3 cos-1x = cos-1(4x3 – 3x).

Theorem 13 Prove that:

(1) \(\sin ^{-1} x+\sin ^{-1} y=\sin ^{-1}\left\{x \sqrt{1-y^2}+y \sqrt{1-x^2}\right\}\)

(2) \(\sin ^{-1} x-\sin ^{-1} y=\sin ^{-1}\left\{x \sqrt{1-y^2}-y \sqrt{1-x^2}\right\}\)

(3) \(\cos ^{-1} x+\cos ^{-1} y=\cos ^{-1}\left\{x y-\sqrt{\left(1-x^2\right)\left(1-y^2\right)}\right\}\)

(4) \(\cos ^{-1} x-\cos ^{-1} y=\cos ^{-1}\left\{x y+\sqrt{\left(1-x^2\right)\left(1-y^2\right)}\right\}\)

Proof

(1) Let sin-1x = θ1, and sin-1y = θ2. Then,

sinθ1 = x and sin θ2 = y

⇒ sin(θ1 + θ2) = sinθ1cosθ2 + cosθ1sinθ2

= \(\left\{\sin \theta_1 \cdot \sqrt{1-\sin ^2 \theta_2}\right\}+\left\{\sqrt{1-\sin ^2 \theta_1} \cdot \sin \theta_2\right\}\)

= \(\left\{x \sqrt{1-y^2}+y \sqrt{1-x^2}\right\}\)

⇒ \(\left(\theta_1+\theta_2\right)=\sin ^{-1}\left\{x \sqrt{1-y^2}+y \sqrt{1-x^2}\right\}\)

⇒ \(\sin ^{-1} x+\sin ^{-1} y=\sin ^{-1}\left\{x \sqrt{1-y^2}+y \sqrt{1-x^2}\right\}\).

Hence, \(\sin ^{-1} x+\sin ^{-1} y=\sin ^{-1}\left\{x \sqrt{1-y^2}+y \sqrt{1-x^2}\right\}\).

The other results can be proved similarly.

Theorem 14 Prove that:

(1) \(\sin ^{-1} x=\cos ^{-1} \sqrt{1-x^2}=\tan ^{-1}\left(\frac{x}{\sqrt{1-x^2}}\right)={cosec}^{-1}\left(\frac{1}{x}\right)\)

= \(\sec ^{-1}\left(\frac{1}{\sqrt{1-x^2}}\right)=\cot ^{-1}\left(\frac{\sqrt{1-x^2}}{x}\right)\)

(2) \(\cos ^{-1} x=\sin ^{-1} \sqrt{1-x^2}=\tan ^{-1}\left(\frac{\sqrt{1-x^2}}{x}\right)\)

= \({cosec}^{-1}\left(\frac{1}{\sqrt{1-x^2}}\right)=\sec ^{-1}\left(\frac{1}{x}\right)=\cot ^{-1}\left(\frac{x}{\sqrt{1-x^2}}\right)\)

(3) \(\tan ^{-1} x=\sin ^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right)=\cos ^{-1}\left(\frac{1}{\sqrt{1+x^2}}\right)\)

= \({cosec}^{-1}\left(\frac{\sqrt{1+x^2}}{x}\right)=\sec ^{-1}\left(\sqrt{1+x^2}\right)=\cot ^{-1}\left(\frac{1}{x}\right)\)

Proof

(1) Let sin-1x = θ. Then, sin θ = x.

∴ \(\cos \theta=\sqrt{1-x^2}, \tan \theta=\frac{x}{\sqrt{1-x^2}} \cdot {cosec} \theta=\frac{1}{x}\)

\(\sec \theta=\frac{1}{\sqrt{1-x^2}} \text { and } \cot \theta=\frac{\sqrt{1-x^2}}{x} \text {. }\)

∴ \(\theta=\cos ^{-1} \sqrt{1-x^2}, \theta=\tan ^{-1}\left(\frac{x}{\sqrt{1-x^2}}\right), \theta={cosec}^{-1} \frac{1}{x}\)

\(\theta=\sec ^{-1}\left(\frac{1}{\sqrt{1-x^2}}\right) \text { and } \theta=\cot ^{-1}\left(\frac{\sqrt{1-x^2}}{x}\right) \text {. }\)

Hence, \(\sin ^{-1} x=\cos ^{-1} \sqrt{1-x^2}=\tan ^{-1}\left(\frac{x}{\sqrt{1-x^2}}\right)\)

= \({cosec}^{-1} \frac{1}{x}=\sec ^{-1}\left(\frac{1}{\sqrt{1-x^2}}\right)\)

= \(\cot ^{-1}\left(\frac{\sqrt{1-x^2}}{x}\right) \text {. }\)

Similarly, the other results can be proved.

Solved Examples

Example 1 Find the value of:

(1) \(\sin ^{-1}\left(\sin \frac{\pi}{3}\right)\)

(2) \(\cos ^{-1}\left(\cos \frac{2 \pi}{3}\right)\)

(3) \(\tan ^{-1}\left(\tan \frac{\pi}{4}\right)\)

Solution

We have

(1) \(\sin ^{-1}\left(\sin \frac{\pi}{3}\right)=\frac{\pi}{3}, \text { since } \frac{\pi}{3} \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] \text {. }\)

(2) \(\cos ^{-1}\left(\cos \frac{2 \pi}{3}\right)=\frac{2 \pi}{3}, \text { since } \frac{2 \pi}{3} \in[0, \pi] \text {. }\)

(3) \(\tan ^{-1}\left(\tan \frac{\pi}{4}\right)=\frac{\pi}{4}, \text { since } \frac{\pi}{4} \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)\)

Example 2 Find the value of:

(1) \(\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)\)

(2) \(\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)\)

(3) \(\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)\)

Solution

(1) We know that the principal-value branch of sin-1 is \(\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\).

∴ \(\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right) \neq \frac{2 \pi}{3}\)

Now, \(\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)=\sin ^{-1}\left\{\sin \left(\pi-\frac{\pi}{3}\right)\right\}\)

= \(\sin ^{-1}\left(\sin \frac{\pi}{3}\right)\) [∵ sin(π – θ) = sinθ]

= \(\frac{\pi}{3}\) {∵ \(\frac{\pi}{3} \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\)}

Hence, \(\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)\) = \(\frac{\pi}{3}\).

(2) We know that the principal-value branch of cos-1 is [0, π].

∴ \(\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right) \neq \frac{7 \pi}{6}\)

Now, \(\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)=\cos ^{-1}\left\{\cos \left(2 \pi-\frac{5 \pi}{6}\right)\right\}\)

= \(\cos ^{-1}\left\{\cos \frac{5 \pi}{6}\right\}\) {∵ cos(2π – θ) = cosθ}

= \(\frac{5 \pi}{6}\).

Hence, \(\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)\) = \(\frac{5 \pi}{6}\).

(3) We know that the principal-value branch of tan-1 is \(\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\).

∴ \(\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right) \neq \frac{3 \pi}{4}\)

Now, \(\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)=\tan ^{-1}\left\{\tan \left(\pi-\frac{\pi}{4}\right)\right\}\)

= \(\tan ^{-1}\left\{-\tan \frac{\pi}{4}\right\}\) [∵ \(\tan \left(\pi-\frac{\pi}{4}\right)=-\tan \frac{\pi}{4}\)]

= \(\tan _{-\pi}^{-1}\left\{\tan \left(\frac{-\pi}{4}\right)\right\}\) [∵ -tanθ = tan(-θ)]

= \(\frac{-\pi}{4}\).

Hence, \(\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)\) = \(\frac{-\pi}{4}\).

Common Questions on Inverse Trigonometric Functions and Their Solutions

Example 3 Find the value of:

(1) \(\sin ^{-1}\left(\sin \frac{3 \pi}{5}\right)\)

(2) \(\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)\)

(3) \(\tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)\)

Solution

(1) We know that the principal-value branch of sin-1 is \(\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\).

∴ \(\sin ^{-1}\left(\sin \frac{3 \pi}{5}\right) \neq \frac{3 \pi}{5}\)

Now, \(\sin ^{-1}\left(\sin \frac{3 \pi}{5}\right)=\sin ^{-1}\left\{\sin \left(\pi-\frac{2 \pi}{5}\right)\right\}\).

= \(\sin ^{-1}\left(\sin \frac{2 \pi}{5}\right)\) [∵ sin(π – θ) = sinθ]

= \(\frac{2 \pi}{5}\) {∵ \(\frac{2 \pi}{5} \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\)}.

Hence, \(\sin ^{-1}\left(\sin \frac{3 \pi}{5}\right)=\frac{2 \pi}{5}\)

(2) We know that the principal-value branch of cos-1 is [0, π].

∴ \(\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right) \neq \frac{13 \pi}{6} .\)

Now, \(\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)=\cos ^{-1}\left\{\cos \left(2 \pi+\frac{\pi}{6}\right)\right\}\)

= \(\cos ^{-1}\left\{\cos \frac{\pi}{6}\right\}\) [∵ cos(2π + θ) = cos θ]

= \(\frac{\pi}{6}\).

Hence, \(\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)=\frac{\pi}{6}\)

(3) We know that the principal-value branch of tan-1 is \(\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\).

∴ \(\tan ^{-1}\left(\tan \frac{7 \pi}{6}\right) \neq \frac{7 \pi}{6}\)

Now, \(\tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)=\tan ^{-1}\left\{\tan \left(\pi+\frac{\pi}{6}\right)\right\}\)

= \(\tan ^{-1}\left(\tan \frac{\pi}{6}\right)\) [∵ tan(π + θ) = tan θ]

= \(\frac{\pi}{6}\).

Hence, \(\tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)=\frac{\pi}{6}\)

Example 4 (1) Show that \(\sin ^{-1}\left\{\sin \frac{3 \pi}{4}\right\} \neq \frac{3 \pi}{4}\) and find its value.

(2) Show that \(\cos ^{-1}\left\{\cos \left(\frac{-\pi}{3}\right)\right\}=\frac{-\pi}{3}\) and find its value.

(3) Show that \(\tan ^{-1}\left\{\tan \frac{5 \pi}{6}\right\} \neq \frac{5 \pi}{6}\) and find its value.

Solution

(1) We know that the principal-value branch of sin-1 is \(\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\).

∴ \(\sin ^{-1}\left\{\sin \frac{3 \pi}{4}\right\} \neq \frac{3 \pi}{4}\)

Now, \(\sin ^{-1}\left\{\sin \frac{3 \pi}{4}\right\}=\sin ^{-1}\left\{\sin \left(\pi-\frac{\pi}{4}\right)\right\}\)

= \(\sin ^{-1}\left\{\sin \frac{\pi}{4}\right\} [∵ \sin \left(\pi-\frac{\pi}{4}\right)=\sin \frac{\pi}{4}]\)

= \(\frac{\pi}{4}\) {∵ \(\frac{\pi}{4} \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\)}.

∴ \(\sin ^{-1}\left\{\sin \frac{3 \pi}{4}\right\}=\frac{\pi}{4}\).

(2) We know that the principal-value branch of cos-1 is [0, π].

∴ \(\cos ^{-1}\left\{\cos \left(\frac{-\pi}{3}\right)\right\}=\frac{-\pi}{3}\)

Now, \(\cos ^{-1}\left\{\cos \left(\frac{-\pi}{3}\right)\right\}=\cos ^{-1}\left\{\cos \frac{\pi}{3}\right\}\). [∵ cos(-θ) = cos θ]

= \(\frac{\pi}{3}\) [∵ \(\frac{\pi}{3} \in[0, \pi]\)].

∴ \(\cos ^{-1}\left\{\cos \left(\frac{-\pi}{3}\right)\right\}=\frac{\pi}{3}\)

(3) We know that the principal-value branch of tan-1 is \(\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\).

∴ \(\tan ^{-1}\left\{\tan \frac{5 \pi}{6}\right\} \neq \frac{5 \pi}{6}\).

Now, \(\tan ^{-1}\left\{\tan \frac{5 \pi}{6}\right\}=\tan ^{-1}\left\{\tan \left(\pi-\frac{\pi}{6}\right)\right\}\)

= \(\tan ^{-1}\left\{\tan \left(\frac{-\pi}{6}\right)\right\}\) [∵ tan(π – θ) = tan(-θ)]

= \(\frac{-\pi}{6}\) [∵ \(\frac{-\pi}{6} \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)\)].

∴ \(\tan ^{-1}\left\{\tan \frac{5 \pi}{6}\right\}=\frac{-\pi}{6}\).

Example 5 Evaluate:

(1) \(\sin \left(\cos ^{-1} \frac{3}{5}\right)\)

(2) \(\cos \left(\tan ^{-1} \frac{3}{4}\right)\)

Solution

(1) Let cos-1\(\frac{3}{5}\) = θ, where θ ∈ [0, π].

Then, cos θ = \(\frac{3}{5}\).

Since θ ∈ [0, π], we have sin θ > 0.

∴ \(\sin \theta=\sqrt{1-\cos ^2 \theta}=\sqrt{1-\frac{9}{25}}=\sqrt{\frac{16}{25}}=\frac{4}{5} \text {. }\)

Hence, \(\sin \left(\cos ^{-1} \frac{3}{5}\right)=\sin \theta=\frac{4}{5} .\)

(2) Let tan-1\(\frac{3}{4}\) = θ, where θ ∈ \(\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\).

Then, tan θ = \(\frac{3}{4}\).

Since θ ∈ \(\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\), so cosθ > 0.

∴ \(\cos \theta=\frac{1}{\sec \theta}=\frac{1}{\sqrt{1+\tan ^2 \theta}}=\frac{1}{\sqrt{1+9 / 16}}=\sqrt{\frac{16}{25}}=\frac{4}{5}\).

Hence, \(\cos \left(\tan ^{-1} \frac{3}{4}\right)=\cos \theta=\frac{4}{5} \text {. }\)

Example 6 Evaluate:

(1) \(\sin \left\{\frac{\pi}{3}-\sin ^{-1}\left(\frac{-1}{2}\right)\right\}\)

(2) \(\sin \left(\frac{1}{2} \cos ^{-1} \frac{4}{5}\right)\)

(3) sin(cot-1x)

(4) \(\tan \frac{1}{2}\left(\cos ^{-1} \frac{\sqrt{5}}{3}\right)\)

Solution

(1) We know that sin-1(-θ) = -sin-1θ.

∴ \(\sin \left\{\frac{\pi}{3}-\sin ^{-1}\left(\frac{-1}{2}\right)\right\}=\sin \left\{\frac{\pi}{3}+\sin ^{-1} \frac{1}{2}\right\}\)

= \(\sin \left(\frac{\pi}{3}+\frac{\pi}{6}\right)\) [∵ \(\sin ^{-1} \frac{1}{2}=\frac{\pi}{6}\)]

= sin\(\frac{\pi}{2}\) = 1.

(2) Let cos-1 \(\frac{4}{5}\) = θ, where θ ∈ [0, π].

Then, cosθ = \(\frac{4}{5}\).

Since θ ∈ [0, π] ⇒ \(\frac{1}{2}\)θ ∈ \(\left[0, \frac{\pi}{2}\right]\) ⇒ sin\(\frac{1}{2}\)θ > 0.

∴ \(\sin \left(\frac{1}{2} \cos ^{-1} \frac{4}{5}\right)=\sin \frac{1}{2} \theta=\sqrt{\frac{1-\cos \theta}{2}}=\sqrt{\frac{1-(4 / 5)}{2}}=\frac{1}{\sqrt{10}}\)

(3) Let cot-1x = θ. Then, θ ∈ [0, π].

∴ sin(cot-1x) = sinθ > 0.

Now, \(\sin \theta=\frac{1}{{cosec} \theta}=\frac{1}{\sqrt{1+\cot ^2 \theta}}=\frac{1}{\sqrt{1+x^2}}\).

∴ \(\sin \left(\cot ^{-1} x\right)=\sin \theta=\frac{1}{\sqrt{1+x^2}} .\)

(4) Let cos-1\(\frac{\sqrt{5}}{3}\) = θ. Then, cos θ = \(\frac{\sqrt{5}}{3}\), where θ ∈ [0, π].

∴ \(\tan \frac{1}{2}\left(\cos ^{-1} \frac{\sqrt{5}}{3}\right)=\tan \frac{1}{2} \theta=\sqrt{\frac{1-\cos \theta}{1+\cos \theta}}=\sqrt{\frac{(1-\sqrt{5} / 3)}{(1+\sqrt{5} / 3)}}\)

= \(\sqrt{\frac{(3-\sqrt{5})}{(3+\sqrt{5})} \times \frac{(3-\sqrt{5})}{(3-\sqrt{5})}}=\frac{(3-\sqrt{5})}{2}\).

Class 11 Physics Class 12 Maths Class 11 Chemistry
NEET Foundation Class 12 Physics NEET Physics

Example 7 Evaluate \(\sin \left[2 \cos ^{-1}\left(\frac{-3}{5}\right)\right]\)

Solution

Given:

\(\sin \left[2 \cos ^{-1}\left(\frac{-3}{5}\right)\right]\)

Let cos-1(\(\frac{3}{5}\)) = θ, where θ ∈ [0, π].

Then, cos θ = –\(\frac{3}{5}\).

since θ ∈ [0, π], we have sin θ > 0.

∴ \(\sin \theta=\sqrt{1-\cos ^2 \theta}=\sqrt{1-\frac{9}{25}}=\sqrt{\frac{16}{25}}=\frac{4}{5} .\)

∴ \(\sin \left[2 \cos ^{-1}\left(\frac{-3}{5}\right)\right]=\sin 2 \theta\)

= \(2 \sin \theta \cos \theta=\left\{2 \times \frac{4}{5} \times\left(\frac{-3}{5}\right)\right\}=\frac{-24}{25}\).

\(\sin \left[2 \cos ^{-1}\left(\frac{-3}{5}\right)\right]\) = \(2 \sin \theta \cos \theta=\left\{2 \times \frac{4}{5} \times\left(\frac{-3}{5}\right)\right\}=\frac{-24}{25}\).

Example 8 Evaluate \(\cos \left(\sin ^{-1} \frac{3}{5}+\sin ^{-1} \frac{5}{13}\right)\)

Solution

Given

\(\cos \left(\sin ^{-1} \frac{3}{5}+\sin ^{-1} \frac{5}{13}\right)\)

Let sin-1\(\frac{3}{5}\) = A and sin-1\(\frac{5}{13}\) = B. Then,

A, B ∈ \(\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\) ⇒ cos A > 0 and cos B > 0.

∴ sin A = \(\frac{3}{5}\) and sin B = \(\frac{5}{13}\)

⇒ \(\cos A=\sqrt{1-\sin ^2 A}=\sqrt{1-\frac{9}{25}}=\sqrt{\frac{16}{25}}=\frac{4}{5}\)

and \(\cos B=\sqrt{1-\sin ^2 B}=\sqrt{1-\frac{25}{169}}=\sqrt{\frac{144}{169}}=\frac{12}{13} \text {. }\)

∴ \(\cos \left(\sin ^{-1} \frac{3}{5}+\sin ^{-1} \frac{5}{13}\right)=\cos (A+B)\)

= cos A cos B – sin A sin B

= \(\left(\frac{4}{5} \times \frac{12}{13}\right)-\left(\frac{3}{5} \times \frac{5}{13}\right)\)

= \(\left(\frac{48}{65}-\frac{15}{65}\right)=\frac{33}{65}\).

\(\cos \left(\sin ^{-1} \frac{3}{5}+\sin ^{-1} \frac{5}{13}\right)\) = \(\left(\frac{48}{65}-\frac{15}{65}\right)=\frac{33}{65}\).

 

Example 9 Find the value of \(\tan ^{-1}\left\{2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right\}\).

Solution

We have

\(\tan ^{-1}\left\{2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right\}=\tan ^{-1}\left\{2 \cos \left(2 \times \frac{\pi}{6}\right)\right\}\) [∵ sin-1\(\frac{1}{2}\) = \(\frac{\pi}{6}\)]

= \(\tan ^{-1}\left\{2 \cos \frac{\pi}{3}\right\}\)

= \(\tan ^{-1}\left(2 \times \frac{1}{2}\right)=\tan ^{-1} 1=\frac{\pi}{4}\).

The value of \(\tan ^{-1}\left\{2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right\}\) = \(\tan ^{-1}\left(2 \times \frac{1}{2}\right)=\tan ^{-1} 1=\frac{\pi}{4}\).

Example 10 If tan-1\(\frac{4}{3}\) = θ, find the value of cos θ.

Solution

tan-1\(\frac{4}{3}\) = θ, where θ ∈ \(\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\).

∴ tan θ = \(\frac{4}{3}\).

We know that cos θ > 0 where θ ∈ \(\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\).

∴ \(\cos \theta=\frac{1}{\sec \theta}=\frac{1}{\sqrt{1+\tan ^2 \theta}}=\frac{1}{\sqrt{1+\frac{16}{9}}}=\frac{3}{5} .\)

The value of  \(\cos \theta=\frac{1}{\sec \theta}=\frac{1}{\sqrt{1+\tan ^2 \theta}}=\frac{1}{\sqrt{1+\frac{16}{9}}}=\frac{3}{5} .\)

Applications of Inverse Trigonometric Functions in Mathematics

Example 11 If \(\cot ^{-1}\left(-\frac{1}{5}\right)=\theta\), find the value of sin θ.

Solution

Given: \(\cot ^{-1}\left(-\frac{1}{5}\right)=\theta\), where θ ∈ (0, π).

∴ cot θ = –\(\frac{1}{5}\).

Sin θ > 0 in (0, π).

\(\sin \theta=\frac{1}{{cosec} \theta}=\frac{1}{\sqrt{1+\cot ^2 \theta}}=\frac{1}{\sqrt{1+\frac{1}{25}}}=\frac{5}{\sqrt{26}} .\)

The value of \(\sin \theta=\frac{1}{{cosec} \theta}=\frac{1}{\sqrt{1+\cot ^2 \theta}}=\frac{1}{\sqrt{1+\frac{1}{25}}}=\frac{5}{\sqrt{26}} .\)

Example 12 Prove that \(\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{13}=\tan ^{-1} \frac{2}{9} \text {. }\)

Solution

We know that tan-1 x + tan-1 y = \(\tan ^{-1}\left(\frac{x+y}{1-x y}\right)\), xy < 1.

Let x = \(\frac{1}{7}\) and y = \(\frac{1}{13}\). Then, xy = \(\frac{1}{91}\) < 1.

∴ \(\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{13}=\tan ^{-1}\left\{\frac{\left(\frac{1}{7}+\frac{1}{13}\right)}{1-\frac{1}{7} \times \frac{1}{13}}\right\}=\tan ^{-1}\left(\frac{20}{90}\right)=\tan ^{-1} \frac{2}{9}\)

Example 13 Prove that tan-1\(\frac{3}{4}\) + tan-1\(\frac{3}{5}\) – tan-1\(\frac{8}{19}\) = \(\frac{\pi}{4}\).

Solution

We have

LHS = \(\left\{\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{3}{5}\right\}-\tan ^{-1} \frac{8}{19}\)

= \(\tan ^{-1}\left\{\frac{\left(\frac{3}{4}+\frac{3}{5}\right)}{\left(1-\frac{3}{4} \times \frac{3}{5}\right)}\right\}-\tan ^{-1} \frac{8}{19}\)

= \(\tan ^{-1}\left(\frac{27}{11}\right)-\tan ^{-1} \frac{8}{19}\)

= \(\tan ^{-1} \frac{\left(\frac{27}{11}-\frac{8}{19}\right)}{\left(1+\frac{27}{11} \times \frac{8}{19}\right)}=\tan ^{-1}\left(\frac{425}{425}\right)=\tan ^{-1} 1=\frac{\pi}{4}\) = RHS.

∴ LHS = RHS.

Example 14 Prove that tan-1\(\frac{1}{3}\) + tan-1\(\frac{1}{5}\) + tan-1\(\frac{1}{7}\) + tan-1\(\frac{1}{8}\) = \(\frac{\pi}{4}\).

Solution

We have

LHS = \(\left(\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{5}\right)+\left(\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{8}\right)\)

= \(\tan ^{-1} \frac{\left(\frac{1}{3}+\frac{1}{5}\right)}{\left(1-\frac{1}{3} \times \frac{1}{5}\right)}+\tan ^{-1} \frac{\left(\frac{1}{7}+\frac{1}{8}\right)}{\left(1-\frac{1}{7} \times \frac{1}{8}\right)}=\tan ^{-1} \frac{(9 / 5)}{(14 / 5)}+\tan ^{-1} \frac{(15 / 56)}{(55 / 56)}\)

= \(\tan ^{-1} \frac{8}{14}+\tan ^{-1} \frac{15}{55}=\tan ^{-1} \frac{4}{7}+\tan ^{-1} \frac{3}{11}\)

= \(\tan ^{-1} \frac{\left(\frac{4}{7}+\frac{3}{11}\right)}{\left(1-\frac{4}{7} \times \frac{3}{11}\right)}=\tan ^{-1} \frac{(65 / 77)}{(65 / 77)}=\tan ^{-1} 1=\frac{\pi}{4}\) = RHS.

∴ LHS = RHS.

Example 15 Prove that 2tan-1\(\frac{1}{2}\) + tan-1\(\frac{1}{7}\) = tan-1\(\frac{31}{17}\).

Solution

We have

LHS = 2tan-1\(\frac{1}{2}\) + tan-1\(\frac{1}{7}\)

= \(\tan ^{-1} \frac{\left(2 \times \frac{1}{2}\right)}{\left\{1-\left(\frac{1}{2}\right)^2\right\}}+\tan ^{-1} \frac{1}{7}\) [∵ \(2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^2}\right)\)]

= \(\tan ^{-1} \frac{1}{(3 / 4)}+\tan ^{-1} \frac{1}{7}=\tan ^{-1} \frac{4}{3}+\tan ^{-1} \frac{1}{7}\)

= \(\tan ^{-1} \frac{\left(\frac{4}{3}+\frac{1}{7}\right)}{\left(1-\frac{4}{3} \times \frac{1}{7}\right)}=\tan ^{-1} \frac{(31 / 21)}{(17 / 21)}=\tan ^{-1} \frac{31}{17}\) = RHS.

∴ LHS = RHS.

Example 16 Prove that \(2\left(\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9}\right)=\tan ^{-1} \frac{4}{3} \text {. }\)

Solution

We have

LHS = 2tan-1\(\frac{1}{4}\) + 2tan-1\(\frac{2}{9}\)

= \(\tan ^{-1} \frac{\left(2 \times \frac{1}{4}\right)}{\left\{1-\left(\frac{1}{4}\right)^2\right\}}+\tan ^{-1} \frac{\left(2 \times \frac{2}{9}\right)}{\left\{1-\left(\frac{2}{9}\right)^2\right\}}\)

= \(\tan ^{-1} \frac{(1 / 2)}{(15 / 16)}+\tan ^{-1} \frac{(4 / 9)}{(7 / 81)}=\tan ^{-1}\left(\frac{1}{2} \times \frac{16}{15}\right)+\tan ^{-1}\left(\frac{4}{9} \times \frac{81}{77}\right)\)

= \(\tan ^{-1} \frac{8}{15}+\tan ^{-1} \frac{36}{77}\)

= \(\tan ^{-1} \frac{\left(\frac{8}{15}+\frac{36}{77}\right)}{\left(1-\frac{8}{15} \times \frac{36}{77}\right)}=\tan ^{-1} \frac{(616+540)}{(1155-288)}\)

= \(\tan ^{-1}\left(\frac{1156}{867}\right)=\tan ^{-1} \frac{4}{3}\) = RHS.

∴ LHS = RHS.

Example 17 Prove that cot-17 + cot-18 + cot-118 = cot-13.

Solution

We have

LHS = cot-17 + cot-18 + cot-118

= \(\left(\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{8}\right)+\tan ^{-1} \frac{1}{18}\)

= \(\tan ^{-1} \frac{\left(\frac{1}{7}+\frac{1}{8}\right)}{\left(1-\frac{1}{7} \times \frac{1}{8}\right)}+\tan ^{-1} \frac{1}{18}=\tan ^{-1} \frac{(15 / 56)}{(55 / 56)}+\tan ^{-1} \frac{1}{18}\)

= \(\left(\tan ^{-1} \frac{3}{11}+\tan ^{-1} \frac{1}{18}\right)=\tan ^{-1} \frac{\left(\frac{3}{11}+\frac{1}{18}\right)}{\left(1-\frac{3}{11} \times \frac{1}{18}\right)}\)

= \(\tan ^{-1} \frac{(65 / 198)}{(195 / 198)}=\tan ^{-1} \frac{1}{3}=\cot ^{-1} 3\) = RHS.

∴ LHS = RHS.

Example 18 Prove that sin-1\(\frac{3}{5}\) – sin-1\(\frac{8}{17}\) = cos-1\(\frac{84}{85}\).

Solution

Let sin-1\(\frac{3}{5}\) = x and sin-1\(\frac{8}{17}\) = y. Then,

sin x = \(\frac{3}{5}\) and sin y = \(\frac{8}{17}\).

∴ \(\cos x=\sqrt{1-\sin ^2 x}=\sqrt{1-\frac{9}{25}}=\sqrt{\frac{16}{25}}=\frac{4}{5}\)

and \(\cos y=\sqrt{1-\sin ^2 y}=\sqrt{1-\frac{64}{289}}=\sqrt{\frac{225}{289}}=\frac{15}{17} \text {. }\)

∴ cos(x-y) = cos x cos y + sin x sin y

= \(\left(\frac{4}{5} \times \frac{15}{17}\right)+\left(\frac{3}{5} \times \frac{8}{17}\right)=\left(\frac{12}{17}+\frac{24}{85}\right)=\frac{84}{85}\)

⇒ \(x-y=\cos ^{-1}\left(\frac{84}{85}\right) ⇒ \sin ^{-1} \frac{3}{5}-\sin ^{-1} \frac{8}{17}=\cos ^{-1} \frac{84}{85} \text {. }\)

Example 19 Prove that \(\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9}=\frac{1}{2} \cos ^{-1} \frac{3}{5}\)

Solution

LHS = \(\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9}, where xy = \left(\frac{1}{4} \times \frac{2}{9}\right)=\frac{1}{18}<1\)

= \(\tan ^{-1}\left\{\frac{\left(\frac{1}{4}+\frac{2}{9}\right)}{\left(1-\frac{1}{4} \times \frac{2}{9}\right)}\right\}=\tan ^{-1}\left(\frac{17}{34}\right)=\tan ^{-1} \frac{1}{2}\)

Now, let \(\frac{1}{2}cos-1\frac{3}{5}\) = θ. Then, cos 2θ = \(\frac{3}{5}\).

∴ \(\tan \theta=\sqrt{\frac{1-\cos 2 \theta}{1+\cos 2 \theta}}=\sqrt{\frac{\left(1-\frac{3}{5}\right)}{\left(1+\frac{3}{5}\right)}}=\sqrt{\frac{1}{4}}=\frac{1}{2}\)

⇒ \(\tan ^{-1} \frac{1}{2}=\theta\)

⇒ \(\tan ^{-1} \frac{1}{2}=\frac{1}{2} \cos ^{-1} \frac{3}{5}\).

Hence, \(\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9}=\frac{1}{2} \cos ^{-1} \frac{3}{5}\).

Example 20 Prove that \(\cos ^{-1} \frac{4}{5}+\tan ^{-1} \frac{3}{5}=\tan ^{-1} \frac{27}{11} \text {. }\)

Solution

Let cos-1\(\frac{4}{5}\) = θ. Then cos θ = \(\frac{4}{5}\).

∴ \(\tan \theta=\frac{\sqrt{1-\cos ^2 \theta}}{\cos \theta}=\frac{\sqrt{1-\frac{16}{25}}}{(4 / 5)}=\left(\frac{3}{5} \times \frac{5}{4}\right)=\frac{3}{4}\)

⇒ θ = tan-1\(\frac{3}{4}\).

∴ \(\cos ^{-1} \frac{4}{5}=\tan ^{-1} \frac{3}{4} \text {. }\)

∴ \(\cos ^{-1} \frac{4}{5}+\tan ^{-1} \frac{3}{5}=\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{3}{5}\)

= \(\tan ^{-1}\left(\frac{\frac{3}{4}+\frac{3}{5}}{1-\frac{3}{4} \times \frac{3}{5}}\right)=\tan ^{-1} \frac{27}{11} \text {. }\)

Example 21 Solve tan-12x + tan-13x = \(\frac{\pi}{4}\).

Solution

tan-12x + tan-13x = \(\frac{\pi}{4}\)

⇒ \(\tan ^{-1}\left(\frac{2 x+3 x}{1-6 x^2}\right)=\frac{\pi}{4} ⇒ \tan ^{-1}\left(\frac{5 x}{1-6 x^2}\right)=\frac{\pi}{4}\)

⇒ \(\frac{5 x}{\left(1-6 x^2\right)}=\tan \frac{\pi}{4}=1\) ⇒ 1 – 6x2 = 5x

⇒ 6x2 + 5x – 1 = 0 ⇒ 6x2 + 6x – x – 1 = 0

⇒ 6x(x+1) – (x+1) = 0 ⇒ (x+1)(6x-1) = 0

⇒ x = -1 or x = \(\frac{1}{6}\).

⇒ x = \(\frac{1}{6}\) [∵ x = -1 makes LHS negative].

Example 22 Solve \(\tan ^{-1}\left(\frac{x-1}{x-2}\right)+\tan ^{-1}\left(\frac{x+1}{x+2}\right)=\frac{\pi}{4}\)

Solution

We have

\(\tan ^{-1}\left(\frac{x-1}{x-2}\right)+\tan ^{-1}\left(\frac{x+1}{x+2}\right)=\frac{\pi}{4}\)

⇒ \(\tan ^{-1} \frac{\left\{\frac{(x-1)}{(x-2)}+\frac{(x+1)}{(x+2)}\right\}}{\left\{1-\frac{(x-1)}{(x-2)} \cdot \frac{(x+1)}{(x+2)}\right\}}=\frac{\pi}{4}\)

⇒ \(\tan ^{-1}\left\{\frac{(x-1)(x+2)+(x+1)(x-2)}{\left(x^2-4\right)-\left(x^2-1\right)}\right\}=\frac{\pi}{4}\)

⇒ \(\tan ^{-1}\left\{\frac{\left(x^2+x-2\right)+\left(x^2-x-2\right)}{-3}\right\}=\frac{\pi}{4}\)

⇒ \(\frac{2 x^2-4}{-3}=\tan \frac{\pi}{4}=1\) ⇒ 2x2 – 4 = -3

⇒ 2x2 = 1 ⇒ x2 = \(\frac{1}{2}\) ⇒ x = \(\pm \frac{1}{\sqrt{2}}\)

Example 23 Solve tan-1(x+1) + tan-1(x-1) = tan-1\(\frac{8}{31}\).

Solution

We have

tan-1(x+1) + tan-1(x-1) = tan-1\(\frac{8}{31}\)

⇒ \(\tan ^{-1}\left\{\frac{(x+1)+(x-1)}{1-(x+1)(x-1)}\right\}=\tan ^{-1} \frac{8}{31}\)

⇒ \(\tan ^{-1}\left(\frac{2 x}{2-x^2}\right)=\tan ^{-1} \frac{8}{31}\)

⇒ \(\tan \left\{\tan ^{-1}\left(\frac{2 x}{2-x^2}\right)\right\}=\frac{8}{31}\) ⇒ \(\frac{2 x}{2-x^2}=\frac{8}{31}\)

⇒ 8x2 + 62x – 16 = 0 ⇒ 4x2 + 31x – 8 = 0

⇒ (4x – 1)(x + 8) = 0 ⇒ x = \(\frac{1}{4}\) or x = -8.

But, x = -8 gives LHS = tan-1(-7) + tan-1(-9), which is negative, while RHS is positive. So, x = -8 is not possible.

Hence, x = \(\frac{1}{4}\).

Examples of Principal Values of Inverse Trigonometric Functions

Example 24 Solve \(\tan ^{-1}\left(\frac{1-x}{1+x}\right)=\frac{1}{2} \tan ^{-1} x,(x>0)\)

Solution

We have

\(\tan ^{-1}\left(\frac{1-x}{1+x}\right)=\frac{1}{2} \tan ^{-1} x,(x>0)\)

⇒ \(\tan ^{-1} 1-\tan ^{-1} x=\frac{1}{2} \tan ^{-1} x\)

⇒ \(\frac{3}{2} \tan ^{-1} x=\tan ^{-1} 1=\frac{\pi}{4}\)

⇒ \(\tan ^{-1} x=\left(\frac{\pi}{4} \times \frac{2}{3}\right)=\frac{\pi}{6}\) ⇒ \(x=\tan \left(\frac{\pi}{6}\right)=\frac{1}{\sqrt{3}}.

Hence, x = [latex]\frac{1}{\sqrt{3}}\).

Example 25 Solve 2 tan-1(cos x) = tan-1(2 cosec x).

Solution

We have

2 tan-1(cos x) = tan-1(2 cosec x)

⇒ \(\tan ^{-1}\left(\frac{2 \cos x}{1-\cos ^2 x}\right)=\tan ^{-1}(2 {cosec} x)\)

⇒ \(\tan \left[\tan ^{-1}\left(\frac{2 \cos ^x x}{\sin ^2 x}\right)\right]=2 {cosec} x\)

⇒ \(\frac{2 \cos x}{\sin ^2 x}=2 {cosec} x\) ⇒ cos x = sin x

⇒ tan x = 1 ⇒ x = \(\frac{\pi}{4}\).

Problems Based On Trigonometric Formulae

Example 26 Prove that \(\tan ^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right)=\frac{x}{2}, x<\pi\)

Solution

We have

LHS = \(\tan ^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right)=\tan ^{-1} \sqrt{\frac{2 \sin ^2(x / 2)}{2 \cos ^2(x / 2)}}\)

= \(\tan ^{-1}\left(\tan \frac{x}{2}\right)=\frac{x}{2}=\text { RHS. }\)

∴ \(\tan ^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right)=\frac{x}{2} \text {. }\)

Example 27 Prove that \(\tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right)=\left(\frac{\pi}{4}-x\right), x<\pi \text {. }\)

Solution

We have

LHS = \(\tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right)\)

= \(\tan ^{-1}\left(\frac{1-\tan x}{1+\tan x}\right)\) [dividing num. and denom. by cos x]

= \(\tan ^{-1}\left\{\tan \left(\frac{\pi}{4}-x\right)\right\}=\left(\frac{\pi}{4}-x\right)=\text { RHS }\).

∴ \(\tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right)=\left(\frac{\pi}{4}-x\right)\)

Example 28 Prove that \(\tan ^{-1}\left(\frac{\cos x}{1+\sin x}\right)=\left(\frac{\pi}{4}-\frac{x}{2}\right) \text {. }\)

Solution

We have

LHS = \(\tan ^{-1}\left(\frac{\cos x}{1+\sin x}\right)\)

= \(\tan ^{-1}\left\{\frac{\sin \left(\frac{\pi}{2}-x\right)}{1+\cos \left(\frac{\pi}{2}-x\right)}\right\}\)

= \(\tan ^{-1}\left\{\frac{2 \sin \left(\frac{\pi}{4}-\frac{x}{2}\right) \cos \left(\frac{\pi}{4}-\frac{x}{2}\right)}{2 \cos ^2\left(\frac{\pi}{4}-\frac{x}{2}\right)}\right\}\)

= \(\tan ^{-1}\left\{\tan \left(\frac{\pi}{4}-\frac{x}{2}\right)\right\}=\left(\frac{\pi}{4}-\frac{x}{2}\right)=\text { RHS }\)

∴ \(\tan ^{-1}\left(\frac{\cos x}{1+\sin x}\right)=\left(\frac{\pi}{4}-\frac{x}{2}\right) \text {. }\)

Example 29 Prove that \(\tan ^{-1}\left(\frac{\cos x}{1-\sin x}\right)=\left(\frac{\pi}{4}+\frac{x}{2}\right), x \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)\)

Solution

We have

LHS = \(\tan ^{-1}\left(\frac{\cos x}{1-\sin x}\right)\)

= \(\tan ^{-1}\left\{\frac{\sin \left(\frac{\pi}{2}-x\right)}{1-\cos \left(\frac{\pi}{2}-x\right)}\right\}\)

= \(\tan ^{-1}\left\{\frac{2 \sin \left(\frac{\pi}{4}-\frac{x}{2}\right) \cos \left(\frac{\pi}{4}-\frac{x}{2}\right)}{2 \sin ^2\left(\frac{\pi}{4}-\frac{x}{2}\right)}\right\}\)

= \(\tan ^{-1}\left\{\cot \left(\frac{\pi}{4}-\frac{x}{2}\right)\right\}=\tan ^{-1}\left[\tan \left\{\frac{\pi}{2}-\left(\frac{\pi}{4}-\frac{x}{2}\right)\right]\right\}\)

= \(\tan ^{-1}\left\{\tan \left(\frac{\pi}{4}+\frac{x}{2}\right)\right\}\)

= \(\left(\frac{\pi}{4}+\frac{x}{2}\right)\) = RHS.

Hence, \(\tan ^{-1}\left(\frac{\cos x}{1-\sin x}\right)=\left(\frac{\pi}{4}+\frac{x}{2}\right)\).

Example 30 Prove that \(\tan ^{-1}\left(\frac{3 a^2 x-x^3}{a^3-3 a x^2}\right)=3 \tan ^{-1} \frac{x}{a}\).

Solution

Putting x = atan θ, we get

\(\tan ^{-1}\left(\frac{3 a^2 x-x^3}{a^3-3 a x^2}\right)=\tan ^{-1}\left(\frac{3 a^3 \tan \theta-a^3 \tan ^3 \theta}{a^3-3 a^3 \tan ^2 \theta}\right)\)

= \(\tan ^{-1}\left(\frac{3 \tan \theta-\tan ^3 \theta}{1-3 \tan ^2 \theta}\right)=\tan ^{-1}(\tan 3 \theta)\)

= \(3 \theta=3 \tan ^{-1} \frac{x}{a}\)

Hence, \(\tan ^{-1}\left(\frac{3 a^2 x-x^3}{a^3-3 a x^2}\right)=3 \tan ^{-1} \frac{x}{a}\)

Example 31 Prove that \(\tan ^{-1}\left(\frac{a \cos x-b \sin x}{b \cos x-a \sin x}\right)=\tan ^{-1}\left(\frac{a}{b}\right)-x\).

Solution

We have

LHS = \(\tan ^{-1}\left(\frac{a \cos x-b \sin x}{b \cos x-a \sin x}\right)=\tan ^{-1}\left\{\frac{\frac{a \cos x-b \sin x}{b \cos x}}{\frac{b \cos x-a \sin x}{b \cos x}}\right\}\)

[on dividing num. and denom. by cos x]

= \(\tan ^{-1}\left\{\frac{\frac{a}{b}-\tan x}{1+\frac{a}{b} \tan x}\right\}=\tan ^{-1}\left(\frac{p-q}{1+p q}\right)\), where \(\frac{a}{b}\) = p and tan x = q

= tan-1p – tan-1q = tan-1\(\frac{a}{b}\) – tan-1(tan x)

= \(\left(\tan ^{-1} \frac{a}{b}-x\right)\) = RHS.

Hence, \(\tan ^{-1}\left(\frac{a \cos x-b \sin x}{b \cos x-a \sin x}\right)=\left(\tan ^{-1} \frac{a}{b}-x\right) \text {. }\)

Graphing Inverse Trigonometric Functions: Techniques and Examples

Example 32 Prove that \(\cot ^{-1}\left\{\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right\}=\frac{x}{2}, x \in\left(0, \frac{\pi}{4}\right)\)

Solution

We have

LHS = \(\cot ^{-1}\left\{\frac{(\sqrt{1+\sin x}+\sqrt{1-\sin x})}{(\sqrt{1+\sin x}-\sqrt{1-\sin x})} \times \frac{(\sqrt{1+\sin x}+\sqrt{1-\sin x})}{(\sqrt{1+\sin x}+\sqrt{1-\sin x})}\right\}\)

= \(\cot ^{-1}\left\{\frac{(1+\sin x)+(1-\sin x)+2 \sqrt{1-\sin ^2 x}}{(1+\sin x)-(1-\sin x)}\right\}\)

= \(\cot ^{-1}\left\{\frac{2(1+\cos x)}{2 \sin x}\right\}=\cot ^{-1}\left(\frac{1+\cos x}{\sin x}\right)\)

= \(\cot ^{-1}\left\{\frac{2 \cos ^2(x / 2)}{2 \sin (x / 2) \cos (x / 2)}\right\}=\cot ^{-1}\left(\cot \frac{x}{2}\right)=\frac{x}{2}\) = RHS.

Hence, LHS = RHS.

Example 33 Prove that \(\tan ^{-1}\left\{\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right\}=\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} x\)

Solution

\(\tan ^{-1}\left\{\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right\}=\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} x\)

Putting x = cos θ, we get

LHS = \(\tan ^{-1}\left\{\frac{\sqrt{1+\cos \theta}-\sqrt{1-\cos \theta}}{\sqrt{1+\cos \theta}+\sqrt{1-\cos \theta}}\right\}\)

= \(\tan ^{-1}\left\{\frac{\sqrt{2 \cos ^2(\theta / 2)}-\sqrt{2 \sin ^2(\theta / 2)}}{\sqrt{2 \cos ^2(\theta / 2)}+\sqrt{2 \sin ^2(\theta / 2)}}\right\}=\tan ^{-1}\left\{\frac{\cos \frac{\theta}{2}-\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}+\sin \frac{\theta}{2}}\right\}\)

= \(\tan ^{-1}\left\{\frac{1-\tan \frac{\theta}{2}}{1+\tan \frac{\theta}{2}}\right\}\) [dividing num. and denom. by cos \frac{θ}{2}]

= \(\tan ^{-1}\left\{\tan \left(\frac{\pi}{4}-\frac{\theta}{2}\right)\right\}=\left(\frac{\pi}{4}-\frac{\theta}{2}\right)\)

= \(\left(\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} x\right)\) = RHS.

Hence, LHS = RHS.

Example 34 Prove that \(\tan ^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)=\frac{1}{2} \tan ^{-1} x\).

Solution

\(\tan ^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)=\frac{1}{2} \tan ^{-1} x\)

Putting x = tan θ, we get

\(\tan ^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)=\tan ^{-1}\left(\frac{\sqrt{1+\tan ^2 \theta}-1}{\tan \theta}\right)\)

= \(\tan ^{-1}\left(\frac{\sec \theta-1}{\tan \theta}\right)=\tan ^{-1}\left(\frac{1-\cos \theta}{\sin \theta}\right)\)

= \(\tan ^{-1}\left\{\frac{2 \sin ^2\left(\frac{\theta}{2}\right)}{2 \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right)}\right\}=\tan ^{-1}\left(\tan \frac{\theta}{2}\right)\)

= \(\frac{θ}{2}\) = \(\frac{1}{2}tan-1x\).

∴ \(\tan ^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)=\frac{1}{2} \tan ^{-1} x\)

Example 35 Prove that \(\tan ^{-1}\left(\frac{x}{\sqrt{a^2-x^2}}\right)=\sin ^{-1} \frac{x}{a}\)

Solution

\(\tan ^{-1}\left(\frac{x}{\sqrt{a^2-x^2}}\right)=\sin ^{-1} \frac{x}{a}\)

Putting x = asin θ, we get

LHS = \(\tan ^{-1}\left(\frac{x}{\sqrt{a^2-x^2}}\right)\)

= \(\tan ^{-1}\left(\frac{a \sin \theta}{\sqrt{a^2-a^2 \sin ^2 \theta}}\right)\)

= \(\tan ^{-1}\left(\frac{{asin} \theta}{a \cos \theta}\right)=\tan ^{-1}(\tan \theta)\)

= θ = sin-1 \(\frac{x}{a}\) = RHS.

∴ \(\tan ^{-1}\left(\frac{x}{\sqrt{a^2-x^2}}\right)=\sin ^{-1} \frac{x}{a}\)

Example 36 Prove that \(\tan ^{-1} \sqrt{x}=\frac{1}{2} \cos ^{-1}\left(\frac{1-x}{1+x}\right) .\)

Solution

\(\tan ^{-1} \sqrt{x}=\frac{1}{2} \cos ^{-1}\left(\frac{1-x}{1+x}\right) .\)

Putting x = tan2θ, we get

RHS = \(\frac{1}{2} \cos ^{-1}\left(\frac{1-x}{1+x}\right)\)

= \(\frac{1}{2} \cos ^{-1}\left(\frac{1-\tan ^2 \theta}{1+\tan ^2 \theta}\right)\)

= \(\frac{1}{2} \cos ^{-1}(\cos 2 \theta)\)

= \(\left(\frac{1}{2} \times 2 \theta\right)=\theta=\tan ^{-1} \sqrt{x}\) = LHS

[∵ x = tan2θ ⇒ tan θ = √x ⇒ θ = tan-1√x].

Hence, \(\tan ^{-1} \sqrt{x}=\frac{1}{2} \cos ^{-1}\left(\frac{1-x}{1+x}\right).\)

Example 37 Prove that \(\tan ^{-1}\left(\frac{1}{\sqrt{x^2-1}}\right)=\left(\frac{\pi}{2}-\sec ^{-1} x\right)\)

Solution

\(\tan ^{-1}\left(\frac{1}{\sqrt{x^2-1}}\right)=\left(\frac{\pi}{2}-\sec ^{-1} x\right)\)

Putting x = sec θ, we get

\(\tan ^{-1}\left(\frac{1}{\sqrt{x^2-1}}\right)=\tan ^{-1}\left(\frac{1}{\sqrt{\sec ^2 \theta-1}}\right)\)

= \(\tan ^{-1}\left(\frac{1}{\tan \theta}\right)=\tan ^{-1}(\cot \theta)\)

= \(\tan ^{-1}\left\{\tan \left(\frac{\pi}{2}-\theta\right)\right\}=\left(\frac{\pi}{2}-\theta\right)=\left(\frac{\pi}{2}-\sec ^{-1} x\right) .\)

∴ \(\tan ^{-1}\left(\frac{1}{\sqrt{x^2-1}}\right)=\left(\frac{\pi}{2}-\sec ^{-1} x\right)\)

Example 38 Prove that \(\tan ^{-1}\left(\frac{\sqrt{1+x^2}+\sqrt{1-x^2}}{\sqrt{1+x^2}-\sqrt{1-x^2}}\right)=\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} x^2\)

Solution

\(\tan ^{-1}\left(\frac{\sqrt{1+x^2}+\sqrt{1-x^2}}{\sqrt{1+x^2}-\sqrt{1-x^2}}\right)=\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} x^2\)

Putting x2 = cos 2θ, we get

\(\tan ^{-1}\left(\frac{\sqrt{1+x^2}+\sqrt{1-x^2}}{\sqrt{1+x^2}-\sqrt{1-x^2}}\right)=\tan ^{-1}\left(\frac{\sqrt{1+\cos 2 \theta}+\sqrt{1-\cos 2 \theta}}{\sqrt{1+\cos 2 \theta}-\sqrt{1-\cos 2 \theta}}\right)\)

= \(\tan ^{-1}\left(\frac{\sqrt{2 \cos ^2 \theta}+\sqrt{2 \sin ^2 \theta}}{\sqrt{2 \cos ^2 \theta}-\sqrt{2 \sin ^2 \theta}}\right)\)

= \(\tan ^{-1}\left(\frac{\cos \theta+\sin \theta}{\cos \theta-\sin \theta}\right)=\tan ^{-1}\left(\frac{1+\tan \theta}{1-\tan \theta}\right)\)

[dividing num. and denom. by cos θ]

= \(\tan ^{-1}\left\{\tan \left(\frac{\pi}{4}+\theta\right)\right\}=\left(\frac{\pi}{4}+\theta\right)\)

= \(\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} x^2\)

∴ \(\tan ^{-1}\left(\frac{\sqrt{1+x^2}+\sqrt{1-x^2}}{\sqrt{1+x^2}-\sqrt{1-x^2}}\right)=\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} x^2\)

Example 39 Prove that \(2 \tan ^{-1} \frac{1}{x}=\sin ^{-1}\left(\frac{2 x}{x^2+1}\right) \text {. }\)

Solution

\(2 \tan ^{-1} \frac{1}{x}=\sin ^{-1}\left(\frac{2 x}{x^2+1}\right) \text {. }\)

Let tan-1\(\frac{1}{x}\) = θ. Then, \(\frac{1}{x}\) = tan θ ⇒ x = cot θ.

∴ LHS = \(2 \tan ^{-1} \frac{1}{x}\) = 2θ.

RHS = \(\sin ^{-1}\left(\frac{2 \cot \theta}{\cot ^2 \theta+1}\right)=\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^2 \theta}\right)\)

= sin-1(sin 2θ) = 2θ.

∴ LHS = RHS.

Hence, \(2 \tan ^{-1} \frac{1}{x}=\sin ^{-1}\left(\frac{2 x}{x^2+1}\right) \text {. }\)

Example 40 Prove that \(\tan \left\{\frac{1}{2} \sin ^{-1}\left(\frac{2 x}{1-x^2}\right)+\frac{1}{2} \cos ^{-1}\left(\frac{1-y^2}{1+y^2}\right)\right\}=\left(\frac{x+y}{1-x y}\right)\), where |x| < 1, y > 0 and xy < 1.

Solution

\(\tan \left\{\frac{1}{2} \sin ^{-1}\left(\frac{2 x}{1-x^2}\right)+\frac{1}{2} \cos ^{-1}\left(\frac{1-y^2}{1+y^2}\right)\right\}=\left(\frac{x+y}{1-x y}\right)\)

Putting x = tan θ and y = tan Φ, we get

LHS = \(\tan \left\{\frac{1}{2} \sin ^{-1}\left(\frac{2 x}{1-x^2}\right)+\frac{1}{2} \cos ^{-1}\left(\frac{1-y^2}{1+y^2}\right)\right\}\)

= \(\tan \left\{\frac{1}{2} \sin ^{-1}\left(\frac{2 \tan \theta}{1-\tan ^2 \theta}\right)+\frac{1}{2} \cos ^{-1}\left(\frac{1-\tan ^2 \phi}{1+\tan ^2 \phi}\right)\right\}\)

= \(\tan \left\{\frac{1}{2} \sin ^{-1}(\sin 2 \theta)+\frac{1}{2} \cos ^{-1}(\cos 2 \phi)\right\}\)

= \(\tan \left\{\left(\frac{1}{2} \times 2 \theta\right)+\left(\frac{1}{2} \times 2 \phi\right)\right\}\)

= \(\tan (\theta+\phi)=\frac{\tan \theta+\tan \phi}{1-\tan \theta \tan \phi}=\frac{(x+y)}{(1-x y)}\) = RHS.

∴ \(\tan \left\{\frac{1}{2} \sin ^{-1}\left(\frac{2 x}{1-x^2}\right)+\frac{1}{2} \cos ^{-1}\left(\frac{1-y^2}{1+y^2}\right)\right\}=\left(\frac{x+y}{1-x y}\right)\)

Real-Life Applications of Inverse Trigonometric Functions

Example 41 Prove that \(\cot ^{-1}\left(\frac{a b+1}{a-b}\right)+\cot ^{-1}\left(\frac{b c+1}{b-c}\right)+\cot ^{-1}\left(\frac{c a+1}{c-a}\right)=0 \text {. }\)

Solution

We have

LHS = \(\tan ^{-1}\left(\frac{a-b}{1+a b}\right)+\tan ^{-1}\left(\frac{b-c}{1+b c}\right)+\tan ^{-1}\left(\frac{c-a}{1+c a}\right)\)

= (tan-1a – tan-1b) + (tan-1b – tan-1c) + (tan-1c – tan-1a)

= 0 = RHS.

∴ LHS = RHS.

Graphs Of Inverse Trigonometric Functions

1. Graph of sin-1x

Let f:[-1,1] → \(\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\) : f(x) = sin-1x.

Here \(\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\) is called the principal-value branch of sin-1x.

The other branches of sin-1x are

\(\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right],\left[\frac{3 \pi}{2}, \frac{5 \pi}{2}\right], \ldots \text { and }\left[\frac{-3 \pi}{2}, \frac{-\pi}{2}\right],\left[\frac{-5 \pi}{2}, \frac{-3 \pi}{2}\right]\), etc

Table for sin-1x

Class 12 Maths Inverse Trigonometric Function Table for sin x

Also, sin-1(-x) = -sin-1x.

∴ \(\left(x=\frac{-1}{2} \Rightarrow \sin ^{-1} x=\frac{-\pi}{6}\right)\),

\(\left(x=-0.7 \Rightarrow \sin ^{-1} x=\frac{-\pi}{4}\right)\),

\(\left(x=-0.86 \Rightarrow \sin ^{-1} x=\frac{-\pi}{3}\right)\),

\(\left(x=-1 \Rightarrow \sin ^{-1} x=\frac{-\pi}{2}\right) .\)

Class 12 Maths Inverse Trigonometric Function Graph of sinx

O(0,0), A(\(\frac{1}{2}\), \(\frac{\pi}{6}\)), B(0.7, \(\frac{\pi}{4}\)), c(0.86, \(\frac{\pi}{3}\)), D(1, \(\frac{\pi}{2}\)), E(\(-frac{1}{2}\), \(\frac{-\pi}{6}\)), F(-0.7, \(\frac{-\pi}{4}\)). G(-0.86, \(\frac{-\pi}{3}\)) and H(-1, \(\frac{-\pi}{2}\)).

Join the points OA, AB, BC, CD, and OE, EF, FG, GH successively with a freehand to get the required graph, as shown in the given figure.

Moreover, we have

\(\sin \frac{2 \pi}{3}=\sin \left(\pi-\frac{\pi}{3}\right)=\sin \frac{\pi}{3}=0.86\) \(\sin \frac{5 \pi}{6}=\sin \left(\pi-\frac{\pi}{6}\right)=\sin \frac{\pi}{6}=0.5, \sin \pi=0 \text {. }\) \(\sin \left(\frac{-2 \pi}{3}\right)=-\sin \frac{2 \pi}{3}=-0.86 .\) \(\sin \left(\frac{-5 \pi}{6}\right)=-\sin \frac{5 \pi}{6}=-0.5\)

Now, we may extend the graph as shown in the figure.

2. Graph of cos-1x

Let f : [-1,1] → [0, π] : f(x) = cos-1x.

Here, [0, π] is called the principal value branch of cos-1x.

The other branches of cos-1x are [π, 2π], [2π, 3π], …, [-π,0], [-2π, -π], etc.

Table for cos-1x

Class 12 Maths Inverse Trigonometric Function Table for cos x

On a graph paper, we plot the points

A(1,0), B(0.87, \(\frac{\pi}{6}\)), C(0.7, \(\frac{\pi}{4}\)), D(0.5, \(\frac{\pi}{3}\)), E(0, \(\frac{\pi}{2}\)), F(-0.5, \(\frac{2 \pi}{3}\)), G(-0.7, \(\frac{3 \pi}{4}\)), H(-0.86, \(\frac{5 \pi}{6}\)) and K(-1, π).

Join AB, BC, CD, DE, EF, FG, GH and HK successively with a freehand to obtain the graph of cos-1x, as shown in the given figure.

Class 12 Maths Inverse Trigonometric Function Graph of cos x

3. Graph of tan-1x

Let f : R → \(\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\) : f(x) = tan-1x.

Here \(\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\) is the principal value branch of tan-1x.

The other branches of tan-1x are (\(\frac{\pi}{2}\), \(\frac{3 \pi}{2}\)), (\(\frac{3 \pi}{2}\), \(\frac{5 \pi}{2}\)), … , (\(-\frac{3 \pi}{2}\), \(-\frac{\pi}{2}\)), etc.

We take the positive values and then use tan-1(-x) = -tan-1x.

Table for tan-1x

Class 12 Maths Inverse Trigonometric Function Table for tan x

Also, tan-1(-x) = -tan-1x.

∴ tan-1(-0.58) = \(-\frac{\pi}{6}\), tan-1(-1) = \(-\frac{\pi}{4}\), tan-1(-1.73) = \(-\frac{\pi}{3}\).

On a graph paper, we plot the points O(0,0), A(0.58, \(\frac{\pi}{6}\)), B(1, \(\frac{\pi}{4}\)), C(1.73, \(\frac{\pi}{3}\)), and D = (0.58, \(-\frac{\pi}{6}\)), E(-1, \(-\frac{\pi}{4}\)), F(-1.73, \(-\frac{\pi}{3}\)).

Join OA, AB, BC, and OD, DE, EF successively to get the graph.

Now, when x → ∞, then tan-1x → \(\frac{\pi}{2}\).

Also, when x → ∞, then tan-1x → \(-\frac{\pi}{2}\).

Class 12 Maths Inverse Trigonometric Function Graph of tan x

4. Graph of cot-1x

Let f : R → (0, π) : f(x) = cot-1x.

Here, (0,π) is the principal value branch of cot-1x.

The other branches of cot-1x are (π, 2π), (2π, 3π), …, (-π,0), etc.

Table for cot-1x

Class 12 Maths Inverse Trigonometric Function Table for cot x

Using cot(π – x) = -cot x, we have

\(\cot \frac{2 \pi}{3}=\cot \left(\pi-\frac{\pi}{3}\right)=-\cot \frac{\pi}{3}=-0.58, \cot \frac{3 \pi}{4}=\cot \left(\pi-\frac{\pi}{4}\right)=-\cot \frac{\pi}{4}=-1\) \(\cot \frac{5 \pi}{6}=\cot \left(\pi-\frac{\pi}{6}\right)=-\cot \frac{\pi}{6}=-1.73 \text {. }\)

On a graph paper, we plot the points \(A\left(1.73, \frac{\pi}{6}\right), B\left(1, \frac{\pi}{4}\right), C\left(0.58, \frac{\pi}{3}\right)\),

\(D\left(0, \frac{\pi}{2}\right), E\left(-0.58, \frac{2 \pi}{3}\right), F\left(-1, \frac{3 \pi}{4}\right), \text { and } G\left(-1.73, \frac{5 \pi}{6}\right) \text {. }\)

We join the points AB, BC, CD, DE, EF, FG successively to get the graph.

As x → ∞, then cot-1x → 0.

And, as x → ∞, then cot-1x → π.

Class 12 Maths Inverse Trigonometric Function Graph of cot x

5. Graph of sec-1x

Let f : R – (-1,1) → [0, π] – \(\frac{\pi}{2}\) : f(x) = sec-1x.

The other branches of sec-1x are [π, 2π] – \(\frac{3 \pi}{2}\), …, [-π, 0] – \(\frac{\pi}{2}\), etc.

Table for sec-1x

Class 12 Maths Inverse Trigonometric Function Table for sec x

\(\left\{\sec \frac{2 \pi}{3}=-2 \Rightarrow \sec ^{-1}(-2)=\frac{2 \pi}{3}\right\},\left\{\sec \frac{3 \pi}{4}=-\sqrt{2}=-1.41 \Rightarrow \sec ^{-1}(-1.41)=\frac{3 \pi}{4}\right\}\) \(\left\{\sec \frac{5 \pi}{6}=\frac{-2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{-2 \sqrt{3}}{3}=\frac{-2 \times 1.73}{3}=\frac{-3.46}{3}=-1.15 \Rightarrow \sec ^{-1}(-1.15)=\frac{5 \pi}{6}\right\}\)

sec π = -1 ⇒ sec-1(-1) = π.

On a graph paper, we plot the points

A(1,0), B(1.15, \(\frac{\pi}{6}\)), C(1.41, \(\frac{\pi}{4}\)), D(2, \(\frac{\pi}{3}\)) and E(-2, \(\frac{2 \pi}{3}\)), F(-1.41, \(\frac{3 \pi}{4}\)), G(-1.15, \(\frac{5 \pi}{6}\)), H(-1, π).

We join the points AB, BC, CD, DE, and HG, GF, FE.

Class 12 Maths Inverse Trigonometric Function Graph of sec x

6. Graph of cosec-1x

Let f : R -(-1,1) → \(\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\) – {0} : f(x) = cosec-1x.

The other branches of cosec-1x are \(\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]-\{\pi\}\), …, etc.

Table for cosec-1x

Class 12 Maths Inverse Trigonometric Function Table for cosec x

Since cosec-1(-x) = -cosec-1x, we have

\({cosec}^{-1}\left(\frac{-\pi}{6}\right)=-2, {cosec}^{-1}\left(\frac{-\pi}{4}\right)=-1.41, {cosec}^{-1}\left(\frac{-\pi}{3}\right)=-1.15 and {cosec}^{-1}\left(\frac{-\pi}{2}\right)=-1\)

On a graph paper, we plot the points \(A\left(2, \frac{\pi}{6}\right), B\left(1.41, \frac{\pi}{4}\right), C\left(1.15, \frac{\pi}{3}\right)\)

\(D\left(1, \frac{\pi}{2}\right) \text { and } E\left(-2, \frac{-\pi}{6}\right), F\left(-1.41, \frac{-\pi}{4}\right), G\left(-1.15, \frac{-\pi}{3}\right), H\left(-1, \frac{-\pi}{2}\right) \text {. }\)

Join the points as shown in the given figure, to get the graph.

Also as x → 0 from +ve values, then cosec-1x → ∞.

As x → 0 from -ve values, then cosec-1x → ∞.

Class 12 Maths Inverse Trigonometric Function Graph of cosec x

WBCHSE Class 12 Maths Solutions For Differential Equations

Differential Equations – Chapter 1 Differential Equations

Differential Equation An equation containing an independent variable, a dependent variable and the derivatives of the dependent variable is called a differential equation.

Examples Each of the following equations is a differential equation:

(1) \(\frac{d y}{d x}+5 y=e^x\)

(2) \(\frac{d^2 y}{d x^2}-2 \frac{d y}{d x}+3 y=\sin x\)

(3) \(\frac{d y}{d x}=\frac{x^3-y^3}{x y^2-x^2 y}\)

(4) x2dx + y2dy = 0

Order Of A Differential Equation The order of the highest-order derivative occurring in a differential equation, is called the order of the differential equation.

Degree Of A Differential Equation The power of the highest-order derivative occurring in a differential equation, after it is made free from radicals and fractions, is called the degree of the differential equation.

Examples (1) Consider the equation \(\left(\frac{d y}{d x}\right)^2+5 y=\sin x .\)

In this equation, the order of the highest-order derivative is 1.

So, its order is 1.

The power of the highest-order derivative is 2.

So, its degree is 2.

Hence, the above equation is of order 1 and degree 2.

(2) Consider the equation \(\frac{d^2 y}{d x^2}+3\left(\frac{d y}{d x}\right)^3+2 y=0 .\)

In this equation, the order of the highest-order derivative is 2.

So, its order is 2.

Read and Learn More  Class 12 Math Solutions

The power of the highest-order derivative is 1.

So, its degree is 1.

Hence, the above equation is of order 2 and degree 1.

(3) The equation \(x\left(\frac{d^2 y}{d x^2}\right)^3+y\left(\frac{d y}{d x}\right)^4+y^2=0\) is an equation of order 2 and degree 3.

(4) The equation y dx = x dy may be written as \(\frac{d y}{d x}\) = \(\frac{y}{x}\).

So, it is a differential equation of order 1 and degree 1.

WBCHSE Class 12 Maths Solutions For Differential Equations

Solved Examples

Example 1 Determine the order and degree of the differential equation

\(\left(\frac{d^2 y}{d x^2}\right)=\sqrt{\left\{1+\left(\frac{d y}{d x}\right)^2\right\}} .\)

Solution

Given

\(\left(\frac{d^2 y}{d x^2}\right)=\sqrt{\left\{1+\left(\frac{d y}{d x}\right)^2\right\}} .\)

The above equation when free from radicals, takes the form

\(\left(\frac{d^2 y}{d x^2}\right)^2=1+\left(\frac{d y}{d x}\right)^2 .\)

It is an equation of order 2 and degree 2.

Example 2 Determine the order and degree of the differential equation \(y=p x+\sqrt{a^2 p^2+b^2}, \text { where } p=\frac{d y}{d x} \text {. }\)

Solution

Given

\(y=p x+\sqrt{a^2 p^2+b^2}, \text { where } p=\frac{d y}{d x} \text {. }\) \(y=p x+\sqrt{a^2 p^2+b^2}\)

⇔ \(y-p x=\sqrt{a^2 p^2+b^2}\)

⇔ (y – px)2 = a2p2 + b2

⇔ y2 + x2p2 – 2xyp = a2p2 + b2

⇔ (x2-a2)p2 – 2xyp + (y2 – b2) = 0

⇔ \(\left(x^2-a^2\right)\left(\frac{d y}{d x}\right)^2-2 x y \cdot\left(\frac{d y}{d x}\right)+\left(y^2-b^2\right)=0\).

Clearly, it is a differential equation of order 1 and degree 2.

Solution Of A Differential Equation A function of the form y = f(x) + C which satisfies a given differential equation is called its solution.

General Solution Of A Differential Equation Suppose a differential equation of order n is being given. If its solution contains n arbitrary constants then it is called a general solution.

Particular Solution Of A Differential Equation Given particular values to arbitrary constants in the general solution of a differential equation, we get its particular solutions.

Solved Examples

Example 1 Verify that y = A cos x – B sin x is a solution of the differential equation \(\frac{d^2 y}{d x^2}+y=0\).

Solution

Given: y = A cos x – B sin x …(1)

⇒ \(\frac{d y}{d x}\) = -A sin x – B cos x

⇒ \(\frac{d^2 y}{d x^2}\) = -A cos x + B sin x

= -(A cos x – B sin x) = -y [from (1)]

⇒ \(\frac{d^2 y}{d x^2}+y=0\).

Hence, y = A cos x – B sin x is a solution of the differential equation \(\frac{d^2 y}{d x^2}+y=0\).

Example 2 Verify that y = an e2x + b e-x is a solution of the differential equation \(\frac{d^2 y}{d x^2}-\frac{d y}{d x}-2 y=0 .\)

Solution

Given: y = a e2x + b e-x …(1)

⇒ \(\frac{d y}{d x}=2 a e^{2 x}-b e^{-x}\) …(2)

⇒ \(\frac{d^2 y}{d x^2}=4 a e^{2 x}+b e^{-x}\) …(3)

∴ \(\left(\frac{d^2 y}{d x^2}-\frac{d y}{d x}-2 y\right)=\left(4 a e^{2 x}+b e^{-x}\right)-\left(2 a e^{2 x}-b e^{-x}\right)-2\left(a e^{2 x}+b e^{-x}\right)\) [using (1),(2) and (3)]

= 0

Hence, y = a e2x + b e-x is a solution of the differential equation \(\frac{d^2 y}{d x^2}-\frac{d y}{d x}-2 y=0 .\)

Example 3 Verify that \(y=A x+\frac{B}{x}\) is a solution of the differential equation \(x^2 \frac{d^2 y}{d x^2}+x \frac{d y}{d x}-y=0 .\)

Solution

Given: y = Ax + \(\frac{B}{x}\) …(1)

⇒ \(\frac{d y}{d x}=A-\frac{B}{x^2}\) …(2)

⇒ \(\frac{d^2 y}{d x^2}=\frac{2 B}{x^3}\) …(3)

Substituting the values of y, \(\frac{d y}{d x}\) and \(\frac{d^2 y}{d x^2}\) from (1), (2) and (3), we get

\(\left(x^2 \frac{d^2 y}{d x^2}+x \frac{d y}{d x}-y\right)=x^2 \cdot \frac{2 B}{x^3}+x\left(A-\frac{B}{x^2}\right)-\left(A x+\frac{B}{x}\right)\)

= \(\left(\frac{2 B}{x}+A x-\frac{B}{x}-A x-\frac{B}{x}\right)=0 \text {. }\)

Thus, y = Ax + \(\frac{B}{x}\) satisfies \(x^2 \frac{d^2 y}{d x^2}+x \frac{d y}{d x}-y=0 .\)

Hence, y = Ax + \(\frac{B}{x}\) is a solution of \(x^2 \frac{d^2 y}{d x^2}+x \frac{d y}{d x}-y=0 .\)

Example 4 Verify that y = a cos(log x) + b sin (log x) is a solution of the differential equation \(x^2+\frac{d^2 y}{d x^2}+x \frac{d y}{d x}+y=0 .\)

Solution

Given: y = a cos(log x) + b sin (log x) …(1)

⇒ \(\frac{d y}{d x}=\frac{-a \sin (\log x)}{x}+\frac{b \cos (\log x)}{x}\) [on differentiating (1) w.r.t. x]

⇒ \(x \frac{d y}{d x}=-a \sin (\log x)+b \cos (\log x)\) …(2)

⇒ \(x \frac{d^2 y}{d x^2}+\frac{d y}{d x}=\frac{-a \cos (\log x)}{x}-\frac{b \sin (\log x)}{x}\) [on differentiating (2) w.r.t. x]

⇒ \(x^2 \frac{d^2 y}{d x^2}+x \frac{d y}{d x}=-a \cos (\log x)-b \sin (\log x)\)

⇒ \(x^2 \frac{d^2 y}{d x^2}+x \frac{d y}{d x}+y=0\) [using (1)].

Hence, y = a cos (log x) + b sin (log x) is a solution of \(x^2+\frac{d^2 y}{d x^2}+x \frac{d y}{d x}+y=0 .\)

Example 5 Verify that y = emsin-1x is a solution of the differential equation \(\left(1-x^2\right) \frac{d^2 y}{d x^2}-x \frac{d y}{d x}-m^2 y=0\)

Solution

Given:

y = emsin-1x …(1)

⇒ \(\frac{d y}{d x}=\frac{e^{m \sin ^{-1} x}}{\sqrt{1-x^2}} \cdot m\) [on differentiating (1)]

⇒ \(\sqrt{1-x^2}\left(\frac{d y}{d x}\right)=m y\) …(2) [∵ em sin-1x = y]

⇒ \(\left(1-x^2\right)\left(\frac{d y}{d x}\right)^2=m^2 y^2\) …(3) [on squaring both sides of (2)]

⇒ \(\left(1-x^2\right) 2 \frac{d y}{d x} \cdot\left(\frac{d^2 y}{d x^2}\right)-2 x\left(\frac{d y}{d x}\right)^2=2 m^2 y \frac{d y}{d x}\)

[on differentiating both sides of (3)]

⇒ \(2\left(\frac{d y}{d x}\right) \cdot\left\{\left(1-x^2\right) \frac{d^2 y}{d x^2}-x \frac{d y}{d x}-m^2 y\right\}=0\)

⇒ \(\left(1-x^2\right) \frac{d^2 y}{d x^2}-x \frac{d y}{d x}-m^2 y=0\)

Hence, y = emsin-1x is a solution of the differential equation \(\left(1-x^2\right) \frac{d^2 y}{d x^2}-x \frac{d y}{d x}-m^2 y=0\)

Example 6 Verify that v = \(\frac{A}{r}\) + B is a solution of the differential equation \(\frac{d^2 v}{d r^2}+\frac{2}{r} \cdot \frac{d v}{d r}=0\)

Solution

Since the given relation contains two arbitrary constants, we differentiate it two times w.r.t. r, and eliminate A and B.

∴ v = \(\frac{A}{r}\) + B ⇒ \(\frac{d v}{d r}=\frac{-A}{r^2}\) …(1)

⇒ \(\frac{d^2 v}{d r^2}=\frac{2 A}{r^3}\) …(2)

On dividing (2) by (1), we get

\(\frac{\left(d^2 v / d r^2\right)}{(d v / d r)}=\left\{\frac{2 A}{r^3} \times \frac{r^2}{(-A)}\right\}=\frac{-2}{r}\)

⇒ \(\frac{d^2 v}{d r^2}=\frac{-2}{r} \cdot \frac{d v}{d r}\)

⇒ \(\frac{d^2 v}{d r^2}+\frac{2}{r} \cdot \frac{d v}{d r}=0 .\)

Hence, v = \(\frac{A}{r}\) + B is a solution of the differential equation \(\frac{d^2 v}{d r^2}+\frac{2}{r} \cdot \frac{d v}{d r}=0 .\)

Formation of a Differential Equation whose General Solution is Given

Method Suppose an equation of a family of curves contains n arbitrary constants (called parameters).

Then, we obtain its differential equation, as given below.

Step 1. Differentiate the equation of the given family of curves n times to get n more equations.

Step 2. Eliminate n constants, using these (n+1) equations.

This gives us the required differential equation of order n.

Solved Examples

Example 1 Find the differential equation of the family of curves y = Aex + Be-x, where A and B are arbitrary constants.

Solution

The equation of the given family of curves is y = Aex + Be-x …(1)

Since the given equation contains two arbitrary constants, we differentiate it two times w.r.t. x.

Now, \(\frac{d y}{d x}=A e^x-B e^{-x}\)

⇒ \(\frac{d^2 y}{d x^2}=A e^x+B e^{-x}\) ⇒ \(\frac{d^2 y}{d x^2}=y\)

⇒ \(\frac{d^2 y}{d x^2}-y=0\), which is the required differential equation.

Example 2 Find the differential equation of the family of curves y = ex(A cos x + B sin x), where A and B are arbitrary constants.

Solution

The equation of the given family of curves is y = ex(A cos x + B sin x) …(1)

Since the given equation contains two arbitrary constants, we differentiate it two times w.r.t x.

Now, \(\frac{d y}{d x}=e^x(-A \sin x+B \cos x)+e^x(A \cos x+B \sin x)\)

⇒ \(\frac{d y}{d x}-y=e^x(-A \sin x+B \cos x)\) …(2)

⇒ \(\frac{d^2 y}{d x^2}-\frac{d y}{d x}=e^x(-A \cos x-B \sin x)+e^x(-A \sin x+B \cos x)\)

⇒ \(\frac{d^2 y}{d x^2}-\frac{d y}{d x}=-y+\left(\frac{d y}{d x}-y\right)\) [using (1) and (2)]

⇒ \(\frac{d^2 y}{d x^2}-2 \frac{d y}{d x}+2 y=0\), which is the required differential equation of the given family of curves.

Example 3 Find the differential equation for the family of all concentric circles centred at the origin and having different radii.

Solution

The equation of the given family of circles is x2 + y2 = r2, r being a parameter …(1)

On differentiating (1) w.r.t. x, we get

Class 12 Maths Differential Equations Example 3

\(2 x+2 y \cdot \frac{d y}{d x}=0\)

⇒ \(x+y \frac{d y}{d x}=0\), which is the required differential equation.

Example 4 Find the differential equation of the family of all straight lines passing through the origin.

Solution

The general equation of the family of all straight lines passing through the origin is y = mx …(1)

Differentiating (1) w.r.t. x, we get \(\frac{d y}{d x}\) = m …(2)

Class 12 Maths Differential Equations Example 4

Substituting the value of m from (2) in (1), we get

y = \(x\left(\frac{d y}{d x}\right)\), which is the required differential equation.

Example 5 Find the differential equation of the family of all straight lines.

Solution

The general equation of the family of all straight lines is given by y = mx + c, where m and c are parameters.

Class 12 Maths Differential Equations Example 5

Now, y = mx + c ⇒ \(\frac{d y}{d x}=m\)

⇒ \(\frac{d^2 y}{d x^2}=0 \text {. }\)

So, the required differential equation is \(\frac{d^2 y}{d x^2}=0 \text {. }\)

WBBSE Class 12 Differential Equations Solutions

Example 6 Find the differential equation of the family of all circles touching the x-axis at the origin.

Solution

We know that the equation of a circle with centre (0, a) and radius a is given by x2 + (y-a)2 = a2 or x2 + y2 = 2ay

Class 12 Maths Differential Equations Example 6

So, the general equation of the family of all circles touching the x-axis at the origin is given by

x2 + y2 = 2ay …(1)

where a is a parameter.

On differentiating (1) w.r.t. x, we get

\(2 x+2 y \frac{d y}{d x}=2 a \frac{d y}{d x} \Rightarrow a \frac{d y}{d x}=x+y \frac{d y}{d x}\)

⇒ \(a=\frac{x}{\left(\frac{d y}{d x}\right)}+y\) …(2)

Substituting the value of a from (2) in (1), we get

\(x^2+y^2=2 y\left\{\frac{x}{\left(\frac{d y}{d x}\right)}+y\right\} \Rightarrow\left(x^2-y^2\right)=\frac{2 x y}{\left(\frac{d y}{d x}\right)}\)

⇒ \(\frac{d y}{d x}=\frac{2 x y}{\left(x^2-y^2\right)}\)

Hence, \(\frac{d y}{d x}=\frac{2 x y}{\left(x^2-y^2\right)}\) is the required differential equation.

Example 7 Find the differential equation of the family of all parabolas having vertex at the origin and axis along the positive direction of the x-axis.

Solution

Let C be the family of all parabolas having vertex at origin and axis along positive direction of x-axis. Let F(a,0) be the focus of a member of this family, where a is an arbitrary constant.

Class 12 Maths Differential Equations Example 7

Then, the equation of this family is

y2 = 4ax …(1)

where a is the parameter.

Now, y2 = 4ax ⇒ \(2 y \frac{d y}{d x}=4 a\) …(2)

Substituting the value of 4a from (2) in (1), we get

y2 = \(2 x y \frac{d y}{d x}\) ⇒ \(\left(y^2-2 x y \frac{d y}{d x}\right)=0\)

Hence, \(y^2-2 x y \frac{d y}{d x}=0\) is the required differential equation.

Example 8 Find the differential equation of the family of all ellipses having foci on the x-axis and centre at the origin.

Solution

Let C be the family of all ellipses having foci on the x-axis and centre at the origin.

Class 12 Maths Differential Equations Example 8

The general equation of such a family is

\(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) …(1)

where a and b are parameters.

Differentiating (1) w.r.t. x, we get

\(\frac{2 x}{a^2}+\frac{2 y}{b^2} \cdot \frac{d y}{d x}=0 \Rightarrow \frac{y}{b^2} \cdot \frac{d y}{d x}=\frac{-x}{a^2}\)

⇒ \(\frac{y}{x} \cdot \frac{d y}{d x}=\frac{-b^2}{a^2}\) …(2)

Differentiating (2) w.r.t. x, we get

\(\frac{y}{x} \cdot\left(\frac{d^2 y}{d x^2}\right)+\frac{d y}{d x} \cdot \frac{\left(x \frac{d y}{d x}-y\right)}{x^2}=0\)

⇒ \((x y)\left(\frac{d^2 y}{d x^2}\right)+x\left(\frac{d y}{d x}\right)^2-y\left(\frac{d y}{d x}\right)=0 .\)

Hence, \((x y)\left(\frac{d^2 y}{d x^2}\right)+x\left(\frac{d y}{d x}\right)^2-y\left(\frac{d y}{d x}\right)=0 .\) is the required differential equation.

Understanding Differential Equations Concepts

Example 9 Find the differential equation of the family of all circles in second quadrant and touching the coordinate axes.

Solution

Let C be the family of all circles in second quadrant and touching the coordinate axes.

The coordinates of centre of an arbitrary member of this family is (-a, a) and its radius is a.

Class 12 Maths Differential Equations Example 9

Thus, the equation of such a family is

(x+a)2 + (y-a)2 = a2 …(1)

where a is an arbitrary constant.

This equation may be written as

x2 + y2 + 2ax – 2ay + a2 = 0 …(2)

⇒ \(2 x+2 y \frac{d y}{d x}+2 a-2 a \frac{d y}{d x}=0\) [on differentiating (1) w.r.t. x]

⇒ \(x+y \frac{d y}{d x}=a\left(\frac{d y}{d x}-1\right)\) ⇒ \(a=\frac{x+y \frac{d y}{d x}}{\frac{d y}{d x}-1}\)

⇒ \(a=\frac{x+y y^{\prime}}{\left(y^{\prime}-1\right)}\) …(3)

where \(\frac{d y}{d x}\) = y’.

Putting the values of a from (3) in (1), we get

\(\left(x+\frac{x+y y^{\prime}}{y^{\prime}-1}\right)^2+\left(y-\frac{x+y y^{\prime}}{y^{\prime}-1}\right)^2=\left(\frac{x+y y^{\prime}}{y^{\prime}-1}\right)^2\)

⇒ (xy’ – x + x + yy’)2 + (yy’ – y – x – yy’)2 = (x + yy’)2

⇒ (xy’ + yy’)2 + (x + y)2 = (x + yy’)2

⇒ (x + y)2 . [y’2 + 1] = (x + yy’)2. which is the required differential equation.

Example 10 Find the differential equation of the family of all circles of radius r.

Solution

The equation of the family of all circles of radius r is (x-a)2 + (y-b)2 = r2 …(1)

where a and b are arbitrary constants.

Differentiating (1) w.r.t. x, we get

2(x-a)+2(y-b) \(\frac{d y}{d x}=0\)

⇒ (x-a)+(y-b) \(\frac{d y}{d x}=0\) …(2)

⇒ \(1+(y-b) \frac{d^2 y}{d x^2}+\left(\frac{d y}{d x}\right)^2=0\) [on differentiating (2) w.r.t.x]

⇒ \((y-b)=-\left\{\frac{1+\left(\frac{d y}{d x}\right)^2}{\left(\frac{d^2 y}{d x^2}\right)}\right\}\) …(3)

Substituting the value of (y-b) in (2), we get

\((x-a)=-\left\{\frac{1+\left(\frac{d y}{d x}\right)^2}{\left(\frac{d^2 y}{d x^2}\right)}\right\} \cdot\left(\frac{d y}{d x}\right)\) …(4)

Putting the values of (y – b) and (x – a) from (3) and (4) in (1), we get

\(\frac{\left\{1+\left(\frac{d y}{d x}\right)^2\right\}^2}{\left(\frac{d^2 y}{d x^2}\right)^2} \cdot\left(\frac{d y}{d x}\right)^2+\frac{\left\{1+\left(\frac{d y}{d x}\right)^2\right\}^2}{\left(\frac{d^2 y}{d x^2}\right)^2}=r^2\)

⇒ \(\left\{1+\left(\frac{d y}{d x}\right)^2\right\}^3=r^2\left(\frac{d^2 y}{d x^2}\right)^2\), which is the required differential equation.

Solution of Differential Equations

Solving Differential Equations With Variables Separable If the given differential equation can be expressed in the form f(x)dx = g(y)dy, then \(\int f(x) d x=\int g(y) d y+C\) is the solution of such a differential equation.

Solved Examples

Example 1 Solve the differential equation \(\frac{d y}{d x}=\frac{x-1}{y+2}(y \neq-2) .\)

Solution

We have \(\frac{d y}{d x}=\frac{x-1}{y+2}(y \neq-2) .\)

⇒ (y+2)dy = (x-1)dx [separating the variables]

⇒ \(\int(y+2) d y=\int(x-1) d x\)

⇒ \(\frac{y^2}{2}+2 y=\frac{x^2}{2}-x+C_1\)

⇒ y2 + 4y = x2 – 2x + 2C1

⇒ y2 + 4y – x2 + 2x = C, where C = 2C1.

Hence, y2 + 4y – x2 + 2x = C is the general solution of the given differential equation.

Example 2 Solve the differential equation \(\frac{d y}{d x}=\frac{1+y^2}{1+x^2} .\)

Solution

We have \(\frac{d y}{d x}=\frac{\left(1+y^2\right)}{\left(1+x^2\right)}\)

⇒ \(\frac{1}{\left(1+y^2\right)} d y=\frac{1}{\left(1+x^2\right)} d x\) [separating the variables]

⇒ \(\int \frac{1}{\left(1+y^2\right)} d y=\int \frac{1}{\left(1+x^2\right)} d x\)

⇒ tan-1y = tan-1x + C1

⇒ tan-1y – tan-1x = C1

⇒ \(\tan ^{-1}\left(\frac{y-x}{1+y x}\right)=C_1\)

⇒ \(\frac{y-x}{1+y x}=\tan C_1\)

⇒ \(\frac{y-x}{1+y x}=C\), where C = tan C1.

Hence, \(\frac{y-x}{1+y x}=C\) is the general solution of the given differential equation.

Example 3 Solve the differential equation \(\frac{d y}{d x}=\log (x+1) \text {. }\)

Solution

\(\frac{d y}{d x}=\log (x+1)\)

⇒ dy = log(x+1)dx [seperating the variables]

⇒ \(\int d y=\int \log (x+1) d x\)

⇒ \(y=\int 1 \cdot \log (x+1)+C\)

= \(x \log (x+1)-\int \frac{1}{(x+1)} \cdot x d x+C\) [integrating by parts]

= \(x \log (x+1)-\int \frac{(x+1)-1}{(x+1)} d x+C\)

= \(x \log (x+1)-\int\left(1-\frac{1}{x+1}\right) d x+C\)

= x log(x+1) – x + log(x+1) + C

= (x+1) log(x+1) – x + C.

Hence, y = (x+1) log(x+1) – x + C is the required solution.

Step-by-Step Solutions to Differential Equation Problems

Example 4 Solve the differential equation \(\frac{d y}{d x}=\sin ^{-1} x .\)

Solution

\(\frac{d y}{d x}=\sin ^{-1} x\)

⇒ dy = sin-1x dx [separating the variables]

⇒ \(\int d y=\int \sin ^{-1} x d x\)

⇒ \(y=\int 1 \cdot \sin ^{-1} x d x\)

= \(\left(\sin ^{-1} x\right) x-\int \frac{1}{\sqrt{1-x^2}} \cdot x d x+C\)

= \(\left(\sin ^{-1} x\right) x+\frac{1}{2} \cdot \int \frac{-2 x}{\sqrt{1-x^2}} d x+C\)

= \(\left(\sin ^{-1} x\right) x+\frac{1}{2} \int \frac{1}{\sqrt{t}} d t+C\), where (1 – x2) = t

= \(\left(\sin ^{-1} x\right) x+\frac{1}{2} \times 2 \sqrt{t}+C\)

= \(\left(\sin ^{-1} x\right) x+\sqrt{1-x^2}+\text { C. }\)

Hence, y = \(\left(\sin ^{-1} x\right) x+\sqrt{1-x^2}+\text { C. }\)

Example 5 Solve the differential equation \(\log \left(\frac{d y}{d x}\right)=(a x+b y)\)

Solution

We have

\(\log \left(\frac{d y}{d x}\right)=(a x+b y)\)

⇒ \(\frac{d y}{d x}=e^{a x+b y}=e^{a x} \cdot e^{b y}\)

⇒ \(\frac{1}{e^{b y}} d y=e^{a x} d x\) [on separating the variables]

⇒ \(\int e^{-b y} d y=\int e^{a x} d x\) [integrating both sides]

⇒ \(\frac{e^{-b y}}{-b}=\frac{e^{a x}}{a}+C\)

⇒ ae-by + beax = C’, where C’ = -abC.

Thus, ae-by + beax = C’ is the required solution.

Example 6 Solve the differential equation \(\frac{d y}{d x}=\sqrt{4-y^2}\)

Solution

We have \(\frac{d y}{d x}=\sqrt{4-y^2}\)

⇒ \(\frac{d y}{\sqrt{4-y^2}}=d x\) [on separating the variables]

⇒ \(\int \frac{d y}{\sqrt{2^2-y^2}}=\int d x\) [integrating both sides]

⇒ \(\sin ^{-1}\left(\frac{y}{2}\right)=x+C \text {. }\)

Hence, \(\sin ^{-1}\left(\frac{y}{2}\right)=x+C\) is the required solution.

Example 7 Solve the differential equation \(\frac{d y}{d x}=1-x+y-x y\)

Solution

We have

\(\frac{d y}{d x}=1-x+y-x y\)

⇒ \(\frac{d y}{d x}=(1-x)+y(1-x)\)

⇒ \(\frac{d y}{d x}=(1-x)(1+y)\)

⇒ \(\frac{d y}{(1+y)}=(1-x) d x\) [on separating the variables]

⇒ \(\int \frac{d y}{(1+y)}=\int(1-x) d x\) [integrating both sides]

⇒ \(\log |1+y|=x-\frac{x^2}{2}+C\)

Hence, \(\log |1+y|=x-\frac{x^2}{2}+C\) is the required solution.

Example 8 Solve the differential equation x(1 + y2)dx – y(1 + x2)dy = 0, given that y = 0 when x = 1.

Solution

The given differential equation is

x(1 + y2)dx – y(1 + x2)dy = 0

⇒ x(1+y2)dx = y(1+x2)dy

⇒ \(\frac{y}{\left(1+y^2\right)} d y=\frac{x}{\left(1+x^2\right)} d x\)

⇒ \(\int \frac{y}{\left(1+y^2\right)} d y=\int \frac{x}{\left(1+x^2\right)} d x\)

⇒ \(\frac{1}{2} \int \frac{2 y}{\left(1+y^2\right)} d y=\frac{1}{2} \int \frac{2 x}{\left(1+x^2\right)} d x\)

⇒ \(\frac{1}{2} \log \left(1+y^2\right)=\frac{1}{2} \log \left(1+x^2\right)+C\) …(1)

Putting x= 1 and y = 0 in (1), we get C = –\(\frac{1}{2}\) log 2.

∴ \(\frac{1}{2} \log \left(1+y^2\right)=\frac{1}{2} \log \left(1+x^2\right)-\frac{1}{2} \log 2\)

⇒ log(1+y2) = log(1+x2) – log 2

⇒ \(\log \left(1+y^2\right)=\log \left(\frac{1+x^2}{2}\right)\)

⇒ \(\left(1+y^2\right)=\left(\frac{1+x^2}{2}\right)\)

⇒ (x2 – 2y2) = 1.

Hence, the required solution is (x2 – 2y2) = 1.

Example 9 Solve the differential equation \(\frac{d y}{d x}=e^{x+y}+x^2 \cdot e^y \text {. }\)

Solution

We have

\(\frac{d y}{d x}=e^{x+y}+x^2 \cdot e^y\)

= ex . ey + x2 . ey

= (ex + x2).ey

⇒ e-ydy = (ex+x2)dx [separating the variables]

⇒ \(\int e^{-y} d y=\int\left(e^x+x^2\right) d x\)

⇒ \(-e^{-y}=e^x+\frac{x^3}{3}+C_1\)

⇒ \(e^x+e^{-y}+\frac{x^3}{3}=C\), where C = -C1.

Hence, \(e^x+e^{-y}+\frac{x^3}{3}=C\) is the required solution.

Types of Differential Equations Explained

Example 10 Solve the differential equation \(\frac{d y}{d x}=y \sin 2 x\), given that y(0) = 1.

Solution

We have

\(\frac{d y}{d x}=y \sin 2 x\)

⇒ \(\frac{1}{y} d y=\sin 2 x d x\) [separating the variables]

⇒ \(\int \frac{1}{y} d y=\int \sin 2 x d x+C\)

⇒ \(\log y=-\frac{1}{2} \cos 2 x+C\)

Putting x = 0 and y = 1 in (1), we get C = \(\frac{1}{2}\).

∴ \(\log y=-\frac{1}{2} \cos 2 x+\frac{1}{2}\)

= \(\frac{1}{2}(1-\cos 2 x)=\left(\frac{1}{2} \times 2 \sin ^2 x\right)=\sin ^2 x\)

⇒ log y = sin2x ⇒ y = esin2x.

Hence, y = esin2x is the required solution.

Example 11 Solve the differential equation (1+e2x)dy + ex(1+y2)dx = 0, it being given that y = 1 when x = 0.

Solution

We have

(1+e2x)dy + ex(1+y2)dx = 0

⇒ \(\frac{1}{\left(1+y^2\right)} d y+\frac{e^x}{\left(1+e^{2 x}\right)} d x=0\) [separating the variables]

⇒ \(\int \frac{1}{\left(1+y^2\right)} d y+\int \frac{e^x}{\left(1+e^{2 x}\right)} d x=\mathrm{C}\)

⇒ \(\tan ^{-1} y+\int \frac{d t}{\left(1+t^2\right)}=C\), where ex = t

⇒ tan-1y + tan-1t = C

⇒ tan-1y + tan-1ex = C …(1) [∵ t = ex]

Putting x = 0 and y = 1 in (1), we get

C = \(\tan ^{-1} 1+\tan ^{-1} e^0=\left(\tan ^{-1} 1+\tan ^{-1} 1\right)=\left(\frac{\pi}{4}+\frac{\pi}{4}\right)=\frac{\pi}{2} .\)

∴ tan-1y + tan-1ex = \(\frac{\pi}{2}\) is the required solution.

Example 12 Solve the differential equation \(\frac{d y}{d x}+\sqrt{\frac{1-y^2}{1-x^2}}=0 .\)

Solution

\(\frac{d y}{d x}+\sqrt{\frac{1-y^2}{1-x^2}}=0\)

⇒ \(\frac{1}{\sqrt{1-y^2}} d y+\frac{1}{\sqrt{1-x^2}} d x=0\) [on separating the variables]

⇒ \(\int \frac{d y}{\sqrt{1-y^2}}+\int \frac{d x}{\sqrt{1-x^2}}=C\) [integrating both sides]

⇒ sin-1y + sin-1x = C .

Hence, sin-1y + sin-1x = C is the required solution.

Example 13 Solve the differential equation \(x \sqrt{1-y^2} d x+y \sqrt{1-x^2} d y=0\).

Solution

We have

\(x \sqrt{1-y^2} d x+y \sqrt{1-x^2} d y=0\)

⇒ \(\frac{x}{\sqrt{1-x^2}} d x+\frac{y}{\sqrt{1-y^2}} d y=0\) [on separating the variables]

⇒ \(\int \frac{x}{\sqrt{1-x^2}} d x+\int \frac{y}{\sqrt{1-y^2}} d y=C\) [integrating both sides]

⇒ \(-\frac{1}{2} \cdot \int \frac{(-2 x)}{\sqrt{1-x^2}} d x-\frac{1}{2} \cdot \int \frac{(-2 y)}{\sqrt{1-y^2}} d y=C\)

⇒ \(-\frac{1}{2} \cdot \int \frac{1}{\sqrt{t}} d t-\frac{1}{2} \cdot \int \frac{1}{\sqrt{s}} d s=\mathrm{C}\), where (1-x2) = t and (1-y2) = s

⇒ \(-\frac{1}{2} \int t^{-1 / 2} d t-\frac{1}{2} \int s^{-1 / 2} d s=C\)

⇒ -√t -√s = C

⇒ √t + √s = k [where k = -C]

⇒ \(\sqrt{1-x^2}+\sqrt{1-y^2}=k\)

Hence, \(\sqrt{1-x^2}+\sqrt{1-y^2}=k\) is the required solution.

Example 14 Solve the differential equation \(\frac{d y}{d x}=\frac{1-\cos x}{1+\cos x} .\)

Solution

We have

\(\frac{d y}{d x}=\frac{1-\cos x}{1+\cos x}\)

= \(\frac{2 \sin ^2(x / 2)}{2 \cos ^2(x / 2)}=\tan ^2\left(\frac{x}{2}\right)\)

⇒ \(d y=\tan ^2\left(\frac{x}{2}\right) d x\) [separating the variables]

⇒ \(\int d y=\int \tan ^2 \frac{x}{2} d x+C\)

= \(\int\left(\sec ^2 \frac{x}{2}-1\right) d x+C\)

⇒ \(y=2 \tan \frac{x}{2}-x+C \text {. }\)

Hence, \(y=2 \tan \frac{x}{2}-x+C\) is the required solution.

Example 15 Solve the differential equation (1+y2)(1+log x)dx + x dy = 0, it being given that y = 1 when x = 1.

Solution

We have

(1+y2)(1+log x)dx + x dy = 0

⇒ \(\frac{(1+\log x)}{x} d x+\frac{1}{\left(1+y^2\right)} d y=0\) [on separating the variables]

⇒ \(\int \frac{(1+\log x)}{x} d x+\int \frac{1}{\left(1+y^2\right)} d y=C\) [integrating both sides]

⇒ \(\int t d t+\tan ^{-1} y=C, where (1+log x) = t ⇒ \frac{1}{2} t^2+\tan ^{-1} y=C\)

⇒ \(\frac{1}{2}(1+\log x)^2+\tan ^{-1} y=C\) …(1)

Putting x = 1 and y = 1 in (1), we get:

\(C=\frac{1}{2}+\tan ^{-1} 1 \Rightarrow C=\left(\frac{1}{2}+\frac{\pi}{4}\right)\) …(2)

∴ \(\frac{1}{2}(1+\log x)^2+\tan ^{-1} y=\left(\frac{1}{2}+\frac{\pi}{4}\right)\) [using (2) in (1)]

⇒ \(\frac{1}{2}(\log x)^2+\log x+\tan ^{-1} y=\frac{\pi}{4}\), where is the required solution.

Example 16 Find the equation of the curve that passes through the point (1,2) and satisfies the differential equation \(\frac{d y}{d x}=\frac{-2 x y}{\left(x^2+1\right)} \text {. }\)

Solution

We have

\(\frac{d y}{d x}=\frac{-2 x y}{\left(x^2+1\right)}\)

⇒ \(\frac{d y}{y}=\frac{-2 x}{\left(x^2+1\right)} d x\) [on separating the variables]

⇒ \(\int \frac{d y}{y}=\int \frac{-2 x}{\left(x^2+1\right)} d x\) [integrating both sides]

⇒ log y = -log(x2+1) + log C

⇒ log y + log(x2+1) = log C

⇒ log{y(x2+1)} = log C

⇒ y(x2+1) = C

Now, it is given that the curve passes through (1,2).

So, putting x = 1 and y = 2 in (1), we get C = 4.

∴ y(x2+1) = 4 is the required equation of the curve.

Common Differential Equations Questions and Answers

Example 17 Solve the differential equation \((x-1) \frac{d y}{d x}=2 x^3 y .\)

Solution

We have

\((x-1) \frac{d y}{d x}=2 x^3 y\)

⇒ \(\frac{1}{y} d y=\frac{2 x^3}{(x-1)} d x\) [on separating the variables]

⇒ \(\int \frac{d y}{y}=\int \frac{2 x^3}{(x-1)} d x\) [integrating both sides]

⇒ \(\log y=2 \int\left\{x^2+x+1+\frac{1}{(x-1)}\right\} d x\)

⇒ \(\log y=2\left(\frac{x^3}{3}+\frac{x^2}{2}+x\right)+2 \log |x-1|+C\)

Hence, \(\log y=2\left(\frac{x^3}{3}+\frac{x^2}{2}+x\right)+2 \log |x-1|+C\) is the required solution.

Example 18 Solve the differential equation cos x(1+cos y)dx – sin y(1+sin x)dy = 0.

Solution

We have

cos x(1+cos y)dx – sin y(1+sin x)dy = 0 …(1)

⇒ \(\frac{\cos x}{(1+\sin x)} d x-\frac{\sin y}{(1+\cos y)} d y=0\)

⇒ \(\int \frac{\cos x}{(1+\sin x)} d x-\int \frac{\sin y}{(1+\cos y)} d y=\log C\), where C is a constant

⇒ log|1 + sin x| + log|1 + cos y| = log C

⇒ log|(1 + sin x)(1 + cos y)| = log C

⇒ (1 + sin x)(1 + cos y) = C.

Hence, (1+ sin x)(1 + cos y) = C is the required solution.

Example 19 Solve the differential equation \(y-x \frac{d y}{d x}=a\left(y^2+\frac{d y}{d x}\right)\).

Solution

We have

\(y-x \frac{d y}{d x}=a\left(y^2+\frac{d y}{d x}\right)\)

⇒ \(\left(y-a y^2\right)=(a+x) \frac{d y}{d x}\)

⇒ \(\frac{d y}{y(1-a y)}=\frac{d x}{(a+x)}\) [on separating the variables]

⇒ \(\int \frac{d y}{y(1-a y)}=\int \frac{d x}{(a+x)}\)

⇒ \(\int\left(\frac{1}{y}+\frac{a}{1-a y}\right) d y=\int \frac{d x}{(a+x)}\) [by partial fractions]

⇒ log|y| – log|1 – ay| = log|a + x| + C

⇒ \(\log \left|\frac{y}{(1-a y)(a+x)}\right|=C\)

⇒ \(\frac{y}{(1-a y)(a+x)}=e^c=k\) (say)

⇒ y = k(1 – ay)(a + x), where k is a constant.

Hence, y = k(1 – ay)(a + x) is the required solution.

Class 11 Physics Class 12 Maths Class 11 Chemistry
NEET Foundation Class 12 Physics NEET Physics

Example 20 Solve the differential equation \((\sqrt{a+x}) \frac{d y}{d x}+x=0 \text {. }\)

Solution

We have

\(\frac{d y}{d x}=\frac{-x}{\sqrt{a+x}}\)

⇒ \(d y=\frac{-x}{\sqrt{a+x}} d x\) [on separating the variables]

⇒ \(\int d y=\int \frac{-x}{\sqrt{a+x}} d x\) [integrating both sides]

⇒ \(y=-\int \frac{[(a+x)-a]}{\sqrt{a+x}} d x\)

⇒ \(y=-\int\left(\sqrt{a+x}-\frac{a}{\sqrt{a+x}}\right) d x\)

⇒ \(y=-\int \sqrt{a+x} d x+a \int(a+x)^{-1 / 2} d x\)

⇒ \(y=-\frac{2}{3}(a+x)^{3 / 2}+2 a \sqrt{a+x}+C\) is the required solution.

Example 21 Solve the differential equation x cos y dy = (x ex log x + ex)dx.

Solution

We have

x cos y dy = (x ex log x + ex)dx

⇒ \(\cos y d y=e^x\left(\log x+\frac{1}{x}\right) d x\) [on separating the variables]

⇒ \(\int \cos y d y=\int e^x\left(\log x+\frac{1}{x}\right) d x\) [integrating both sides]

⇒ sin y = ex(log x) + C [∵ \(\int e^x\left\{f(x)+f^{\prime}(x)\right\} d x=e^x f(x)\)].

Hence, sin y = ex(log x) + C is the required solution.

Example 22 Solve the differential equation \(\frac{d y}{d x}=\frac{e^x\left(\sin ^2 x+\sin 2 x\right)}{y(2 \log y+1)} .\)

Solution

We have

\(\frac{d y}{d x}=\frac{e^x\left(\sin ^2 x+\sin 2 x\right)}{y(2 \log y+1)}\)

⇒ y(2 log y + 1)dy = ex(sin2x + sin 2x)dx

⇒ \(2 \int y \log y d y+\int y d y=\int e^x\left(\sin ^2 x+\sin 2 x\right) d x\)

⇒ \(2\left[(\log y) \cdot \frac{y^2}{2}-\int \frac{1}{y} \cdot \frac{y^2}{2} d y\right]+\frac{1}{2} y^2=\int e^x\left(\sin ^2 x+\sin 2 x\right) d x\) [integrating by parts]

⇒ \(y^2(\log y)-\int y d y+\frac{1}{2} y^2=\int e^x\left(\sin ^2 x+\sin 2 x\right) d x\)

⇒ y2(log y) = ex sin2x + C [∵ \(\int e^x\left\{f(x)+f^{\prime}(x)\right\} d x=e^x f(x)\)].

∴ y2(log y) = ex sin2x + C is the required solution.

Applications of Differential Equations in Real Life

Example 23 Solve the differential equation (1+x)(1+y2)dx + (1+y)(1+x2)dy = 0.

Solution

(1+x)(1+y2)dx + (1+y)(1+x2)dy = 0

⇒ \(\frac{(1+x)}{\left(1+x^2\right)} d x+\frac{(1+y)}{\left(1+y^2\right)} d y=0\) [on separating the variables]

⇒ \(\int \frac{(1+x)}{\left(1+x^2\right)} d x+\int \frac{(1+y)}{\left(1+y^2\right)} d y=C\) [integrating both sides]

⇒ \(\int\left\{\frac{1}{\left(1+x^2\right)}+\frac{x}{\left(1+x^2\right)}\right\} d x+\int\left\{\frac{1}{\left(1+y^2\right)}+\frac{y}{\left(1+y^2\right)}\right\} d y=C\)

⇒ \(\int \frac{1}{\left(1+x^2\right)} d x+\frac{1}{2} \cdot \int \frac{2 x}{\left(1+x^2\right)} d x+\int \frac{1}{\left(1+y^2\right)} d y+\frac{1}{2} \cdot \int \frac{2 y}{\left(1+y^2\right)} d y=C\)

⇒ \(\tan ^{-1} x+\frac{1}{2} \log \left(1+x^2\right)+\tan ^{-1} y+\frac{1}{2} \log \left(1+y^2\right)=C\)

⇒ \(\tan ^{-1} x+\tan ^{-1} y+\frac{1}{2}\left\{\log \left(1+x^2\right)+\log \left(1+y^2\right)\right\}=C\), which is the required solution.

Example 24 Find the equation of a curve which passes through the point (-2,3) and the slope of whose tangent at any point (x,y) is \(\frac{2 x}{y^2}\).

Solution

We know that the slope of a curve at a point (x,y) is \(\frac{d x}{d y}\).

∴ \(\frac{d y}{d x}=\frac{2 x}{y^2}\) …(1)

⇒ y2dy = 2xdx [separating the variables]

⇒ \(\int y^2 d y=\int 2 x d x\)

⇒ \(\frac{1}{3} y^3=x^2+C\) …(2)

where C is a constant.

Thus, (2) is the equation of the curve whose differential equation is given by (1).

Since the given curve passes through the point (-2,3), we have

C = \(\left(\frac{1}{3} \times 27\right)-(-2)^2=(9-4)=5\)

Hence, the required equation of the curve is

\(\frac{1}{3}\)y3 = x2 + 5 ⇒ y3 = 3x2 + 15.

Homogeneous Equation

Homogeneous Function A function f(x,y) in x and y is said to be a homogeneous function of degree n, if the degree of each term is n.

Examples

(1) f(x,y) = (x2 + y2 – xy) is a homogeneous function of degree 2.

(2) g(x,y) = (x3 – 3xy3 + 3x2y + y3) is a homogeneous function of degree 3.

In general, a homogeneous function f(x,y) of degree n is expressible as

\(f(x, y)=x^n f\left(\frac{y}{x}\right)\)

Homogeneous Differential Equation An equation of the form \(\frac{d y}{d x}=\frac{f(x, y)}{g(x, y)}\), where both f(x,y) and g(x,y) are homogeneous functions of degree n, is called a homogeneous differential equation.

Example \(\frac{d y}{d x}=\frac{x^2-y^2}{x y}\) is a homogeneous differential equation.

Method Of Solving A Homogeneous Differential Equation

Let \(\frac{d y}{d x}=\frac{f(x, y)}{g(x, y)}\) be a homogeneous differential equation.

Putting y = vx and \(\frac{d y}{d x}=\left(v+x \frac{d v}{d x}\right)\) in the given equation, we get

\(v+x \frac{d v}{d x}=F(v)\)

⇒ \(\frac{d v}{\{F(v)-v\}}=\frac{d x}{x}\)

⇒ \(\int \frac{d v}{\{F(v)-v\}}=\int \frac{d x}{x}\)

⇒ \(\int \frac{d v}{\{F(v)-v\}}=\log |x|+C .\)

Now, replace v by (y/x) to obtain the required solution.

Solved Examples

Example 1 Solve \(\frac{d y}{d x}=\frac{y^2-x^2}{2 x y}\).

Solution

Clearly, since each of the functions (y2-x2) and 2xy is a homogeneous function of degree 2, the given equation is homogeneous.

Putting y = vx and \(\frac{d y}{d x}=v+x \frac{d v}{d x}\), the given equation becomes

\(v+x \frac{d v}{d x}=\frac{v^2 x^2-x^2}{2 v x^2}\)

⇒ \(v+x \frac{d v}{d x}=\frac{v^2-1}{2 v}\)

⇒ \(x \frac{d v}{d x}=\left(\frac{v^2-1}{2 v}-v\right)\)

⇒ \(x \frac{d v}{d x}=\frac{-\left(1+v^2\right)}{2 v}\)

⇒ \(\frac{2 v}{\left(1+v^2\right)} d v=-\frac{1}{x} d x\)

⇒ \(\int \frac{2 v}{\left(1+v^2\right)} d v=-\int \frac{1}{x} d x\)

⇒ log|1 + v2| = -log|x| + log C

⇒ log|1 + v2| + log|x| = log C

⇒ log|x(1+v2)| = log C

⇒ x(1+v2) = ±C

⇒ x(1+v2) = C1

⇒ \(x\left(1+\frac{y^2}{x^2}\right)=C_1\)

⇒ (x2 + y2) = C1x, which is the required solution.

Example 2 Solve (x3+y3)dy – x2ydx = 0.

Solution

The given equation may be written as

\(\frac{d y}{d x}=\frac{x^2 y}{x^3+y^3}\) …(1)

Clearly, each of the functions (x2y) and (x3 + y3) is a homogeneous function of degree 3.

So, the given differential equation is homogeneous.

Putting y = vx and \(\frac{d y}{d x}=v+x \frac{d v}{d x}\) in (1), we get

\(v+x \frac{d v}{d x}=\frac{v x^3}{x^3+v^3 x^3}\)

⇒ \(v+x \frac{d v}{d x}=\frac{v}{1+v^3}\)

⇒ \(x \frac{d v}{d x}=\left(\frac{v}{1+v^3}-v\right)=\frac{-v^4}{\left(1+v^3\right)}\)

⇒ \(\frac{\left(1+v^3\right)}{v^4} d v=\frac{-1}{x} d x\)

⇒ \(\int\left(\frac{1}{v^4}+\frac{1}{v}\right) d v=-\int \frac{1}{x} d x\)

⇒ \(\int\left(\frac{1}{v^4}+\frac{1}{v}\right) d v+\int \frac{1}{x} d x=\mathrm{C}\)

⇒ \(\frac{-1}{3 v^3}+\log |v|+\log |x|=C\)

⇒ \(\frac{-1}{3 v^3}+\log |v x|=C\)

⇒ \(\frac{-x^3}{3 y^3}+\log |y|=C\), which is the required solution.

Example 3 Solve (3xy + y2)dx + (x2 + xy)dy = 0.

Solution

The given equation may be written as

\(\frac{d y}{d x}=\frac{-\left(3 x y+y^2\right)}{\left(x^2+x y\right)}\) …(1)

Clearly, each of the functions (3xy + y2) and (x2 + xy) is a homogeneous function of degree 2.

Therefore, the given equation is homogeneous.

Putting y = vx and \(\frac{d y}{d x}=\left(v+x \frac{d v}{d x}\right)\) in (1), it becomes

\(v+x \frac{d v}{d x}=\frac{-\left(3 v x^2+v^2 x^2\right)}{\left(x^2+v x^2\right)}\)

⇒ \(v+x \frac{d v}{d x}=\frac{-\left(3 v+v^2\right)}{(1+v)}\)

⇒ \(x \frac{d v}{d x}=\left[\frac{-\left(3 v+v^2\right)}{(1+v)}-v\right]\)

⇒ \(x \frac{d v}{d x}=\frac{-2\left(2 v+v^2\right)}{(1+v)}\)

⇒ \(\frac{(1+v)}{\left(2 v+v^2\right)} d v=\frac{-2}{x} d x\)

⇒ \(\int \frac{(1+v)}{\left(2 v+v^2\right)} d v+\int \frac{2}{x} d x=\log C\)

⇒ \(\frac{1}{2} \log \left|2 v+v^2\right|+2 \log |x|=\log C\)

⇒ \(\log \left|x^2 \sqrt{2 v+v^2}\right|=\log C\)

⇒ \(\log \left|x \sqrt{2 x y+y^2}\right|=\log C\) [putting v = \(\frac{x}{y}\)]

⇒ \(x \sqrt{2 x y+y^2}= \pm C\)

⇒ x2(2xy + y2) = C2, which is the required solution.

Examples of First-Order Differential Equations

Example 4 Solve (x3 – 3xy2)dx = (y3 – 3x2y)dy.

Solution

The given equation may be written as \(\frac{d y}{d x}=\frac{x^3-3 x y^2}{y^3-3 x^2 y}\), which is clearly homogeneous.

Putting y = vx and \(\frac{d y}{d x}=v+x \frac{d v}{d x}\) in it, we get

\(v+x \frac{d v}{d x}=\frac{x^3-3 v^2 x^3}{v^3 x^3-3 v x^3}\)

⇒ \(v+x \frac{d v}{d x}=\frac{1-3 v^2}{v^3-3 v}\)

⇒ \(x \frac{d v}{d x}=\left(\frac{1-3 v^2}{v^3-3 v}-v\right)\)

⇒ \(x \frac{d v}{d x}=\frac{\left(1-v^4\right)}{\left(v^3-3 v\right)}\)

⇒ \(\frac{\left(3 v-v^3\right)}{\left(v^4-1\right)} d v=\frac{d x}{x}\)

⇒ \(\int \frac{\left(3 v-v^3\right)}{\left(v^4-1\right)} d v=\int \frac{d x}{x}\)

⇒ \(\int\left[\frac{1}{2(v+1)}+\frac{1}{2(v-1)}-\frac{2 v}{\left(v^2+1\right)}\right] d v=\int \frac{d x}{x}\) [by partial fractions]

⇒ \(\frac{1}{2} \log |v+1|+\frac{1}{2} \log |v-1|-\log \left|v^2+1\right|=\log |x|+\log C\)

⇒ \(\log \left|\frac{(\sqrt{v+1})(\sqrt{v-1})}{x\left(v^2+1\right)}\right|=\log C\)

⇒ \(\frac{\sqrt{v^2-1}}{x\left(v^2+1\right)}= \pm C\)

⇒ (v2-1) = C12x2(v2+1)2, where C1 = ±C

⇒ (y2 – x2) = C12(y2+x2)2, which is the required solution.

Example 5 Solve y2dx + (x2-xy+y2)dy = 0.

Solution

The given equation may be written as

\(\frac{d y}{d x}=-\frac{y^2}{\left(x^2-x y+y^2\right)}\), which is clearly homogeneous.

Putting y = vx and \(\frac{d y}{d x}=v+x \frac{d v}{d x}\) in it, we get

\(v+x \frac{d v}{d x}=\frac{-v^2}{\left(1-v+v^2\right)}\)

⇒ \(x \frac{d v}{d x}=-\left[\frac{v^2}{\left(1-v+v^2\right)}+v\right]\)

⇒ \(x \frac{d v}{d x}=\frac{-\left(v+v^3\right)}{\left(1-v+v^2\right)}\)

⇒ \(\frac{\left(1-v+v^2\right)}{v\left(1+v^2\right)} d v=-\frac{1}{x} d x\)

⇒ \(\int \frac{\left(1+v^2\right)-v}{v\left(1+v^2\right)} d v=-\int \frac{d x}{x}\)

⇒ \(\int \frac{d v}{v}-\int \frac{d v}{\left(1+v^2\right)}+\int \frac{d x}{x}=\log C\)

⇒ log|v| – tan-1v + log|x| = log C

⇒ \(\tan ^{-1} v=\log \frac{|v x|}{C}\)

⇒ \(\tan ^{-1} \frac{y}{x}=\log \left(\frac{|y|}{C}\right)\) [putting v = \(\frac{y}{x}\)]

⇒ \(\frac{|y|}{C}=e^{\tan ^{-1}(y / x)}\)

⇒ \(|y|=\dot{C} e^{\tan ^{-1}(y / x)}\), which is the required solution.

Example 6 Solve \(x \frac{d y}{d x}-y=\sqrt{x^2+y^2} .\)

Solution

The given equation may be written as

\(\frac{d y}{d x}=\frac{y+\sqrt{x^2+y^2}}{x}\), which is clearly homogeneous.

Putting y = vx and \(\frac{d y}{d x}=v+x \frac{d v}{d x}\) in it, we get

\(v+x \frac{d v}{d x}=\frac{v x+\sqrt{x^2+v^2 x^2}}{x}=v+\sqrt{1+v^2}\)

⇒ \(x \frac{d v}{d x}=\sqrt{1+v^2}\)

⇒ \(\frac{d v}{\sqrt{1+v^2}}=\frac{1}{x} d x\)

⇒ \(\int \frac{d v}{\sqrt{1+v^2}}=\int \frac{d x}{x}\)

⇒ \(\log \left|v+\sqrt{1+v^2}\right|=\log |x|+\log C\)

⇒ \(\log \left|\frac{v+\sqrt{1+v^2}}{x}\right|=\log C\)

⇒ \(\frac{v+\sqrt{1+v^2}}{x}= \pm C\)

⇒ \(v+\sqrt{1+v^2}=C_1 x\), where C1 = ±C

⇒ \(y+\sqrt{x^2+y^2}=C_1 x^2\), which is the required solution.

Example 7 Solve \(\frac{d y}{d x}=\frac{y-x}{y+x}\)

Solution

The given equation is clearly homogeneous.

Putting y = vx and \(\frac{d y}{d x}=v+x \frac{d v}{d x}\) in it, we get

\(v+x \frac{d v}{d x}=\frac{v x-x}{v x+x}\)

⇒ \(v+x \frac{d v}{d x}=\frac{v-1}{v+1}\)

⇒ \(x \frac{d v}{d x}=\left(\frac{v-1}{v+1}-v\right)\)

⇒ \(x \frac{d v}{d x}=\frac{-\left(1+v^2\right)}{(1+v)}\)

⇒ \(\frac{(1+v)}{\left(1+v^2\right)} d v=\frac{-1}{x} d x\)

⇒ \(\int \frac{(1+v)}{\left(1+v^2\right)} d v=-\int \frac{d x}{x}\)

⇒ \(\int \frac{1}{\left(1+v^2\right)} d v+\frac{1}{2} \int \frac{2 v}{\left(1+v^2\right)} d v=-\int \frac{d x}{x}\)

⇒ \(\tan ^{-1} v+\frac{1}{2} \log \left|1+v^2\right|=-\log |x|+C\)

⇒ \(\tan ^{-1} v+\log \left|x \sqrt{1+v^2}\right|=C\)

⇒ \(\tan ^{-1} \frac{y}{x}+\log \left|\sqrt{x^2+y^2}\right|=C\) [putting v = \(\frac{y}{x}\)]

⇒ \(\tan ^{-1} \frac{y}{x}+\frac{1}{2} \log \left(x^2+y^2\right)=C\), which is the required solution.

Example 8 Solve x2dy + y(x+y)dx = 0.

Solution

The given equation may be written as

\(\frac{d y}{d x}=\frac{-y(x+y)}{x^2}\), which is clearly homogeneous.

Putting y = vx and \(\frac{d y}{d x}=v+x \frac{d v}{d x}\) in it, we get

\(v+x \frac{d v}{x}=\frac{-v x(x+v x)}{x^2}\)

⇒ \(v+x \frac{d v}{d x}=-\left(v+v^2\right)\)

⇒ \(x \frac{d v}{d x}=-\left(v^2+2 v\right)=-v(v+2)\)

⇒ \(\frac{d v}{v(v+2)}=-\frac{1}{x} d x\)

⇒ \(\int \frac{d v}{v(v+2)}=-\int \frac{1}{x} d x\)

⇒ \(\frac{1}{2} \int\left\{\frac{1}{v}-\frac{1}{v+2}\right\} d v=-\int \frac{d x}{x}\) [by partial fractions]

⇒ \(\frac{1}{2} \log |v|-\frac{1}{2} \log |v+2|=-\log |x|+\log C\)

⇒ \(\frac{1}{2} \log |v|+\log |x|-\frac{1}{2} \log |v+2|=\log C\)

⇒ \(\log \left|\frac{x \sqrt{v}}{\sqrt{v+2}}\right|=\log C\)

⇒ \(\frac{x \sqrt{v}}{\sqrt{v+2}}= \pm C\)

⇒ \(\frac{x^2 v}{v+2}=C^2\)

⇒ x2y = C2(y + 2x) is the required solution.

Example 9 Solve \(x^2\left(\frac{d y}{d x}\right)=\left(x^2-2 y^2+x y\right)\)

Solution

The given equation may be written as

\(\frac{d y}{d x}=\frac{\left(x^2-2 y^2+x y\right)}{x^2}\), which is clearly homogeneous.

Putting y = vx and \(\frac{d y}{d x}=v+x \frac{d v}{d x}\) in it, we get

\(v+x \frac{d v}{d x}=\frac{x^2-2 v^2 x^2+v x^2}{x^2}\)

⇒ \(v+x \frac{d v}{d x}=1-2 v^2+v\)

⇒ \(x \frac{d v}{d x}=1-2 v^2\)

⇒ \(\frac{d v}{\left(1-2 v^2\right)}=\frac{d x}{x}\)

⇒ \(\int \frac{d v}{\left(1-2 v^2\right)}=\int \frac{d x}{x}\)

⇒ \(\frac{1}{2} \int \frac{d v}{\left(\frac{1}{2}-v^2\right)}=\int \frac{d x}{x}\)

⇒ \(\frac{1}{2} \int \frac{d v}{\left\{\left(\frac{1}{\sqrt{2}}\right)^2-v^2\right\}}=\int \frac{d x}{x}\)

⇒ \(\frac{1}{2} \cdot \frac{1}{\left(2 \times \frac{1}{\sqrt{2}}\right)} \log \left|\frac{\frac{1}{\sqrt{2}}+v}{\frac{1}{\sqrt{2}}-v}\right|=\log |x|+C\)

⇒ \(\frac{1}{2 \sqrt{2}} \log \left|\frac{x+\sqrt{2} y}{x-\sqrt{2} y}\right|-\log |x|=C\) [∵ v = \(\frac{y}{x}\)].

This is the required solution.

Example 10 Solve \(\left(x \sqrt{x^2+y^2}-y^2\right) d x+x y d y=0 .\)

Solution

The given equation may be written as

\(\frac{d y}{d x}=\frac{y^2-x \sqrt{x^2+y^2}}{x y}\), which is clearly homogeneous.

Putting y = vx and \(\frac{d y}{d x}=v+x \frac{d v}{d x}\) in it, we get

\(v+x \frac{d v}{d x}=\frac{v^2 x^2-x \sqrt{x^2+v^2 x^2}}{v x^2}\)

⇒ \(x \frac{d v}{d x}=\left(\frac{v^2-\sqrt{1+v^2}}{v}-v\right)\)

⇒ \(x \frac{d v}{d x}=\frac{-\sqrt{1+v^2}}{v}\)

⇒ \(\int \frac{v}{\sqrt{1+v^2}} d v=-\int \frac{d x}{x}\)

⇒ \(\sqrt{1+v^2}=-\log |x|+C\)

⇒ \(\sqrt{x^2+y^2}+x \log |x|=C x\), which is the required solution.

Example 11 Solve \(x \frac{d y}{d x}=y-x \tan \frac{y}{x} .\)

Solution

The given equation may be written as

\(\frac{d y}{d x}=\frac{y}{x}-\tan \frac{y}{x}\) …(1)

This is of the form \(\frac{d y}{d x}=x^0 f\left(\frac{y}{x}\right) .\)

So, the given equation is homogeneous.

Putting y = vx and \(\frac{d y}{d x}=v+x \frac{d v}{d x}\) in (1), we get

\(v+x \frac{d v}{d x}=v-\tan v\)

⇒ \(x \frac{d v}{d x}=-\tan v\)

⇒ \(\frac{d v}{\tan v}=-\frac{d x}{x}\)

⇒ \(\int \cot v d v=-\int \frac{d x}{x}\)

⇒ \(\int \frac{\cos v}{\sin v} d v+\int \frac{d x}{x}=\log C\)

⇒ log|sin v| + log |x| = log C

⇒ log |x sin v| = log C

⇒ x sin v = ±C = C1 (say)

⇒ x sin \(\frac{y}{x}\) = C1, which is the required solution.

Example 12 Solve \(\left(x \cos \frac{y}{x}\right)(y d x+x d y)=\left(y \sin \frac{y}{x}\right)(x d y-y d x)\).

Solution

The given equation may be written as

\(\left(x \cos \frac{y}{x}+y \sin \frac{y}{x}\right) y-\left(y \sin \frac{y}{x}-x \cos \frac{y}{x}\right) x \cdot \frac{d y}{d x}=0\)

⇒ \(\frac{d y}{d x}=\frac{\{x \cos (y / x)+y \sin (y / x)\} y}{\{y \sin (y / x)-x \cos (y / x)] x}\)

⇒ \(\frac{d y}{d x}=\frac{\{\cos (y / x)+(y / x) \sin (y / x)\}(y / x)}{\{(y / x) \sin (y / x)-\cos (y / x)\}}\)

[dividing num. and denom. by x2], which is clearly homogeneous, being a function of (y/x).

Putting y = vx and \(\frac{d y}{d x}=v+x \frac{d v}{d x}\)

\(v+x \frac{d v}{d x}=\frac{v(\cos v+v \sin v)}{(v \sin v-\cos v)}\)

⇒ \(x \frac{d v}{d x}=\left[\frac{v(\cos v+v \sin v)}{(v \sin v-\cos v)}-v\right]\)

⇒ \(x \frac{d v}{d x}=\frac{2 v \cos v}{(v \sin v-\cos v)}\)

⇒ \(\int \frac{(v \sin v-\cos v)}{v \cos v} d v=\int \frac{2}{x} d x\)

⇒ \(\int \tan v d v-\int \frac{d v}{v}=\int \frac{2}{x} d x\)

⇒ -log |cos v| – log |v| + log C = 2 log |x|

⇒ log |cos v| + log |v| + 2log |x| = log C

⇒ log |x2v cos v| = log C

⇒ |x2v cos v| = C

⇒ x2v cos v = ±C = C1 (say)

⇒ xycos(\(\frac{y}{x}\)) = C1, which is the required solution.

Linear Differential Equations

The most general form of linear differential equations is \(\frac{d y}{d x}+P y=Q\), where P is a constant and Q is a constant or a function of x. The other common form of linear differential equations is \(\frac{d x}{d y}+P x=Q\), where P is a constant and Q is a constant or a function of y.

Solution Of \(\frac{d y}{d x}+P y=Q\)

First, we find \(e^{\int P d x}\), which is known as the integrating factor, i.e., IF.

Now, \(\frac{d y}{d x}+P y=Q ⇒ e^{\int P d x} \frac{d y}{d x}+P y e^{\int P d x}=Q \cdot e^{\int P d x}\)

⇒ \(e^{\int P d x} d y+P y \cdot e^{\int P d x} d x=Q \cdot e^{\int P d x} d x \Rightarrow d\left(y \cdot e^{\int P d x}\right)=Q \cdot e^{\int P d x} d x\) …(1)

⇒ \(y \cdot e^{\int P d x}=\int Q \cdot e^{\int P d x} d x+C\), which is the required solution

[integrating both sides of (1)].

Working Rule for Solving \(\frac{d y}{d x}+P y=Q\)

(1) Find IF = \(e^{\int P d x}\)

(2) The solution is given by

\(y \times \mathrm{IF}=\int\{Q \times \mathrm{IF}\} d x+C\)

Solved Examples

Example 1 Solve \(x \frac{d y}{d x}-y=x^2 .\)

Solution

The given differential equation may be written as \(\frac{d y}{d x}-\frac{1}{x} \cdot y=x\).

This is of the form \(\frac{d y}{d x}+P y=Q\), where P = –\(\frac{1}{x}\) and Q = x.

Thus, the given equation is linear.

IF = \(e^{\int P d x}=e^{\int-\frac{1}{x} d x}=e^{-\log x}=e^{\log \left(x^{-1}\right)}=x^{-1}=\frac{1}{x} .\)

So, the required solution is

\(y \times \mathrm{IF}=\int\{Q \times \mathrm{IF}\} d x+C\),

i.e., \(y \times \frac{1}{x}=\int\left(x \times \frac{1}{x}\right) d x+C\)

= \(\int d x+C=x+C \text {. }\)

∴ \(\frac{y}{x}=x+C \Rightarrow y=x^2+C x \text {. }\)

Hence, y = x2 + Cx is the required solution.

Example 2 Solve \(\left(1+x^2\right) \frac{d y}{d x}+y=\tan ^{-1} x\)

Solution

The given differential equation may be written as

\(\frac{d y}{d x}+\frac{1}{\left(1+x^2\right)} \cdot y=\frac{\tan ^{-1} x}{\left(1+x^2\right)}\) …(1)

This is of the form \(\frac{d y}{d x}+P y=Q\), where P = \(\frac{1}{\left(1+x^2\right)}\) and Q = \(\frac{\tan ^{-1} x}{\left(1+x^2\right)}\).

Thus, the given equation is linear.

IF = \(e^{\int P d x}=e^{\int \frac{1}{1+x^2} d x}=e^{\tan ^{-1} x} .\)

∴ the required solution is

\(y \times \mathrm{IF}=\int\{Q \times \mathrm{IF}\} d x+C\),

i.e., \(y \times e^{\tan ^{-1} x}=\int\left\{\frac{\tan ^{-1} x}{\left(1+x^2\right)} \cdot e^{\tan ^{-1} x}\right\} d x+C\)

= \(\int\left(t e^t\right) d t+C\), where tan-1x = t

= \(t e^t-\int 1 \cdot e^t d t+C\) [integrating by parts]

= t et – et + C = et(t-1) + C

= etan-1x(tan-1x – 1) + C.

Hence, y = tan-1x – 1 + Ce-tan-1x is the required solution.

Example 3 Solve \(x \frac{d y}{d x}+2 y=x \cos x\)

Solution

The given differential equation may be written as

\(\frac{d y}{d x}+\frac{2}{x} \cdot y=\cos x\)

This is of the form \(\frac{d y}{d x}+P y=Q\), where P = \(\frac{2}{x}\) and Q = cos x.

Thus, the given equation is linear.

IF = \(e^{\int P d x}=e^{\int \frac{2}{x} d x}=e^{2 \log x}=e^{\log \left(x^2\right)}=x^2 .\)

So, the required solution is

\(y \times \mathrm{IF}=\int\{Q \times \mathrm{IF}\} d x+C\),

i.e., \(y x^2=\int x^2 \cos x d x+C\)

= \(x^2 \sin x-\int 2 x \sin x d x+C\) [integrating by parts]

= \(x^2 \sin x-2\left[x(-\cos x)-\int 1 \cdot(-\cos x) d x\right]+C\) [integrating by parts]

= x2sin x + 2 x cos x – 2 sin x + C.

Hence, \(y=\sin x+\frac{2}{x} \cos x-\frac{2}{x^2} \sin x+\frac{C}{x^2}\) is the required solution.

Example 4 Solve \(\left(x^2-1\right) \frac{d y}{d x}+2 x y=\frac{2}{\left(x^2-1\right)}\).

Solution

The given differential equation may be written as

\(\frac{d y}{d x}+\frac{2 x}{\left(x^2-1\right)} \cdot y=\frac{2}{\left(x^2-1\right)^2}\)

This is of the form \(\frac{d y}{d x}+P y=Q\), where P = \(\frac{2 x}{\left(x^2-1\right)}\) and Q = \(\frac{2}{\left(x^2-1\right)^2}\).

Thus, the given equation is linear.

IF = \(e^{\int \frac{2 x}{\left(x^2-1\right)} d x}=e^{\log \left(x^2-1\right)}=x^2-1\)

So, the required solution is

\(y \times \mathrm{IF}=\int\{Q \times \mathrm{IF}\} d x+C\),

i.e., \(y\left(x^2-1\right)=\int\left\{\frac{2}{\left(x^2-1\right)^2} \times\left(x^2-1\right)\right\} d x+C\)

= \(2 \int \frac{d x}{\left(x^2-1\right)}+C\)

= \(2 \int \frac{1}{2}\left\{\frac{1}{(x-1)}-\frac{1}{(x+1)}\right\} d x+C\) [by partial fraction]

= \(\log \left|\frac{x-1}{x+1}\right|+C\)

Hence, \(y\left(x^2-1\right)=\log \left|\frac{x-1}{x+1}\right|+C\) is the required solution.

Example 5 Solve \(\left(1+x^2\right) \frac{d y}{d x}+y=e^{\tan ^{-1} x}\)

Solution

The given differential equation may be written as

\(\frac{d y}{d x}+\frac{1}{\left(1+x^2\right)} \cdot y=\frac{e^{\tan ^{-1} x}}{\left(1+x^2\right)} .\)

This is of the form \(\frac{d y}{d x}+P y=Q\), where P = \(\frac{1}{\left(1+x^2\right)}\) and Q = \(\frac{e^{\tan ^{-1} x}}{\left(1+x^2\right)}\)

Thus, the given equation is linear.

IF = \(e^{\int P d x}=e^{\int \frac{1}{\left(1+x^2\right)} d x}=e^{\tan ^{-1} x}\)

So, the required solution is given by

\(y \times \mathrm{IF}=\int\{Q \times \mathrm{IF}\} d x+C\),

i.e., \(y \times e^{\tan ^{-1} x}=\int\left\{\frac{e^{\tan ^{-1} x}}{\left(1+x^2\right)} \times e^{\tan ^{-1} x}\right\} d x+C\)

= \(\int \frac{e^{2 \tan ^{-1} x}}{\left(1+x^2\right)} d x+C\)

= \(\int e^{2 t} d t+C\), where tan-1x = t

= \(\frac{1}{2} e^{2 t}+C=\frac{1}{2} e^{2 \tan ^{-1} x}+C .\)

Hence, y = \(\frac{1}{2}\)etan-1x + Ce-tan-1x is the required solution.

Example 6 Solve \(\frac{d y}{d x}-3 y \cot x=\sin 2 x\), it being given tath y = 2 when x = \(\frac{\pi}{2}\).

Solution

The given differential equation is

\(\frac{d y}{d x}-3 y \cot x=\sin 2 x\) …(1)

This is of the form \(\frac{d y}{d x}+P y=Q\), where P = -3 cot x and Q = sin2x.

Thus, the given equation is linear.

IF = \(e^{\int P d x}=e^{\int-3 \cot x d x}=e^{\log (\sin x)^{-3}}=(\sin x)^{-3}=\frac{1}{\sin ^3 x}\)

So, the solution of (1) is given by

\(y \times \mathrm{IF}=\int\{Q \times \mathrm{IF}\} d x+C\),

i.e., \(y \times \frac{1}{\sin ^3 x}=\int\left(\sin 2 x \times \frac{1}{\sin ^3 x}\right) d x+C\)

= \(2 \int \frac{\cos x}{\sin ^2 x} d x+C\)

= \(2 \int \frac{1}{t^2} d t+C\), where sin x = t

= \(\frac{-2}{t}+C=\frac{-2}{\sin x}+C .\)

Thus, y = -2 sin2x + C sin3x …(2)

It is given that y = 2 when x = (π/2).

Putting x = \(\frac{\pi}{2}\) and y = 2 in (2), we get C = 4.

Hence, y = -2 sin2x + 4 sin3x is the required solution.

Example 7 Solve \(\frac{d y}{d x}+(\sec x) y=\tan x\)

Solution

The given equation is of the form

\(\frac{d y}{d x}+P y=Q\), where P = sec x and Q = tan x.

Thus, the given equation is linear.

IF = \(e^{\int P d x}=e^{\int \sec x d x}=e^{\log (\sec x+\tan x)}=(\sec x+\tan x) .\)

So, the required solution is

\(y \times \mathrm{IF}=\int\{Q \times \mathrm{IF}\} d x+C\),

i.e., \(y(\sec x+\tan x)=\int \tan x(\sec x+\tan x) d x+C\)

= \(\int \sec x \tan x d x+\int \tan ^2 x d x+C\)

= \(\sec x+\int\left(\sec ^2 x-1\right) d x+C\)

= sec x + tan x – x + C.

So, y(sec x + tan x) = sec x + tan x – x + C is the required solution.

Example 8 Solve \(x \frac{d y}{d x}-y=\log x .\)

Solution

The given equation may be written as

\(\frac{d y}{d x}-\frac{1}{x} \cdot y=\frac{\log x}{x} .\)

This is of the form \(\frac{d y}{d x}+P y=Q\), where P = –\(\frac{1}{x}\) and Q = \(\frac{\log x}{x}\).

Thus, the given equation is linear.

IF = \(e^{\int-\frac{1}{x} d x}=e^{-\log x}=e^{\log \left(x^{-1}\right)}=x^{-1}=\frac{1}{x} .\)

So the required solution is

\(y \times \mathrm{IF}=\int\{Q \times \mathrm{IF}\} d x+C\),

i.e., \(y \times \frac{1}{x}=\int\left(\frac{\log x}{x} \times \frac{1}{x}\right) d x+C\)

= \(\int(\log x) \cdot \frac{1}{x^2} d x+C\)

= \((\log x)\left(-\frac{1}{x}\right)-\int \frac{1}{x} \cdot\left(-\frac{1}{x}\right) d x+C\) [integrating by parts]

= \(-\frac{\log x}{x}+\int \frac{1}{x^2} d x+C\)

= \(\frac{-\log x}{x}-\frac{1}{x}+C .\)

Hence, y = Cx – (log x + 1) is the required solution.

Example 9 Solve \(\frac{d y}{d x}+y \cot x=2 \cos x \text {. }\)

Solution

The given equation is of the form

\(\frac{d y}{d x}+P y=Q\), where P = cot x and Q = 2 cos x.

Thus, the given differential equation is linear.

IF = \(e^{\int P d x}=e^{\int \cot x d x}=e^{\log (\sin x)}=\sin x .\)

So, the required solution is

\(y \times \mathrm{IF}=\int\{Q \times \mathrm{IF}\} d x+C\),

i.e., \(y \times \mathrm{IF}=\int\{Q \times \mathrm{IF}\} d x+C\),

= \(\int \sin 2 x d x+C=\frac{-\cos 2 x}{2}+C\)

Thus, 2y sin x + cos 2x = C’ is the required solution, where C’ = 2C.

Example 10 Solve \(\frac{d y}{d x}-2 y=\cos 3 x\)

Solution

The given equation is of the form

\(\frac{d y}{d x}+P y=Q\), where P = -2 and Q = cos 3x.

Thus, it is a linear equation.

IF = \(e^{\int P d x}=e^{\int-2 d x}=e^{-2 x} \text {. }\)

So, the required solution is

\(y \times \mathrm{IF}=\int\{Q \times \mathrm{IF}\} d x+C\),

i.e., \(y \times e^{-2 x}=\int e^{-2 x} \cos 3 x d x+C\) …(1)

Now, we have

I = \(\int e^{-2 x} \cos 3 x d x\)

= \(e^{-2 x} \cdot \frac{\sin 3 x}{3}+2 \int e^{-2 x} \cdot \frac{\sin 3 x}{3} d x\) [integrating by parts]

= \(e^{-2 x} \cdot \frac{\sin 3 x}{3}+2 \int e^{-2 x} \cdot \frac{\sin 3 x}{3} d x\)

= \(\frac{1}{3} e^{-2 x} \sin 3 x+\frac{2}{3} \cdot\left[e^{-2 x} \cdot \frac{(-\cos 3 x)}{3}+2 \int e^{-2 x} \frac{(-\cos 3 x)}{3} d x\right]\) [integrating by parts]

= \(\frac{1}{3} e^{-2 x} \sin 3 x-\frac{2}{9} e^{-2 x} \cos 3 x-\frac{4}{9} \int e^{-2 x} \cos 3 x d x\)

= \(\frac{1}{3} e^{-2 x} \sin 3 x-\frac{2}{9} e^{-2 x} \cos 3 x-\frac{4}{9} I\)

⇒ \(\left(\frac{13}{9}\right) I=\frac{1}{3} e^{-2 x} \sin 3 x-\frac{2}{9} e^{-2 x} \cos 3 x\)

⇒ \(I=\frac{3\left(e^{-2 x} \sin 3 x\right)}{13}-\frac{2\left(e^{-2 x} \cos 3 x\right)}{13} .\)

Putting this value in (1), we get

\(y e^{-2 x}=\frac{3\left(e^{-2 x} \sin 3 x\right)}{13}-\frac{2\left(e^{-2 x} \cos 3 x\right)}{13}+C\)

⇒ \(y=\frac{(3 \sin 3 x-2 \cos 3 x)}{13}+C e^{2 x}\), which is the required solution.

Example 11 Solve \((x \log x) \frac{d y}{d x}+y=\frac{2}{x} \log x .\)

Solution

The given equation may be written as

\(\frac{d y}{d x}+\frac{1}{(x \log x)} \cdot y=\frac{2}{x^2}\)

This is of the form \(\frac{d y}{d x}+P y=Q\), where P = \(\frac{1}{(x \log x)}\) and Q = \(\frac{2}{x^2}\).

Thus, the given equation is linear.

IF = \(e^{\int P d x}=e^{\int \frac{1}{x \log x} d x}=e^{\int \frac{1}{t} d t}\), where log x = t

= elogt = t = log x.

So, the solution of the given differential equation is

\(y \times \mathrm{IF}=\int\{Q \times \mathrm{IF}\} d x+C\),

i.e., \(y(\log x)=\int\left(\frac{2}{x^2} \log x\right) d x+C\)

= \(2 \int(\log x) \cdot \frac{1}{x^2} d x+C\)

= \(2\left[(\log x)\left(-\frac{1}{x}\right)-\int \frac{1}{x} \cdot\left(-\frac{1}{x}\right) d x\right]+C\) [integrating by parts]

= \(2\left[(\log x)\left(-\frac{1}{x}\right)-\int \frac{1}{x} \cdot\left(-\frac{1}{x}\right) d x\right]+C\)

Hence, \(\frac{-2 \log x}{x}-\frac{2}{x}+C\) is the required solution.

Example 12 An equation related to the stability of an aeroplane is given by \(\frac{d v}{d t}=g \cos \alpha-k v\), where v is the velocity and g, α, k are constants. Find an expression for the velocity if v = 0 when t = 0.

Solution

The given differential equation is

\(\frac{d v}{d t}+k v=g \cos \alpha\) …(1)

This is of the form \(\frac{d y}{d x}+P y=Q\), where P = k and Q = g cos α.

Thus, the given equation is linear.

IF = \(e^{\int P d t}=e^{\int k d t}=e^{k t}\)

So, the solution of the given differential equation is

\(v \times \mathrm{IF}=\int\{Q \times \mathrm{IF}\} d t+C\),

i.e., \(v e^{k t}=\int(g \cos \alpha) e^{k t} d t+C\)

= \(\frac{(g \cos \alpha) e^{k t}}{k}+C\) …(2)

Now, it is given that v = 0 when t = 0.

Putting t = 0 and v = 0 in (2), we get C = \(\frac{-g \cos \alpha}{k}\)

∴ \(v e^{k t}=\frac{(g \cos \alpha) e^{k t}}{k}-\frac{g \cos \alpha}{k}\)

⇒ \(v=\frac{1}{k}(g \cos \alpha)\left(1-e^{-k t}\right)\), which is the required expression.

Solution Of \(\frac{d x}{d y}+P x=Q\)

Working Rule for Solving \(\frac{d x}{d y}+P x=Q\)

(1) Find IF = \(e^{\int P d y}\)

(2) The solution is given by \(x \times \mathrm{IF}=\int\{Q \times \mathrm{IF}\} d y+C\)

Example 13 Solve \(\left(x+2 y^3\right) \frac{d y}{d x}=y .\)

Solution

The given differential equation may be written as

\(y \frac{d x}{d y}=x+2 y^3\)

⇒ \(\frac{d x}{d y}-\frac{1}{y} \cdot x=2 y^2\) …(1)

This is of the form \(\frac{d x}{d y}+P x=Q\), where P = –\(\frac{1}{y}\) and Q = 2y2.

Thus, the given equation is linear.

IF = \(e^{\int P d y}=e^{\int-\frac{1}{y} d y}=e^{-\log y}=e^{\log \left(y^{-1}\right)}=y^{-1}=\frac{1}{y} .\)

So, the required solution is

\(x \times \mathrm{IF}=\int\{Q \times \mathrm{IF}\} d y+C\),

i.e., \(x \times \frac{1}{y}=\int\left(2 y^2 \times \frac{1}{y}\right) d y+C\)

= \(\int 2 y d y+C=y^2+C\).

Hence, x = y3 + Cy is the required solution.

Example 14 Solve \(\left(1+y^2\right) d x=\left(\tan ^{-1} y-x\right) d y\)

Solution

The given differential equation may be written as

\(\frac{d x}{d y}=\frac{\tan ^{-1} y-x}{\left(1+y^2\right)}\)

⇒ \(\frac{d x}{d y}+\frac{1}{\left(1+y^2\right)} \cdot x=\frac{\tan ^{-1} y}{\left(1+y^2\right)}\) …(1)

This is of the form \(\frac{d x}{d y}+P x=Q\), where P = \(\frac{1}{\left(1+y^2\right)}\) and Q = \(\frac{\tan ^{-1} y}{\left(1+y^2\right)}\).

Clearly, the given equation is linear.

IF = \(e^{\int P d y}=e^{\int \frac{1}{\left(1+y^2\right)} d y}=e^{\tan ^{-1} y} .\)

So the required solution is

\(x \times \mathrm{IF}=\int\{Q \times \mathrm{IF}\} d y+C\),

i.e., \(x \times e^{\tan ^{-1} y}=\int\left\{\frac{\tan ^{-1} y}{\left(1+y^2\right)} \times e^{\tan ^{-1} y}\right\} d y+C\)

= \(\int\left(t e^t\right) d t+C\), where tan-1y = t

= \(t e^t-\int 1 \cdot e^t d t+C\)

= t et – et + C = (t – 1)et + C

= \(\left(\tan ^{-1} y-1\right) e^{\tan ^{-1} y}+C\)

⇒ \(x=\left(\tan ^{-1} y-1\right)+C e^{-\tan ^{-1} y}\), which is the required solution.

Application Of Differential Equations

Solved Examples

Example 1 Obtain the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin.

Solution

Given

y + 2x

The differential equation of the curve is

\(\frac{d y}{d x}=y+2 x \Rightarrow \frac{d y}{d x}-y=2 x\) …(1) which is linear.

IF = \(e^{-\int d x}=e^{-x}\)

∴ the solution of (1) is given by

\(y e^{-x}=\int 2 x e^{-x} d x\)

= \(2\left[\left(-x e^{-x}\right)-\int-e^{-x} d x\right]+C=-2 x e^{-x}-2 e^{-x}+C\)

⇒ y + 2x + 2 = Cex …(2) which is the equation of the curve.

Since the curve passes through (0,0), by putting x = 0 and y = 0 in (2), we get C = 2.

∴ y + 2x + 2 = 2ex is the required equation of the curve.

Example 2 The line normal to a given curve at each point (x,y) on the curves passes through the point (3,0). If the curve contains the point (3,4), find its equation.

Solution

Given

The line normal to a given curve at each point (x,y) on the curves passes through the point (3,0). If the curve contains the point (3,4),

The equation of the normal to a curve at a point (x,y) is

\((Y-y) \frac{d y}{d x}+(X-x)=0\).

Since it passes through the point (3,0), we have

\((0-y) \frac{d y}{d x}+(3-x)=0 \Rightarrow y \frac{d y}{d x}=(3-x)\)

⇒ \(\int y d y=\int(3-x) d x\)

⇒ \(\int y d y=\int(3-x) d x\)

⇒ x2 + y2 – 6x – 2C = 0 …(1)

which is the equation of the curve.

Since the curve passes through (3,4), we have

9 + 16 – 18 – 2C = 0 ⇒ c = (7/2).

∴ x2 + y2 – 6x – 7 = 0 is the required equation of the curve.

Example 3 A spherical raindrop evaporates at a rate proportional to its surface area. If originally its radius is 3 mm and 1 hour later it reduces to 2 mm, find an expression for the radius of the raindrop at any time.

Solution

Given

A spherical raindrop evaporates at a rate proportional to its surface area. If originally its radius is 3 mm and 1 hour later it reduces to 2 mm

Let R be the radius of the raindrop at time t. Then,

\(\frac{d R}{d t}=-k\left(4 \pi R^2\right)\)

⇒ \(-\int \frac{d R}{R^2}=\int 4 \pi k d t\)

⇒ \(\frac{1}{R}=4 \pi k t+C\) …(1)

When t = 0, R = 3.

Putting these values in (1), we get C = \(\frac{1}{3}\).

∴ \(\frac{1}{R}=4 \pi k t+\frac{1}{3}\) …(2)

Also, when t = 1, R = 2.

Putting these values in (2), we get k = \(\frac{1}{24 \pi}\)

∴ \(\frac{1}{R}=\frac{4 \pi t}{24 \pi}+\frac{1}{3}\)

⇒ \(\frac{1}{R}=\frac{t}{6}+\frac{1}{3}\)

⇒ R(t + 2) = 6, which is the required expression.

Real-Life Applications of Differential Equations in Physics and Engineering 

Example 4 A population grows at the rate of 5% per year. How long does it take for the population to double?

Solution

Given

A population grows at the rate of 5% per year.

Let the population be P at any time t. Then,

\(\frac{d P}{d t}=5 \% \text { of } P\)

⇒ \(\frac{d P}{d t}=\frac{P}{20}\)

⇒ \(\int \frac{d P}{P}=\frac{1}{20} \int d t\)

⇒ \(\log P=\frac{t}{20}+C\) …(1)

Let the population be P0 at t = 0.

Putting P = P0 and t = 0 in (1), we get C = log P0.

∴ \(\log P=\frac{t}{20}+\log P_0\) …(2)

Let P = 2P0 at t = t1. Then,

\(\log \left(2 P_0\right)=\frac{t_1}{20}+\log P_0\)

⇒ \(\log 2+\log P_0=\frac{t_1}{20}+\log P_0\)

⇒ \(\log 2=\frac{t_1}{20}\)

⇒ t1 = 20(log 2), which is the required time.

Example 5 The population of a country doubles in 40 years. Assuming that the rate of increase is proportional to the number of inhabitants, find the number of years in which it would treble itself.

Solution

Given

The population of a country doubles in 40 years. Assuming that the rate of increase is proportional to the number of inhabitants,

Let the population be P at time t.

Then, \(\frac{d P}{d t}=k P\)

⇒ \(\int \frac{d P}{P}=k \int d t\)

⇒ log P = kt + C …(1)

Let the population be P0 at t = 0. Then, c = log P0.

∴ log P = kt + log P0 …(2)

Now, P = 2P0 when t = 40.

Putting these values in (2), we get

log(2P0) = 40k + log P0

⇒ log 2 + log P0 = 40k + log P0

⇒ 40k = log 2

⇒ \(k=\frac{1}{40}(\log 2)\)

Putting this value of k in (2), we get

\(\log P=\frac{t}{40}(\log 2)+\log P_0\) …(3)

Let P = 3P0 at t = t1. Then,

\(\log P=\frac{t}{40}(\log 2)+\log P_0\)

⇒ \(\log 3+\log P_0=\frac{t_1(\log 2)}{40}+\log P_0\)

⇒ \(\log 3+\log P_0=\frac{t_1(\log 2)}{40}+\log P_0\) years, which is the required time.

The number of years in which it would treble itself ⇒ \(\log 3+\log P_0=\frac{t_1(\log 2)}{40}+\log P_0\)

Example 6 The rate of increase of bacteria in a culture is proportional to the number of bacteria present, and it is found that the number doubles in 6 hours. Calculate how many times the bacteria may be expected to grow at the end of 18 hours.

Solution

Given

The rate of increase of bacteria in a culture is proportional to the number of bacteria present, and it is found that the number doubles in 6 hours.

Let the number of bacteria be N at time t. Then,

\(\frac{d N}{d t}=k N\)

⇒ \(\int \frac{d N}{N}=\int k d t\)

⇒ log N = kt + C …(1)

Let the number of bacteria be N0 at t = 0.

Putting t = 0 and N = N0 in (1), we get C = log N0.

∴ log N = kt + log N0 …(2)

Now, when t = 6, then N = 2N0.

Substituting these values in (2), we get

log(2N0) = 6k + log N0

⇒ log 2 + log N0 = 6k + log N0

⇒ \(k=\frac{1}{6}(\log 2) \text {. }\)

∴ \(\log N=\frac{t}{6}(\log 2)+\log N_0\) …(3)

Putting t = 18 in (3), we get

log N = 3(log 2) + log N0 = log (8N0)

⇒ N = 8N0, when t = 18.

∴ the number of bacteria becomes 8 times at the end of 18 hours.

Example 7 A wet porous substance in the open air loses its moisture at a rate proportional to themoisture content. If a sheet hung in the wind loses half its moisture during the first hour, when will it have lost 90%, weather conditions remaining the same?

Solution

Given

A wet porous substance in the open air loses its moisture at a rate proportional to themoisture content.

Let the moisture content be M at time t. Then,

\(\frac{d M}{d t}=-k M\)

⇒ \(\int \frac{d M}{M}=\int-k d t\)

⇒ log M = -kt + C …(1)

Let M0 be the moisture content at t = 0.

Putting M = M0 and t = 0 in (1), we get C = log M0.

∴ log M = -kt + log M0 …(2)

Now, it is being given that when t = 1, then M = \(\frac{1}{2}\)M0.

Putting these values in (2), we get

\(\log \left(\frac{1}{2} M_0\right)=-k+\log M_0\)

⇒ \(\log \frac{1}{2}+\log M_0=-k+\log M_0\)

⇒ -log 2 = -k i.e., k = log 2.

∴ log M = -t(log 2) + log M0 …(3)

When 90% of M0 is lost, we are left with 10% of M0, i.e., \(\frac{1}{10}\)M0.

Let M = \(\frac{1}{10}\)M0 when t = t1. Then,

\(\log \left(\frac{1}{10} M_0\right)=-t_1(\log 2)+\log M_0\)

⇒ \(\log \frac{1}{10}+\log M_0=-t_1(\log 2)+\log M_0\)

⇒ -log 10 = -t1(log 2)

⇒ \(\log \frac{1}{10}+\log M_0=-t_1(\log 2)+\log M_0\)

Thus, 90% moisture content is lost in \(\frac{1}{(\log 2)}\) hours.

Example 8 Experiments show that the rate of inversion of cane sugar in dilute solution is proportional to the concentration y(t) of the unaltered sugar. Suppose that the concentration is (1/100) at t = 0 and (1/300) at t = 10 hours. Find y(t).

Solution

Given

Experiments show that the rate of inversion of cane sugar in dilute solution is proportional to the concentration y(t) of the unaltered sugar. Suppose that the concentration is (1/100) at t = 0 and (1/300) at t = 10 hours.

Let the concentration be y at time t. Then,

\(\frac{d y}{d t}=-k y\)

⇒ \(\int \frac{d y}{y}=\int-k d t\)

⇒ log y = -kt + C …(1)

Putting t = 0 and y = \(\frac{1}{100}\) in (1), we get C = -2.

∴ log y = -kt – 2 …(2)

Putting t = 10 and y = \(\frac{1}{300}\) in (2), we get

\(\log \frac{1}{300}=-10 k-2 \Rightarrow \log 1-\log 3-\log 100=-10 k-2\)

⇒ -10k = -log 3

⇒ \(k=\frac{1}{10} \log 3 .\)

∴ \(\log y=\left(-\frac{1}{10} \log 3\right) t-2\)

or \(\log y+\left(\frac{1}{10} \log 3\right) t+2=0\)

Example 9 A radioactive substance has a half-life of h days. Find a formula for its mass m in terms of t, the time , if the initial mass is m0. What is its initial decay rate?

Solution

Given

A radioactive substance has a half-life of h days.

Having a half-life of h days means that half of the mass decays in h days.

Let M be the mass of the substance at t days. Then,

\(\frac{d M}{d t}=-k M\)

⇒ \(\int \frac{d M}{M}=\int-k d t\)

⇒ log M = -kt + C …(1)

When t = 0, we have M = m0.

∴ log M = -kt + log m0 …(2)

Again, when t = h, we have M = \(\frac{1}{2}\)m0.

∴ \(\log \left(\frac{1}{2} m_0\right)=-k h+\log m_0\)

⇒ \(\log \frac{1}{2}+\log m_0=-k h+\log m_0\)

⇒ \(k h=\log 2 \text {, i.e., } k=\frac{1}{h}(\log 2) \text {. }\)

∴ \(\log M=\frac{-t}{h}(\log 2)+\log m_0\)

⇒ \(\log M=\log \left(2^{-t / h} m_0\right)\)

⇒ M = 2-t/hm0, which is the required formula.

The initial decay rate is given by \(\frac{d M}{d t}\), when M = m0 and \(k=\frac{1}{h}(\log 2)\).

∴ initial decay rate is given by \(\frac{d M}{d t}=-\frac{1}{h}(\log 2) m_0\).

Example 10 A bank pays interest by treating the interest rate as the instantaneous rate of change of the principal. Suppose in an account, interest accures at 8% per annum, compounded continuosly. Calculate the percentage increase in such an account over one year. [Take e0.08 = 1.0833].

Solution

Given:

A bank pays interest by treating the interest rate as the instantaneous rate of change of the principal. Suppose in an account, interest accures at 8% per annum, compounded continuosly.

Let the principal be P at t years. Then,

\(\frac{d P}{d t}=\frac{8}{100} P\)

⇒ \(\int \frac{d P}{P}=\frac{2}{25} \int d t\)

⇒ log P = \(\frac{2}{25} t+C\) …(1)

Let the original principal be P0 at t = 0.

Putting t = 0 and P = P0 in (1), we get C = log P0.

∴ \(\log P=\frac{2}{25} t+\log P_0\) …(2)

When t = 1, we have

\(\log P=\frac{2}{25}+\log P_0 \Rightarrow \log \left(\frac{P}{P_0}\right)=\frac{2}{25}=0.08\)

⇒ \(\frac{P}{P_0}=e^{0.08}=1.0833\)

⇒ P = 1.0833P0.

∴ percentage increase in the principal in 1 year = \(\frac{0.0833 P_0}{P_0} \times 100\)

= 8.33%.

The percentage increase in such an account over one year. = 8.33%.

Example 11 The acceleration after t seconds of a particle which starts from rest and moves in a straight line is (8 – t/5)cm/s2. Find the velocity of the particle at the instant when the acceleration is zero.

Solution

Given

The acceleration after t seconds of a particle which starts from rest and moves in a straight line is (8 – t/5)cm/s2.

Let v be the velocity of the particle at time t. Then,

\(\frac{d v}{d t}=\left(8-\frac{t}{5}\right)\)

⇒ \(\int d v=\int\left(8-\frac{t}{5}\right) d t\)

⇒ \(v=8 t-\frac{t^2}{10}+C\) …(1)

When t = 0, we have v = 0. This gives, C = 0.

∴ \(v=8 t-\frac{t^2}{10}\) …(2)

Now, acceleration is zero ⇒ \(\frac{d v}{d t}\) = 0

⇒ 8 – \(\frac{t}{5}\) – 0, i.e., t = 40.

Putting t = 40 in (2), we get

v = 320 – 160 = 160.

Hence, the required velocity is 160 cm/s.

Example 12 A steamboat is moving at velocity v0 when steam is shut off. It is given that the retardation at any subsequent time is equal to the magnitude of the velocity at that time. Find the velocity and distance travelled in time t after the steam is shut off.

Solution

Given

A steamboat is moving at velocity v0 when steam is shut off. It is given that the retardation at any subsequent time is equal to the magnitude of the velocity at that time.

Let v be the velocity at time t after the steam is shut off. Then,

\(-\frac{d v}{d t}=v\)

⇒ \(\int \frac{d v}{v}=-\int d t\)

⇒ log v = -t + C …(1)

When t = 0, we are given that v = v0.

Putting t = 0 and v = v0 in (1), we get C = log v0.

∴ log v = -t + log v0

⇒ \(\log \left(\frac{v}{v_0}\right)=-t \text {, i.e., } \frac{v}{v_0}=e^{-t}\)

⇒ v = v0e-t

⇒ \(\frac{d x}{d t}=v_0 e^{-t}\), where x is the distance covered

⇒ \(\int d x=v_0 \cdot \int e^{-t} d t\)

⇒ x = -v0e-t + C’ …(2)

Clearly, when t = 0, we have x = 0. This gives C’ = v0.

∴ x = -v0e-t + v0 ⇒ x = v0(1 – e-t).

Hence, the required velocity = v0e-t, and the required distance = v0(1 – e-t).

WBCHSE Class 12 Maths Solutions For Functions

Relations and Functions – Chapter 2 Functions

Function Let A and B be two nonempty sets. Then, a rule f which associates to each element x ∈ A, a unique element, denoted by f(x) of B, is called a function from A to B and we write, f: A → B.

f(x) is called the image of x, while x is called the pre-image of f(x).

Domain, Codomain and Range of a Function

Let f: A → B. Then, A is called the domain of f and B is called the codomain of f.

And, f(A) = {f(x): x ∈ A} is called the range of f.

Example 1 Let A = {1,2,3,4} and B = {1,4,9,16,25}.

Class 12 Maths Functions Example 1

Consider the rule f: A → B: f(x) = x2 ∀ x ∈ A.

Then, each element in A has its unique image in B.

So, f is a function from A to B.

f(1) = 12 = 1, f(2) = 22 = 4, f(3) = 32 = 9, f(4) = 42 = 16.

Dom(f) = {1,2,3,4} = A, codomain (f) = {1,4,9,16,25} = B

and range (f) = {1,4,9,16}.

Clearly, 25 ∈ B does not have its pre-image in A.

Read and Learn More  Class 12 Math Solutions

Example 2 Let N be the set of all natural numbers.

Let f: N → N : f(x) = 2x ∀ x ∈ N.

Then, every element in N has its unique image in N.

So, f is a function from N to N.

Clearly, f(1) = 2, f(2) = 4, f(3) = 6 …, and so on.

Dom(f) = N, codomain (f) = N,

range (f) = {2,4,6,8,10..}.

Various Types of Functions

WBCHSE Class 12 Maths Solutions For Functions

Many-One Function A function f: A → B is said to be many-one if two or more than two elements in A have the same image in B.

Example Let A = {-1,1,2,3} and B = {1,4,9}.

Let f: A → B: f(x) = x2 ∀ x ∈ A.

Then, each element in A has a unique image under f in B.

Class 12 Maths Functions Many-One Function

∴ f is a function from A to B such that

f(-1) = (-1)2 = 1; f(1) = 12 = 1; f(2) = 22 = 4 and f(3) = 32 = 9.

Two different elements, namely -1 and 1, have the same image 1 ∈ B.

Hence, f is many-one.

One-One or Injective Function

A function f: A → B is said to be one-one if distinct elements in A have distinct images in B.

f is one-one when f(x1) = f(x2) ⇒ x1 = x2.

Example Let N be the set of all natural numbers.

Let f: N → N : f(x) = 2x ∀ x ∈ N.

Then, f(x1) = f(x2) ⇒ 2x1 = 2x2

⇒ x1 = x2

∴ f is one-one

Onto or Surjective Function

A function f: A → B is said to be onto if every element in B has at least one pre-image in A.

Thus, if f is onto, then for each y ∈ B ∃ at least one element x ∈ A such that y = f(x).

Also, f is onto ⇔ range (f) = B.

Example Let N be the set of all natural numbers and let E be the set of all even natural numbers.

Let f: N → E: f(x) = 2x ∀ x ∈ N.

Then, y = 2x ⇒ x = \(\frac{1}{2}\)y.

Thus, for y ∈ E there exists \(\frac{1}{2}\)y ∈ N such that

\(f\left(\frac{1}{2} y\right)=\left(2 \times \frac{1}{2} y\right)=y \text {. }\)

∴ f is onto.

WBBSE Class 12 Functions Solutions

Into Function, A function f: A → B is said to be into if there exists even a single element in B having no pre-image in A.

Clearly, f is into ⇔ range (f) ⊂ B.

Example Let A = {2,3,5,7} and B = {0,1,3,5,7}.

Let f: A → B : f(x) = (x-2). Then,

f(2) = (2-2) = 0, f(3) = (3-2) = 1, f(5) = (5-2) = 3 and f(7) = (7-2) = 5.

Thus, every element in A has a unique image in B.

Now, ∃ 7 ∈ B having no pre-image in A.

∴ f is into

Note that range (f) = {0,1,3,5} ⊂ B.

Bijective Function

A one-on-one function is said to be bijective or a one-to-one correspondence.

Constant Function A function f: A → B is called a constant function if every element of A has the same image in B.

Example Let A = {1,2,3} and B = {5,7,9}.

Let f: A → B: f(x) = 5 for all x ∈ A.

Every element in A has the same image.

So, f is a constant function.

Remark The range of a constant function is a singleton set.

Identity Function The function IA: A → A : IA(x) = x ∀ x ∈ A is called an identity function on A.

Domain (IA) = A and range (IA) = A.

Equal Functions Two functions f and g having the same domain D are said to be equal if f(x) = g(x) ∀ x ∈ D.

Solved Examples

Example 1 Let f: N → N: f(x) = 2x for all x ∈ N. Show that f is one-one and into.

Solution

Given

Let f: N → N: f(x) = 2x for all x ∈ N.

We have

f(x1) = f(x2) ⇒ 2x1 = 2x2 ⇒ x1 = x2.

∴ f is one-one.

Let y = 2x. Then, x = \(\frac{y}{2}\).

If we put y = 3, then x = \(\frac{3}{2}\) ∉ N.

Thus, 3 ∈ N has no pre-image in N.

∴ f is into.

Hence, f is one-one and into.

Example 2 Show that the function f: R → R: f(x) = x2 is neither one-one nor onto.

Solution

Given

f: R → R: f(x) = x2

We have f(-1) = (-1)2 = 1 and f(1) = 12 = 1.

Thus, two different elements in R have the same image.

∴ f is not one-one.

If we consider -1 in the codomain R, then it is clear that there is no element in R whose image is -1.

∴ f is not onto.

Hence, f is neither one-one nor onto.

Example 3 Show that the function f: R → R: f(x) = |x| is neither one-one nor onto.

Solution

Given

f: R → R: f(x) = |x|

We have f(-1) = |-1| = 1 and f(1) = |1| = 1.

Thus, two different elements in R have the same image.

∴ f is not one-one.

If we consider -1 in the codomain R, then it is clear that there is no real number x whose modulus is -1.

Thus, -1 ∈ R has no pre-image in R.

∴ f is not onto.

Hence, f is neither one-one nor onto.

Understanding Functions in Class 12 Maths

Example 4 For any real number x, we define [x] = greatest integer function f: R → R: f(x) = [x] is neither one-one nor onto.

Solution

Given

f: R → R: f(x) = [x]

Clearly, [1.2] = 1 and [1.3] = 1.

Thus, two different real numbers have the same image.

∴ f(1.2) = 1 and f(1.3) = 1.

Thus, two different real numbers have the same image.

∴ f is not one-one.

Clearly, there is no real number x such that f(x) = [x] = 1.1.

So, f is not onto.

Hence, f is neither one-one nor onto.

Example 5 Let R0 be the set of all nonzero real numbers. Show that f: R0 → R10 : f(x) = \(\frac{1}{x}\) is a one-one onto function.

Solution

Given

Let R0 be the set of all nonzero real numbers.

We have

f(x1) = f(x2) ⇒ \(\frac{1}{x_1}=\frac{1}{x_2}\) ⇒ x1 = x2.

∴ f is one-one.

Again, y = \(\frac{1}{x}\) ⇒ x = \(\frac{1}{y}\).

Now, if y is a nonzero real number, then x = (1/y) is a nonzero real number such that f(1/y) = y.

Thus, each y in R0 has its pre-image in R0.

So, f is onto

Hence, f is one-one onto.

Example 6 Show that the function f: R → R; f(x) = x3 is one-one and onto.

Solution

Given

f: R → R; f(x) = x3

We have

f(x1) = f(x2) ⇒ x13 = x23

⇒ (x13 – x23) = 0

⇒ (x1 – x2)(x12 + x1x2 + x22) = 0

⇒ \(\left(x_1-x_2\right)\left[\left(x_1+\frac{x_2}{2}\right)^2+\frac{3}{4} x_2^2\right]=0\)

⇒ (x1 – x2) = 0 [∵ \(\left(x_1+\frac{x_2}{2}\right)^2+\frac{3}{4} x_2^2 \neq 0\)]

⇒ x1 = x2

∴ f is one-one.

Let y ∈ R and let y = x3. Then, x = y1/3 ∈ R.

Thus, for each y in the codomain R there exists y1/3 in R such that f(y1/3) = (y1/3)3 = y.

∴ f is onto.

Hence, f is one-one onto.

Example 7 Show that the function f: R → R: f(x) = 3 – 4x is one-one onto and hence bijective.

Solution

Given

f: R → R: f(x) = 3 – 4x

We have

f(x1) = f(x2) ⇒ 3 – 4x1 = 3 – 4x2

⇒ -4x1 = -4x2

⇒ x1 = x2.

∴ f is one-one.

Now, let y = 3 – 4x. Then, \(x=\frac{(3-y)}{4}\)

Thus, for each y ∈ R (codomain of f), there exists \(x=\frac{(3-y)}{4}\) ∈ R

such that f(x) = \(f\left(\frac{3-y}{4}\right)=\left\{3-4 \cdot \frac{(3-y)}{4}\right\}\) = 3 – (3-y) = y.

This shows that every element in codomain of f has its pre-image in dom(f).

∴ f is onto.

Hence, the given function is bijective.

Example 8 Show that the function f: N → N, defined by

\(f(x)=\left\{\begin{array}{l}
x+1, \text { if } x \text { is odd } \\
x-1, \text { if } x \text { is even }
\end{array}\right.\) is one-one and onto.

Solution

Suppose f(x1) = f(x2).

Case 1 When x1 is odd and x2 is even

In this case, f(x1) = f(x2) ⇒ x1 + 1 = x2 + 1

⇒ x1 = x2.

This is a contradiction, since the difference between an odd integer and an even integer can never be 2.

Thus, in this case, f(x1) ≠ f(x2).

Similarly, when x1 is even and x2 is odd, then f(x1) ≠ f(x2).

Case 2 When x1 and x2 are both odd

In this case, f(x1) = f(x2) ⇒ x1 + 1 = x2 + 1

⇒ x1 = x2.

∴ f is one-one.

Case 3 When x1 and x2 are both even

In this case, f(x1) = f(x2) ⇒ x1 – 1 = x2 – 1

⇒ x1 = x2.

∴ f is one-one.

In order to show that f is onto, let y ∈ N (the codomain).

Case 1 When y is odd

In this case, (y+1) is even.

∴ f(y+1) = (y+1) – 1 = y.

Case 2 When y is even

In this case, (y-1) is odd.

∴ f(y-1) = y – 1 + 1 = y.

Thus, each y ∈ N (codomain of f) has its pre-image in dom(f).

∴ f is onto.

Hence, f is one-one onto.

Step-by-Step Solutions to Function Problems

Example 9 Show that f: N → N, defined by

\(f(n)=\left\{\begin{array}{l}
\frac{n+1}{2}, \text { if } n \text { is odd } \\
\frac{n}{2}, \text { if } n \text { is even }
\end{array}\right.\) is a many-one onto function.

Solution

We have

\(f(1)=\frac{(1+1)}{2}=\frac{2}{2}=1 \text { and } f(2)=\frac{2}{2}=1 \text {. }\)

Thus, f(1) = f(2) while 1 ≠ 2.

∴ f is many-one.

In order to show that f is onto, consider an arbitrary element n ∈ N.

If n is odd then (2n – 1) is odd, and

\(f(2 n-1)=\frac{(2 n-1+1)}{2}=\frac{2 n}{2}=n \text {. }\)

If n is even, then 2n is even and

\(f(2 n)=\frac{2 n}{2}=n.\)

Thus, for each n ∈ N (whether even or odd) there exists its pre-image in N.

∴ f is onto.

Hence, f is many-one onto.

Example 10 Show that the signum function f: R → R, defined by

\(f(x)=\left\{\begin{array}{r}
1, \text { if } x>0 \\
0, \text { if } x=0 \\
-1, \text { if } x<0
\end{array}\right.\) is neither one-one nor onto.

Solution

Clearly, f(2) = 1 and f(3) = 1.

Thus, f(2) = f(3) while 2 ≠ 3.

∴ f is not one-one.

Range(f) = {1,0,-1} ⊂ R.

So, f is into.

Hence, f is neither one-one nor onto.

Example 11 Let A = R – {R} and B = R – {1}. Let f: A → B: f(x) = \(\frac{x-2}{x-3}\) for all values of x ∈ A. Show that f is one-one and onto.

Solution

Given

Let A = R – {R} and B = R – {1}. Let f: A → B: f(x) = \(\frac{x-2}{x-3}\) for all values of x ∈ A.

f is one-one, since

f(x1) = f(x2) ⇒ \(\frac{x_1-2}{x_1-3}=\frac{x_2-2}{x_2-3}\)

⇒ (x1-2)(x2-3) = (x1-3)(x2-2)

⇒ x1x2 – 3x1 – 2x2 + 6 = x1x2 – 2x1 – 3x2 + 6

⇒ x1 = x2.

Let y ⊂ B such that y = \(\frac{x-2}{x-3}\).

Then, (x-3)y = (x-2) ⇒ x = \(\frac{(3 y-2)}{(y-1)}\).

Clearly, x is defined when y ≠ 1.

Also, x = 3 will give us 1 = 0, which is false.

∴ x ≠ 3.

And, \(f(x)=\frac{\left(\frac{3 y-2}{y-1}-2\right)}{\left(\frac{3 y-2}{y-1}-3\right)}=y \text {. }\)

Thus, for each y ∈ B, there exists x ∈ A such that f(x) = y.

∴ f is onto.

Hence, f is one-one onto.

Example 12 Let A and B be two nonempty sets. Show that the function f: (A x B) → (B x A): f(a,b) = (b,a) is a bijective function.

Solution

Given:

Let A and B be two nonempty sets.

f is one-one, since

f(a1,b1) = f(a2,b2) ⇒ (b1,a1) = (b2,a2)

⇒ a1 = a2 and b1 = b2

⇒ (a1,b1) = (a2,b2).

In order to show that f is onto, let (b,a) be an arbitrary element of (B x A).

Then, (b,a) ⊂ (B x A)

⇒ b ∈ B and a ∈ A

⇒ (a,b) ∈ (A x B).

Thus, for each (b,a) ∈ (B x A), there exists (a,b) ∈ A x B such that f(a,b) = (b,a).

∴ f is onto.

Thus, f is one-one onto and hence bijective.

Example 13 Find the domain and range of the real function f(x) = \(\sqrt{9-x^2}\).

Solution

Given

f(x) = \(\sqrt{9-x^2}\).

It is clear that f(x) = \sqrt{9-x^2} is not defined when (9 – x2) < 0, i.e., when x2 > 9, i.e., when x > 3 or x < -3.

∴ dom(f) – {x ∈ R: -3 ≤ x ≤ 3}.

Also, y = \(\sqrt{9-x^2}\) ⇒ y2 = (9-x2)

⇒ x = \(\sqrt{9-y^2}\).

Clearly, x is not defined when (9-y2) < 0.

But, (9-y2) < 0 ⇒ y2 > 9

⇒ y > 3 or y < -3.

∴ range(f) = {y ∈ R: -3 ≤ y ≤ 3}.

Types of Functions Explained

Example 14 Find the domain and range of the real function, defined by f(x) = \(\frac{1}{\left(1-x^2\right)}\).

Solution

Given

f(x) = \(\frac{1}{\left(1-x^2\right)}\).

Clearly, \(\frac{1}{\left(1-x^2\right)}\) is not defined when 1 – x2 = 0, i.e., when x = ±1.

∴ dom(f) = R – {-1,1}.

Also, \(\frac{1}{\left(1-x^2\right)} \Rightarrow\left(1-x^2\right)=\frac{1}{y}\)

⇒ \(x=\sqrt{1-\frac{1}{y}} .\)

Clearly, x is not defined when \(\left(1-\frac{1}{y}\right)\) < 0 or 1 < \frac{1}{y} or y < 1.

∴ range(f) = R – {y ∈ R : y ≥ 1}.

Example 15 Consider a function f : X → Y and define a relation R in X be R = {(a,b): f(a) = f(b)}. Show that R is an equivalence relation.

Solution

Given:

A function f : X → Y

Here, R satisfies the following properties:

(1) Reflexity

Let a ∈ X. Then,

f(a) = f(a) ⇒ (a,a) ∈ R.

∴ R is reflexive.

(2) Symmetry

Let (a,b) ∈ R. Then,

(a,b) ∈ R ⇒ f(a) = f(b) ⇒ f(b) = f(a) ⇒ (b,a) ∈ R.

∴ R is symmetric.

(3) Transitivity

Let (a,b) ∈ R and (b,c) ∈ R. Then,

(a,b) ∈ R, (b,c) ∈ R

⇒ f(a) = f(b) and f(b) = f(c)

⇒ f(a) = f(c)

⇒ (a,c) ∈ R.

∴ R is transitive.

Hence, R is an equivalence relation.

Composition of Functions

Let f: A → B and g: B → C be two given functions. Then, the composition of f and g, denoted by g o f is the function, defined by (g o f): A → C : (g o f)(x) = g{f(x)} ∀ x ∈ A.

Clearly dom(g o f) = dom (f).

Also, g o f is defined only when range (f) ⊆ dom(g).

Remark (f o g) is defined only when range (g) ⊆ dom (f).

And, dom(f o g) = dom(g).

Solved Examples

Example 1 Let f:{1,3,4} → g:{1,2,5} → {1,3} be defined as f = {(1,2), (3,5), (4,1)} and g = {(1,3),(2,3),(5,1)}. Find (g o f) and (f o g).

Solution

Given

Let f:{1,3,4} → g:{1,2,5} → {1,3} be defined as f = {(1,2), (3,5), (4,1)} and g = {(1,3),(2,3),(5,1)}.

Here range (f) = {1,2,5} and dom(g) = {1,2,5}.

Clearly, range(f) ⊆ dom(g).

∴ (g o f) is defined and dom(g o f) = dom(f) = {1,3,4}.

Now, (g o f)(1) = g{f(1)} = g(2) = 3;

(g o f)(3) = g{f(3)} = g(5) = 1;

(g o f)(4) = g{f(4)} = g(1) = 3.

Hence, (g o f) = {(1,3), (3,1), (4,3)}.

Again, range(g) = {1,3} and dom(f) = {1,3,4}.

Clearly, range(g) ⊆ dom(f).

∴ (f o g) is defined and dom(f o g) = dom(g) = {1,2,5}.

Now, (f o g)(1) = f{g(1)} = f(3) = 5;

(f o g)(2) = f{g(2)} = f(3) = 5;

(f o g)(5) = f{g(5)} = f(1) = 2.

Hence, (f o g) = {(1,5), (2,5), (5,2)}.

Example 2 Let R be the set of all real numbers. Let f: R → R: f(x) = cos x and let g: R → R: g(x) = 3x2. Show that (g o f) ≠ (f o g).

Solution

Given:

Let R be the set of all real numbers. Let f: R → R: f(x) = cos x and let g: R → R: g(x) = 3x2

Let x be an arbitrary real numbers. Then,

(g o f)(x) = g{f(x)} = g(cos x) = 3(cos x)2 = 3cos2x.

(f o g)(x) = f{g(x)} = f(3x2) = cos(3x2).

Taking x = 0, we have

(g o f)(0) = 3cos20 = (3 x 1) = 3.

(f o g)(0) = cos(3 x 0) = cos 0 = 1.

∴ (g o f)(0) ≠ (f o g)(0).

Hence, g o f ≠ f o g.

Example 3 Let R be the set of all real numbers. Let f: R → R: f(x) = sin x and g: R → R: g(x) = x2. Prove that g o f ≠ f o g.

Solution

Given

Let R be the set of all real numbers. Let f: R → R: f(x) = sin x and g: R → R: g(x) = x2.

Let x be an arbitrary real number. Then,

(g o f)(x) = g{f(x)} = g(sin x) = (sin x)2.

(f o g)(x) = f{g(x)} = f(x2) = sinx2.

Clearly, (sin x)2 ≠ sinx2.

Hence, g o f ≠ f o g.

Example 4 Let f: R → R: f(x) = 8x3 and g: R → R: g(x) = x1/3. Find (g o f) and (f o g) and show that g o f ≠ f o g.

Solution

Given

Let f: R → R: f(x) = 8x3 and g: R → R: g(x) = x1/3.

Let x ∈ R. Then, we have

(g o f)(x) = g{f(x)} = g(8x3) = (8x3)1/3 = 2x.

(f o g)(x) = f{g(x)} = f(x1/3) = 8(x1/3)3 = 8x.

∴ g o f ≠ f o g.

Example 5 Let f: R → R: f(x) = (x2 – 3x + 2), find (f o f)(x).

Solution

Given

Let f: R → R: f(x) = (x2 – 3x + 2)

We have

(f o f)(x) = f{f(x)} = f(x2 3x + 2) = f(y), where y = (x2 – 3x + 2)

= (y2 – 3y + 2)

= (x2 – 3x + 2)2 – 3(x2 – 3x + 2) + 2

= (x4 – 6x3 + 10x2 – 3x).

Example 6 If f: R → R: f(x) = (3 – x3)1/3, show that (f o f)(x) = x.

Solution

Given

f: R → R: f(x) = (3 – x3)1/3

We have

(f o f)(x) = f{f(x)} = f(3 – x3)1/3

= f(y), where y = (3 – x3)1/3

= (3 – y3)1/3 = [3 – (3 – x3)]1/3 [∵ y3 = (3 – x3)]

= (x3)1/3 = x.

Hence, (f o f)(x) = x.

Common Questions on Functions and Their Solutions

Example 7 Let f: A → B, and let IA and IB be identity functions on A and B respectively. Prove that (f o IA) = f and (IB o f) = f.

Solution

Given

Let f: A → B, and let IA and IB be identity functions on A and B respectively.

Let x ∈ A and let f(x) = y. Then,

(f o IA)(x) = f{IA(x)}

= f(x) [∵ IA(x) = x]

∴ (f o IA) = f.

Class 12 Maths Functions Example 7

And, (IB o f)(x) = IB{f(x)}

= IB(y) [∵ f(x) = y]

= y [∵ IB(y) = y]

= f(x) [∵ y = f(x)].

∴ (IB o f) = f.

Hence, (f o IA) = f and (IB o f) = f.

Example 8 (Associativity) Let f: A → B, g: B → C and h: C → D. Then, prove that (h o g) o f = h o (g o f).

Solution

Given

Let f: A → B, g: B → C and h: C → D.

Let x ∈ A. Then,

{(h o g) o f}(x) = (h o g){f(x)}

= h[g{f(x)}]

= h[(g o f)(x)]

= {h o (g o f)}(x).

∴ (h o g) o f = h o (g o f).

Example 9 Let f: Z → Z: f(n) = 3n and let g: Z → Z, defined by

g(n)= \(\begin{cases}\frac{n}{3}, & \text { if } n \text { is a multiple of } 3 \\ 0, & \text { if } n \text { is nota multiple of } 3\end{cases}\)

Show that g o f = Iz and f o g ≠ Iz.

Solution

Let n be an arbitrary element of Z. Then,

(g o f)(n) = g{f(n)}

= g(3n) = \(\frac{3 n}{3}\) = n

= Iz(n).

∴ (g o f) = Iz.

Also, we have

(f o g)(1) = f{g(1)}

= f(0) [∵ g(1) = 0]

= (3 x 0) = 0 [∵ f(n) = 3n].

Iz(1) = 1 [∵ Iz(x) = x ∀ x ∈ Z].

∴ f o g ≠ Iz.

Example 10 Let \(A=R-\left\{\frac{3}{5}\right\} \text { and } B=R-\left\{\frac{7}{5}\right\}\). Let f: A → B: f(x) = \(\frac{7 x+4}{5 x-3}\) and g: B → A: g(y) = \(\frac{3 y+4}{5 y-7}\).

Show that (g o f) = IA and (f o g) = IB.

Solution

Let x ∈ A. Then,

(g o f)(x) = g[f(x)]

= \(8\left(\frac{7 x+4}{5 x-3}\right)\)

= g(y), where y = \(\frac{7 x+4}{5 x-3}\) …(1)

= \(\frac{3 y+4}{5 y-7}=\frac{3\left(\frac{7 x+4}{5 x-3}\right)+4}{5\left(\frac{7 x+4}{5 x-3}\right)-7}\) [using (1)]

= \(\frac{(21 x+12+20 x-12)}{(5 x-3)} \times \frac{(5 x-3)}{(35 x+20-35 x+21)}\)

= \(\frac{41 x}{41}\) = x = IA(x).

∴ (g o f) = IA.

Again, let y ∈ B. Then,

(f o g)(y) = f[g(y)]

= \(f\left(\frac{3 y+4}{5 y-7}\right)\)

= f(z), where z = \(\frac{3 y+4}{5 y-7}\) …(2)

= \(\frac{7 z+4}{5 z-3}=\frac{7\left(\frac{3 y+4}{5 y-7}\right)+4}{5\left(\frac{3 y+4}{5 y-7}\right)-3}\)

= \(\frac{(21 y+28+20 y-28)}{(5 y-7)} \times \frac{(5 y-7)}{(15 y+20-15 y+21)}\)

= \(\frac{41 y}{41}\) = y = IB(y).

∴ (f o g) = IB.

Hence, (g o f) = IA and (f o g) = IB.

Example 11 Let f: A → B and g: B → A such that (g o f) = IA. Show that is one-one and g is onto.

Solution

Given

Let f: A → B and g: B → A such that (g o f) = IA.

We have

f(x1) = f(x2) ⇒ g{f(x1)} = g{f(x2)}

⇒ (g o f)(x1) = (g o f)(x2)

⇒ IA(x1) = IA(x2)

⇒ x1 = x2.

∴ f is one-one.

In order to show that g is onto, let a ∈ A and let f(a) = b ∈ B.

Then, g(b) = g[f(a)] = (g o f)(a)

= IA(a) [∵ g o f = IA].

Thus, for each a ∈ A, there exists b ∈ B such that g(b) = a.

∴ g is onto.

Invertible Function

Let f: A → B. If there exists a function g: B → A such that g o f = IA and f o g = IB, then f is called an invertible function and g is called the inverse of f. We write, f-1 = g.

Remark Clearly, f-1 o f IA and f o f-1 = IB.

Example Let f: R → R: f(x) = 2x + 3.

Let y = f(x). Then,

y = f(x) ⇒ y = 2x + 3

⇒ x = \(\frac{1}{2}\)(y – 3)

⇒ f-1(y) = \(\frac{1}{2}\)(y – 3) [∵ y = f(x) ⇒ x = f-1(y)]

Thus, we define:

f-1: R → R: f-1(y) = \(\frac{1}{2}\)(y-3).

Theorem 1 If f: A → B is one-one onto, then prove that f is an invertible function.

Proof

Let y ∈ B. Then, f being one-one onto, there exists a unique x ∈ A such that f(x) = y.

We define g: B → A: g(y) = x. Then,

(g o f)(x) = g[f(x)]

= g(y) [∵ f(x) = y]

= x [∵ g(y) =x]

= IA(x).

∴ (g o f) = IA

(f o g)(y) = f[g(y)]

= f(x)  [∵ g(y) = x]

= y    [∵ f(x) = y]

= IB

∴ (f o g) = IB.

Hence, f is invertible and f-1 = g.

Class 11 Physics Class 12 Maths Class 11 Chemistry
NEET Foundation Class 12 Physics NEET Physics

Applications of Functions in Real Life

Theorem 2 If f: A → B is an invertible function, then prove that f is one-one onto.

Proof

Let f: A → B be an invertible function. Then, there exists a function g: B → A such that

g o f = IA and f o g = IB.

Now, f(x1) = f(x2)

⇒ g{f(x1)} = g{f(x2)}

⇒ (g o f)(x1) = (g o f)(x2)

⇒ IA(x1) = IA(x2) [∵ g o f = IA]

⇒ x1 = x2

∴ f is one-one.

Let y ∈ B. Then, g(y) ∈ A. Let g(y) = x. Then,

g(y) = x

⇒ f{g(y)} = f(x)

⇒ (f o g)(y) = f(x)

⇒ IB(y) = f(x) [∵ f o g = IB]

⇒ y = f(x).

Thus, for each y ∈ B there exists x ∈ A such that y = f(x).

∴ f is onto

Hence, f is one-one onto.

Remark f is invertible ⇔ f is one-one onto.

Solved Examples

Example 1 Let f: R → R: f(x) = 4x + 3 for all x ∈ R. Show that f is invertible and find f-1.

Solution

Given

Let f: R → R: f(x) = 4x + 3 for all x ∈ R.

We have

f(x1) = f(x2) ⇒ 4x1 + 3 = 4x2 + 3

⇒ 4x1 = 4x2 ⇒ x1 = x2.

∴ f is one-one.

Again, y = 4x + 3 ⇒ x = \(\frac{(y-3)}{4}\)

Now, if y ∈ R (codomain of f), then there exists x = \(\frac{(y-3)}{4}\) ∈ R such that f(x) = \(f\left(\frac{y-3}{4}\right)=\left\{4 \cdot \frac{(y-3)}{4}+3\right\}=y \text {. }\)

∴ f is onto.

Thus, f is one-one onto and therefore invertible.

Now, y = f(x) ⇒ y = 4x + 3

⇒ x = \(\frac{(y-3)}{4}\)

⇒ \(f^{-1}(y)=\frac{(y-3)}{4}\) [∵ f(x) = y ⇒ x = f-1(y)].

Thus, we define:

\(f^{-1}: R \rightarrow R: f^{-1}(y)=\frac{(y-3)}{4}\) for all y ∈ R.

Example 2 Let R+ be the set of all positive real numbers. Let f: R+ → [4, ∞[:f(x) = x2 + 4. Show that f is invertible and find f-1.

Solution

Given

Let R+ be the set of all positive real numbers. Let f: R+ → [4, ∞[:f(x) = x2 + 4.

We have

f(x1) = f(x2) ⇒ x12 + 4 = x22 + 4

⇒ x12 = x22

⇒ x12 – x22 = 0

⇒ (x1 – x2)(x1 + x2) = 0

⇒ x1 – x2 = 0 [∵ (x1 + x2) ≠ 0]

⇒ x1 = x2.

∴ f is one-one

Now, y = x2 + 4 ⇒ x = \(\sqrt{y-4}\) in R+ such that

f(x) = f(\(\sqrt{y-4}\))=(\(\sqrt{y-4})^2+4=(y-4)+4=y \text {. }\)

∴ f is onto.

Thus, f is one-one onto and therefore invertible.

Now, y = f(x) ⇒ y = x2 + 4

⇒ x = \(\sqrt{y-4}\)

⇒ \(f^{-1}(y)=\sqrt{y-4}\)

∴ \(f^{-1}:\left[4, \infty\left[\rightarrow R_{+}: f^{-1}(y)=\sqrt{y-4} .\right.\right.\)

Example 3 Let R+ be the set of all positive real numbers. Let f: R+ → R+ : f(x) = ex for all x ∈ R+. Show that f is invertible and hence find f-1.

Solution

Given

Let R+ be the set of all positive real numbers. Let f: R+ → R+ : f(x) = ex for all x ∈ R+.

f is one-one, since

f(x1) = f(x2) ⇒ ex1 = ex2 ⇒ x1 = x2.

Now, for each y ∈ R+, there exists a positive real number, namely log y such that

f(log y) = elogy = y.

∴ f is onto.

Thus, f is one-one onto and hence invertible.

We define:

f-1: R+ → R+: f-1(y) = log y for all y ∈ R+.

Example 4 Let A = \(\left\{x: x \in R, \frac{-\pi}{2} \leq x \leq \frac{\pi}{2}\right\} \text { and } B=\{y: y \in R,-1 \leq y \leq 1\} \text {. }\)

Show that the function f: A → B: f(x) = sin x is invertible and hence find f-1.

Solution

Here, A = \(\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\) and B = [-1,1].

Also, f: A → B: f(x) = sin x.

f is one-one, since

f(x1) = f(x2) ⇒ sin x1 = sin x2

⇒ x1 = x2 {∵ x1, x2 ∈ \(\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\)}.

∴ f is one-one.

Also, range (f) = [-1,1] = B. So, f is onto.

Thus, f is one-one onto and hence invertible.

Now, y = f(x) ⇒ y = sin x

⇒ x = sin-1y

⇒ f-1(y) = sin-1y.

Thus, we define:

f-1: [-1,1] → \(\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\) : f-1(y) = sin-1y.

Example 5 Let f: N → Y: f(x) = x2, where y = range(f). Show that f is invertible and find f-1.

Solution

Given

Let f: N → Y: f(x) = x2, where y = range(f).

We have

f(x1) = f(x2) ⇒ x12 = x22

⇒ x12 – x22 = 0

⇒ (x1 – x2)(x1 + x2) = 0

⇒ x1 – x2 = 0 [∵ x1 + x2 ≠ 0]

⇒ x1 = x2.

∴ f is one-one.

Since range(f) = Y, so f is onto.

Thus, f is one-one onto and therefore invertible.

Let y ∈ Y. Then, there exists x ∈ N such that f(x) = y.

Now, y = f(x) ⇒ y = x2

⇒ x = √y

⇒ f-1(y) = √y. [∵ f(x) = y ⇒ x = f-1(y)]

Thus, we define

f-1: Y → N: f-1(y) = √y.

Example 6 Let f: [1,1] → Y: f(x) = \(\frac{x}{(x+2)}\), x ≠ -2 and Y = range(f). Show that f is invertible and find f-1.

Solution

Given

Let f: [1,1] → Y: f(x) = \(\frac{x}{(x+2)}\), x ≠ -2 and Y = range(f).

We have

f(x1) = f(x2) ⇒ \(\frac{x_1}{x_1+2}=\frac{x_2}{x_2+2}\)

⇒ x1x2 + 2x1 = x1x2 + 2x2

⇒ 2(x1 – x2) = 0

⇒ x1 – x2 = 0

⇒ x1 = x2.

∴ f is one-one.

Since range(f) = Y, so f is onto.

Thus, f is one-one onto and therefore invertible.

Let y ∈ Y. Then, there exists x ∈ [-1,1] such that f(x) = y.

Now, y = f(x) ⇒ y = \(\frac{x}{(x+2)}\)

⇒ x = \(\frac{2 y}{(1-y)}\)

⇒ f-1(y) = \(\frac{2 y}{(1-y)}\)

Thus, we define:

\(f^{-1}:[-1,1] \rightarrow Y: f^{-1}(y)=\frac{2 y}{(1-y)}, y \neq 1 .\)

Example 7 Let f: N → Y: f(x) = 4x2 + 12x + 15 and Y = range(f). Show that f is invertible and find f-1.

Solution

Given

f: N → Y: f(x) = 4x2 + 12x + 15 and Y = range(f).

f is one-one, since

f(x1) = f(x2) ⇒ 4x12 + 12x1 + 15 = 4x22 + 12x2 + 15

⇒ 4(x12 – x22) + 12(x1 – x2) = 0

⇒ (X12 – x22) + 3(x1 – x2) = 0

⇒ (x1 – x2)(x1 + x2 + 3) = 0

⇒ x1 – x2 = 0 [∵ x1 + x2 + 3 ≠ 0]

⇒ x1 = x2.

Also, range(f) = Y. So, f is onto.

Thus, f is one-one onto and therefore invertible.

Let y ∈ Y. Then, f being onto, there exists x such that y = f(x).

Now, y = f(x) ⇒ y = 4x2 + 12x + 15

⇒ y = (2x+3)2 + 6

⇒ (2x+3) = \(\sqrt{y-6}\)

⇒ x = \(\frac{1}{2}(\sqrt{y-6}-3)\)

⇒ f-1(y) = \(\frac{1}{2}(\sqrt{y-6}-3) .\)

Thus, we define:

\(f^{-1}: Y \rightarrow N: f^{-1}(y)=\frac{1}{2}(\sqrt{y-6}-3)\)

f is invertible and  \(f^{-1}: Y \rightarrow N: f^{-1}(y)=\frac{1}{2}(\sqrt{y-6}-3)\)

Example 8 Let f: R → R: f(x) = 10x + 7. Find the function g: R → R such that g o f = f o g = IR.

Solution

Given

Let f: R → R: f(x) = 10x + 7.

Clearly, g = f-1 …(1)

Now, f(x1) = f(x2) ⇒ 10x1 + 7 = 10x2 + 7

⇒ 10x1 = 10x2

⇒ x1 = x2.

∴ f is one-one.

Now, y = f(x) ⇒ y = 10x + 7

⇒ x = \(\frac{(y-7)}{10}\)

Clearly, for each y ∈ R (codomain of f) there exists x ∈ R such that

f(x) = \(f\left(\frac{y-7}{10}\right)=\left\{10 \cdot\left(\frac{y-7}{10}\right)+7\right\}=y\)

∴ f is onto.

Thus, f is one-one onto and therefore, f-1 exists.

We define: f-1: R → R: f-1(y) = \(\frac{y-7}{10}\).

Hence, g: R → R: g(y) = \(\frac{y-7}{10}\) [using (1)].

Example 9 Let f: W → W : f(n)= \(\begin{cases}(n-1), & \text { when } n \text { is odd } \\ (n+1), & \text { when } n \text { is even. }\end{cases}\)

Show that f is invertible. Find f-1.

Solution

Let f(n1) = f(n2).

Case 1 When n1 is odd and n2 is even

In this case, f(n1) = f(n2) ⇒ n1 – 1 = n2 + 1

⇒ n1 – n2 = 2.

If n1 is odd and n2 is even, then (n1 – n2) ≠ 2.

Thus, we arrive at a contradiction.

So, in this case, f(n1) ≠ f(n2).

Similarly, when n1 is even and n2 is odd, then f(n1)≠f(n2).

Case 2 When n1 and n2 are both odd

In this case, f(n1) = f(n2) ⇒ n1 – 1 = n2 – 1

⇒ n1 = n2.

Case 3 When n1 and n2 are both even

In this case, f(n1) = f(n2) ⇒ n1 + 1 = n2 + 1

⇒ n1 = n2.

Thus, from all the cases, we get f(n1) = f(n2) ⇒ n1 = n2.

∴ f is one-one.

Now, we show that f is onto.

Let n ∈ W.

Case 1 When n is odd

In this case, (n-1) is even

and f(n-1) = (n-1) + 1 = n …(1)

Case 2 When n is even

In this case, (n+1) is odd

and f(n+1) = (n+1) – 1 = n …(2)

Thus, each n ∈ W has its pre-image in W.

∴ f is onto.

Thus, f is one-one onto and hence invertible.

Clearly, we have

\(f^{-1}(n)=\left\{\begin{array}{l}
(n-1), \text { when } n \text { is odd } \\
(n+1), \text { when } n \text { is even }
\end{array}\right.\) [using (1) and (2)].

Example 10 Let A = {1,2,3} and let f: A → A, defined by f = {(1,2), (2,3), (3,1)}. Find f-1, if it exists.

Solution

Given

Let A = {1,2,3} and let f: A → A, defined by f = {(1,2), (2,3), (3,1)}.

We have f(1) = 2, f(2) = 3 and f(3) = 1.

Dom(f) = {1,2,3} = A and range (f) = {1,2,3} = A.

Clearly, different elements in A have different images.

∴ f is one-one.

Range(f) = A ⇒ f is onto.

Thus, f is one-one onto and therefore invertible.

Now, f(1) = 2, f(2) = 3 and f(3) = 1

⇒ f-1(2) = 1, f-1(3) = 2 and f-1(1) = 3.

Hence, f-1 = {(2,1), (3,2), (1,3)}.

Some Results On Invertible Functions

Theorem 1 Prove that an invertible function has a unique inverse.

Proof

Let f: A → B, which is one-one onto and therefore, invertible.

If possible, let it have two inverses, say g and h.

Then, (f o g) = IB and (f o h) = IB

⇒ (f o g)(y) = (f o h)(y) [each = IB(y)]

⇒ f{g(y)} = f{h(y)} for all y ∈ B

⇒ g(y) = h(y) for all y ∈ B [∵ f is one-one]

∴ g = h.

Hence, f has a unique inverse.

Theorem 2 Let f be an invertible function. Then, prove that (f-1)-1 = f.

Proof

Let f: A → B, which is invertible.

In order to prove that (f-1)-1 = f, it is sufficient to show that f-1 o f = IA and f o f-1 = IB.

Clearly, f: A → B is one-one onto.

∴ f-1: B → A is one-one onto.

Let x ∈ A and let f(x) = y. Then, f-1(y) = x.

Class 12 Maths Functions Theorem 2

∴ (f-1 o f)(x) = f-1{f(x)}

= f-1(y) [∵ f(x) = y]

= x

= IA(x).

∴ f-1 of = IA.

Class 12 Maths Functions Theorem 2.1

Again, let y ∈ B.

Then, f being onto, there exists x ∈ A such that f(x) = y and therefore, f-1(y) = x.

∴ (f o f-1)(y) = f{f-1(y)}

= f(x) [∵ f-1(y) = x]

= y

= IB(y).

∴ f o f-1 = IB.

Thus, f-1 o f = IA and f o f-1 = IB.

Hence, (f-1)-1 = f.

Theorem 3 Let f: A → B and g: B → C be one-one onto function. Prove that (g o f): A → C which is one-one onto and (g o f)-1 = f-1 o g-1.

Proof

Let f: A → B be one-one onto and g: B → C be one-one onto.

Class 12 Maths Functions Theorem 3

We first show that g o f is one-one onto.

(g o f) is one-one since

(g o f)(x1) = (g o f)(x2)

⇒ g{f(x1)} = g{f(x2)}

⇒ f(x1) = f(x2) [∵ g is one-one]

⇒ x1 = x2   [∵ f is one-one].

Let z ∈ C. Then, g being onto, there exists y ∈ B such that g(y) = z.

Now, f being onto, there exists x ∈ A such that f(x) = y.

∴ z = g(y)

= g{f(x)} [∵ y = f(x)]

= (g o f)(x).

Thus, for each z ∈ C, there exists x ∈ A such that (g o f)(x) = z.

∴ (g o f) is onto.

Thus, (g o f) is one-one onto.

Now, f(x) = y ⇒ f-1(y) = x.

And, g(y) = z ⇒ g-1(z) = y.

Also, (g o f)(x) = z ⇒ (g o f)-1(z) = x.

∴ (f-1 o g-1)(z) = f-1{g-1(z)}

= f-1(y) [∵ g-1(z) = y]

= x [∵ f-1(y) = x]

= (g o f)-1(z).

Hence, (g o f)-1 = (f-1 o g-1).

Chapter 3 Binary Operations

Closure Property An operation * on a nonempty set S is said to satisfy the closure property, if

a ∈ S, b ∈ S ⇒ a * b ∈ S for all a, b ∈ S.

Also, in this case, we say that S is closed for *.

An operation * on a nonempty set S, satisfying the closure property is known as a binary operation.

Example 1 (1) Addition on the set N of all natural numbers is a binary operation, since a ∈ N, b ∈ N ⇒ a + b ∈ N for all, a, b ∈ N.

(2) Multiplication on N is a binary operation, since a ∈ N, b ∈ N ⇒ a x b ∈ N for all a, b ∈ N.

Similarly, addition as well as multiplication is a binary operation on each one of the sets Z, Q, R anc C of integers, rationals, reals and complex numbers respectively.

Example 2 Let S be a nonempty set and P(S) be its power set. Then, the union operation on P(S) is a binary operation, since

A ∈ P(S), B ∈ P(S) ⇒ A ∪ B ∈ P(S) for all A, B ∈ P(S).

Similarly, intersection on P(S) is a binary operation, as

A ∈ P(S), B ∈ P(S) ⇒ A ∩ B ∈ P(S) for all A, B ∈ P(S).

Example 3 Subtraction on N is not a binary operation, since

3 ∈ N, 5 ∈ N but (3 – 5) = -2 ∉ N.

Subtraction on the set Z of all integers is a binary operation, since

a ∈ Z, b ∈ Z ⇒ a – b ∈ Z for all a, b ∈ Z.

Example 4 Addition on the set S of all irrationals is not a binary operation, since

2 + √3 ∈ S, 2 – √3 ∈ S but (2 + √3) + (2 – √3) = 4 ∉ S.

Multiplication on the set S of all irrationals is not a binary operation, since

√2 ∈ S, -√2 ∈ S but (√2)(-√2) = -2 ∉ S.

Example 5 Let N be the set of all natural numbers. Then, the exponential operation (a,b) → ab is a binary operation on N, since a ∈ N, b ∈ N ⇒ ab ∈ N for all a, b ∈ N.

Let Z be the set of all integers. The exponential operation (a,b) → ab is not a binary operation on Z, since 2 ∈ Z, -3 ∈ Z but 2-3 = \(\frac{1}{2^3}\)=\(\frac{1}{8}\) ∉ Z.

Properties of a binary operation

(1) Associative law A binary operation * on a nonempty set S is said to be associative, if

(a*b)*c = a*(b*c) for all a, b, c ∈ S.

(2) Commutative law A binary operation * on a nonempty set S is said to be commutative, if

a*b = b*a for all a, b ∈ S.

(3) Distributive law Let * and ○ be two binary operations on a nonempty set s. We say that * is distributive over ○, if

a*(b ○ c) = (a*b)○(a*c) for all a, b, c ∈ S.

Example 1 Let R be the set of all real numbers. Then,

(1) addition on R satisfies the closure property, the associative law and the commutative law,

(2) multiplication on R satisfies the closure property, the associative law and the commutative law,

(3) multiplication distributes addition on R, since

a.(b+c) = a.b + a.c for all a, b, c ∈ R.

Examples of Composite and Inverse Functions

Example 2 Let Z be the set of all integers. Then, subtraction on Z is clearly a binary operation. But, it is neither commutative nor associative, as (3-5) ≠ (5-3) and (3-4) – 5 ≠ 3 – (4-5).

Identity Element Let * be a binary operation on a nonempty set S. An element e ∈ S, if it exists such that

a * e = e * a = a for all a ∈ S, is called an identity element of S, with respect to *.

Example 1 (1) For addition on R, zero is the identity element in R, since a + 0 = 0 + a = a for a ∈ R.

(2) For multiplication on R, 1 is the identity element in R, since a x 1 = 1 x a = a for all a ∈ R.

Example 2 Let P(S) be the power set of a nonempty set S. Then, Φ is the identity element for union on P(S) as

A ∪ Φ = Φ ∪ A = A for all A ∈ P(S).

Also, S is the identity element for intersection on P(S), since

A ∩ S = S ∩ A = A for all A ∈ P(S).

Inverse Of An Element Let * be a binary operation on a nonempty set S and let e be the identity element.

Let a ∈ S. We say that a is invertible if there exists an element b ∈ S such that a * b = b * a = e.

Also, in this case, b is called the inverse of a, and we write a-1 = b.

Example 1 Consider addition on Z.

Clearly, the additive identity is 0, since

a + 0 = 0 + a = a for all a ∈ Z.

Also, corresponding to each a ∈ Z, there exists -a ∈ Z such that a + (-a) = (-a) + a = 0.

Thus, the additive inverse of a is -a.

Example 2 Consider multiplication on Z.

Clearly, 1 is the multiplicative identity on Z, since

a x 1 = 1 x a = a for all a ∈ Z.

Since 1 x 1 = 1, so the multiplicative inverse of 1 is 1.

Since (-1) x (-1) = 1, so the multiplicative inverse of (-1) is (-1).

No integer other than 1 and -1 has its multiplicative inverse in Z.

Solved Examples

Example 1 Let Z be the set of all integers. Then, addition on Z satisfies the following properties:

(1) Closure Property

We know that the sum of two integers is always an integer,

i.e., a ∈ Z, b ∈ Z ⇒ a + b ∈ Z for all a, b ∈ Z.

(2) Associative Law

For all a, b, c ∈ Z, we have

(a+b)+c = a+(b+c).

(3) Commutative Law

For all a, b ∈ Z, we have

a + b = b + a.

(4) Existence of Additive Identity

Clearly, 0 ∈ Z is the additive identity, since

0 + a = a + 0 = a for all a ∈ Z.

(5) Existence of Additive Inverse

For each a ∈ Z, there exists -a ∈ Z such that a + (-a) = (-a) + a = 0.

So, -a is the additive inverse of a.

Example 2 Let R0 be the set of all nonzero real numbers. Then, multiplication on R0 satisfies the following properties:

(1) Closure Property

We know that the product of two nonzero real numbers is a nonzero real numbers is a nonzero real number.

Thus, a ∈ R0, b ∈ R0 ⇒ ab ∈ R0 for all a, b ∈ R0.

(2) Associative Law

For all a, b, c ∈ R0, we have

(ab)c = a(bc).

(3) Commutative Law

For all a, b ∈ R0, we have ab = ba.

(4) Existence of Multiplicative Identity

Clearly, 1 ∈ R0 is the multiplicative identity, since

1 x a = a x 1 for all a ∈ R0.

(5) Existence of Multiplicative Inverse

For each a ∈ R0 there exists \(\frac{1}{a}\) ∈ R0 such that

\(a \times \frac{1}{a}=\frac{1}{a} \times a=1 .\)

Thus, the multiplicative inverse of a is \frac{1}{a}.

Example 3 Show that ther operation * on Z, defined by a * b = a + b + 1 for all a, b ∈ Z

satisfies (1) the closure property, (2) the associative law and (3) the commutative law

(4) Find the identity element in Z.

(5) What is the inverse of an element a ∈ Z?

Solution

(1) Closure Property

Let a ∈ Z, b ∈ Z. Then,

a * b = a + b + 1.

Now, a ∈ Z, b ∈ Z ⇒ a + b ∈ Z

⇒ a + b + 1 ∈ Z.

∴ * on Z satisfies the closure property.

(2) Associative Law

For all a, b, c ∈ Z, we have

(a*b)*c = (a + b + 1)*c

= (a + b + 1) + c + 1

= a + b + c + 2.

a*(b*c) = a*(b + c + 1)

= a + (b + c + 1) + 1

= a + b + c + 2.

∴ (a*b)*c = a*(b*c).

(3) Commutative law

For all a, b ∈ Z, we have

a*b = a + b + 1

= b + a + 1 [∵ a+b = b+a]

= b*a

(4) Existence of Identity Element

Let e be the identity element in Z.

Then, a*e = a ⇒ a + e + 1 = a

⇒ e = -1.

Thus, -1 ∈ Z is the identity element for *.

(5) Existence of Inverse

Let a ∈ Z and let its inverse be b. Then,

a * b = -1 ⇒ a + b + 1 = -1

⇒ b = -(2+a).

Clearly, 2 ∈ Z, a ∈ Z ⇒ -(2+a) ∈ Z.

Thus, each a ∈ Z has -(2+a) ∈ Z as its inverse.

Example 4 Show that the operation * on Q – {1}, defined by

a * b = a + b – ab for all a, b ∈ Q – {1} Satisfies (1) the closure property, (2) the associative law, (3) the commulative law.

(4) What is the identity element?

(5) For each a ∈ Q – {1}, find the inverse of a.

Solution

(1) Closure Property

Let a ∈ Q – {1} and b ∈ Q – {1}.

We know that Q is closed for addition, subtraction and multiplication.

∴ a + b – ab ∈ Q.

But, a*b = 1 ⇒ a + b – ab = 1

⇒ a(1-b) = (1-b)

⇒ a = 1,

Which is a contradiction since 1 ∉ Q – {1}.

∴ a * b ≠ 1.

Thus, a ∈ Q – {1}, b ∈ Q – {1} ⇒ a*b ∈ Q – {1}.

∴ * is a binary operation on Q – {1}.

(2) Associative Law

Let a, b, c ∈ Q – {1}. Then,

(a*b)*c = (a + b – ab)*c

= (a + b – ab) + c – a(b + c – bc)

= (a + b + c) – (ab + bc + ac) + abc.

And, a*(b*c) = a*(b + c – bc)

= a + (b + c – bc) – a(b + c – bc)

= (a + b + c) – (ab + bc + ac) + abc.

∴ (a*b)*c = a*(b*c).

Hence, * is associative.

(3) Commutative Law

Let a, b ∈ Q – {1}. Then,

a*b = a + b – ab

= b + a – ba [∵ + and . are commutative on Q – {1}]

= b*a.

Hence, * is commutative.

(4) Existence of Identity Element

Let e be the identity element.

Then, for all a ∈ Q – {1}, we have

a*e = a ⇒ a + e – ae = a

⇒ e(1-a) = 0 ⇒ e = 0 ∈ Q – {1}.

Now, a*0 = a + 0 – a x 0 = a.

And, 0*a = 0 + a – 0 x a = a.

Thus, 0 is the identity element in Q – {1}.

(5) Existence of Inverse

Let a ∈ Q – {1} and let a-1 = b. Then,

a*b = 0 ⇒ a + b – ab = 0

⇒ a = ab – b = (a-1)b

⇒ \(b=\frac{a}{(a-1)} \in Q-\{1\}\)

∴ \(a^{-1}=\frac{a}{(a-1)} \in Q-\{1\}\)

Thus, each a ∈ Q-{1} has its inverse in Q-{1}.

Real-Life Applications of Function Concepts

Example 5 On the set N of all natural numbers, define the operation * on N be m*n = gcd(m,n) for all m, n ∈ N. Show that * is commutative as well as associative.

Solution

Given:

On the set N of all natural numbers, define the operation * on N be m*n = gcd(m,n) for all m, n ∈ N.

(1) Commutativity

For all m, n ∈ N, we have

gcd(m,n) = gcd(n,m).

∴ m*n = n*m ∀ m, n ∈ N.

Hence, * is commutative on N.

(2) Associativity

LEt m, n, p ∈ N. Then,

(m*n)*p = [gcd(m,n)]*p

= gcd[gcd{(m,n), p}]

= gcd[{m, gcd(n,p)}]

[∵ gcd of three numbers = gcd{(gcd of any two, third)}]

= gcd(m,n*p) = m*(n*p).

Hence, * is associative on N.

Example 6 consider the set A = {-1,1} with multiplication operation. We may prepare its composition table as shown below.

\(\begin{array}{r|rr}
\times & 1 & -1 \\
\hline 1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\)

Multiplication on A satisfies the following properties:

(1) Closure Property

Since all the entries of the composition table are in A, so A is closed for multiplication.

(2) Associative Law

Since multiplication of integers is associative, in particular, multiplication on A is associative.

(3) Commutative Law

Since, every row of the table coincides with the corresponding column,

i.e., 1st row coincides with 1st column, 2nd row coincides with 2nd column.

So, multiplication is commutative on A.

(4) Existence of Identity

Clearly, 1 is the identity element in A, since

1 x 1 = 1 and (-1) x 1 = 1 x (-1) = -1.

(5) Existence of Inverse

It is clear from the table that

1 x 1 = 1 ⇒ inverse of (-1) is (-1).

New Operations

Example 7 Let A = {1,2,3,4,5}. Define an operation ∧ by a ∧ b = min{a,b}. Then, we may prepare its composition table as given below.

\(\begin{array}{l|lllll}
\wedge & 1 & 2 & 3 & 4 & 5 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 \\
2 & 1 & 2 & 2 & 2 & 2 \\
3 & 1 & 2 & 3 & 3 & 3 \\
4 & 1 & 2 & 3 & 4 & 4 \\
5 & 1 & 2 & 3 & 4 & 5
\end{array}\)

Closure Property

Since all the entires of the composition table are from given set A, so A is closed for the operation ∧.

Commutative Law

In the given table every row coincides with corresponding column,

i.e., 1st row coincides with 1st column, 2nd row coincides with 2nd column, and so on.

∴ ∧ on A is commutative.

Example 8 Let A = {1,2,3,4,5}. Define an operation ∨ by a ∨ b = max{a,b}. Prepare its composition table. Show that A is closed for the given operation and that the given operation is commutative.

Solution

Given

Let A = {1,2,3,4,5}. Define an operation ∨ by a ∨ b = max{a,b}.

We prepare the table as given below.

\(\begin{array}{c|ccccc}
\vee & 1 & 2 & 3 & 4 & 5 \\
\hline 1 & 1 & 2 & 3 & 4 & 5 \\
2 & 2 & 2 & 3 & 4 & 5 \\
3 & 3 & 3 & 3 & 4 & 5 \\
4 & 4 & 4 & 4 & 4 & 5 \\
5 & 5 & 5 & 5 & 5 & 5
\end{array}\)

Closure Property

Since all the entries of the composition table are from the given set, so closure property is satisfied.

Commutative Law

Clearly, every row coincides with the corresponding column. So, commutative law is satisfied.

WBCHSE Class 12 Maths Solutions For Relations

Relations And Functions – Chapter 1 Relations

In class 9 we discussed the Cartesian product of sets. Now, we extend our ideas to relation in a set, and then in the next chapter we shall be taking up functions.

Relation In A Set

A relation R in a set A is a subset of A x A.

Thus, R is a relation in a set A ⇔ R ⊆ A x A.

If (a,b) ∈ R, then we say that a is related to b and write, a R b.

If (a,b) ∉ R, then we say that a is not related to b and write, a \(\not R\) b.

Example Let A = {1,2,3,4,5,6} and let R be a relation in A, given by

R = {(a, b): a – b = 2}.

Then, R = {(3,1),(4,2),(5,3),(6,4)}.

Clearly, 3 R 1, 4 R 2, 5 R 3 and 6 R 4.

But, 1 \(\not R\) 3, 2 \(\not R\) 4, 5 \(\not R\) 6, etc.

Read and Learn More  Class 12 Math Solutions

Domain And Range Of A Relation

Let R be a relation in a set A. Then, the set of all first coordinates of elements of R is called the domain of R, written as dom (R) and the set of all second coordinates of R is called the range of R, written as range (R).

∴ dom (R) = {a:(a,b) ∈ R} and range (R) = {b:(a,b) ∈ R}.

Example Let A = {1,2,3,4,…,15,16} and let R be a relation in A, given by

R = {(a,b):b = a2}.

Then, R = {(1,1), (2,4), (3,9), (4,16)}.

∴ dom (R) = {1,2,3,4} and range (R) = {1,4,9,16}.

WBCHSE Class 12 Maths Solutions For Relations

Some Particular Types of Relations

Empty Relation (Or Void Relation) A relation R in a set A is called an empty relation, if no element of A is related to any element of A and we denote such a relation by Φ

Thus, R = Φ ⊆ A x A.

Example Let A = {1,2,3,4,5} and let R be a relation in A, given by R = {(a,b): a – b = 6}.

No element (a,b) ∈ A x A satisfies the property a – b = 6.

∴ R is an empty relation in A.

Universal Relation A relation R in a set A is called a universal relation, if each element of A is related to every element of A.

Thus, R = (A x A) ⊆ (A x A) is the universal relation on A.

Example Let A = {1,2,3}. Then,

R = (A x A) = {(1,1),(1,2),(1,3),(2,1)(2,2),(2,3),(3,1),(3,2),(3,3)} is the universal relation in A.

WBBSE Class 12 Relations Solutions

Identity Relation The relation IA = {(a, a): a ∈ A} is called the identity relation on A.

Example Let A = {1,2,3}. Then,

IA = {(1,1),(2,2),(3,3)} is the identity relation on A.

Various Types Of Relations

Let A be a nonempty set. Then, a relation R on A is said to be

(1) reflexive if (a, a) ∈ R for each a ∈ A,

i.e., if a R a for each a ∈ A.

(2) Symmetric if (a,b) ∈ R ⇒ (b, a) ∈ R for all a,b ∈ A,

i.e., if a R b ⇒ b R a for all a, b ∈ A.

(3) transitive if (a,b) ∈ R, (b,c) ∈ R ⇒ (a,c) ∈ R for all a,b,c ∈ A,

i.e., if a R b and b R c ⇒ a R c.

Equivalence Relation A relation R in a set A is said to be an equivalence relation if it is reflexive, symmetric, and transitive.

WBCHSE Class 12 Maths Solutions For Relations Solved Examples

Example 1 Let A be the set of all triangles in a plane and let R be a relation in A, defined by R = {(△1, △2): △1 ≅ △2}. Show that R is an equivalence relation in A.

Solution

The given relation satisfies the following properties:

(1) Reflexivity

Let △ be an arbitrary triangle in A. Then,

△ ≅ △ ⇒ (△, △) ∈ R for all values of △ in A.

∴ R is reflexive.

(2) Symmetry

Let △1, △2 ∈ A such that (△1, △2) ∈ R. Then,

(△1, △2) ∈ R ⇒ △1 ≅ △2

⇒ △2 ≅ △1

⇒ (△2, △1) ∈ R.

(3) Transitivity

Let △1, △2, △3 ∈ A such that (△1, △2) ∈ R and (△2, △3) ∈ R.

Then, (△1, △2) ∈ R and (△2, △3) ∈ R

⇒ △1 ≅ △2 and △2 ≅ △3

⇒ △1 ≅ △3

⇒ (△1, △3) ∈ R.

∴ R is transitive

Thus, R is reflexive, symmetric, and transitive.

Hence, R is an equivalence relation.

Real-Life Applications of Relation Concepts

Example 2 Let A be the set of all lines in xy-plane and let R be a relation in A, defined by R = {(L1, L2): L1 ∥ L2}. show that R is an equivalence relation in A. Find the set of all lines related to the line y = 3x + 5.

Solution

The given relation satisfies the following properties:

(1) Reflexivity

Let L be an arbitrary line in A. Then,

L ∥ L ⇒ (L, L) ∈ R ∀ L ∈ A.

Thus, R is reflexive.

(2) Symmetry

Let L1, L2 ∈ A such that (L1, L2) ∈ R. Then,

(L1, L2) ∈ R ⇒ L1 ∥ L2

⇒ L2 ∥ L1

⇒ (L2, L1) ∈ R.

∴ R is symmetric.

(3) Transitivity

Let L1, L2, L3 ∈ A such that (L1, L2) ∈ R and (L2, L3) ∈ R.

Then, (L1, L2) ∈ R and (L2, L3) ∈ R

⇒ L1 ∥ L2 and L2 ∥ L3

⇒ L1 ∥ L3

⇒ (L1, L3) ∈ R.

∴ R is transitive

Thus R is reflexive, symmetric, and transitive.

Hence, R is an equivalence relation.

The family of lines parallel to the line y = 3x + 5 is given by y = 3x + k, where k is real.

Example 3 Let Z be the set of all integers and let R be a relation in Z, defined by R = {(a, b):(a-b) is even}. Show that R is an equivalence relation in Z.

Solution

R = {(a, b):(a-b) is even}

Here, R satisfies the following properties:

(1) Reflexivity

Let a be an arbitrary element of Z.

Then, (a-a) = 0, which is even.

∴ (a, a) ∈ R ∀ a ∈ Z.

So, R is reflexive.

(2) Symmetry

Let a,b ∈ Z such that (a,b) ∈ R. Then,

(a,b) ∈ R ⇒ (a-b) is even

⇒ -(a-b) is even

⇒ (b-a) is even

⇒ (b,a) ∈ R.

∴ R is symmetric.

(3) Transitivity

Let a, b, c ∈ Z such that (a,b) ∈ R and (b,c) ∈ R. Then,

(a,b) ∈ R and (b,c) ∈ R

⇒ (a-b) is even and (b-c) is even

⇒ {(a-b) + (b-c)} is even

⇒ (a-c) ∈ R.

⇒ (a,c) ∈ R.

∴ R is transitive.

Thus, R is reflexive, symmetric and transitive.

Hence, R is an equivalence relation in Z.

Example 4 Let A be the set of all lines in a plane and let R be a relation in A defined by R = {(L1, L2): L1 ⊥ L2}. Show that R is symmetric but neither reflexive nor transitive.

Solution

Given

Let A be the set of all lines in a plane and let R be a relation in A defined by R = {(L1, L2): L1 ⊥ L2}.

Any line L cannot be perpendicular to itself.

∴ (L, L) ∉ R for any L ∈ A.

So, R is not reflexive.

Again, let (L1, L2) ∈ R. Then,

(L1, L2) ∈ R ⇒ L1 ⊥ L2

⇒ L2 ⊥ L1

⇒ (L2,L3) ∈ R.

∴ R is symmetric.

Now, let L1, L2, L3 ∈ A such that L1 ⊥ L2 and L2 ⊥ L3.

Then, clearly, L1 is not perpendicular to L3.

Thus, (L1,L2) ∈ R and (L2,L3) ∈ R, but (L1, L3) ∉ R.

Class 12 Maths Relations Example 4 The Set Of All Lines In A Plane

∴ R is not transitive.

Hence, R is symmetric but neither reflexive nor transitive.

Understanding Types of Relations in Maths

Example 5 Let S be the set of all real numbers and let R be a relation in S defined by R{(a, b): (1+ab) > 0}. Show that R is reflexive and symmetric but not transitive.

Solution

Given

Let S be the set of all real numbers and let R be a relation in S defined by R{(a, b): (1+ab) > 0}.

Let a be any real number. Then,

(1 + aa) = (1 + a2) > 0 shows that (a,a) ∈ R ∀ a ∈ S.

∴ R is reflexive.

Also, (a,b) ∈ R ⇒ (1 + ab) > 0

⇒ (1 + ba) > 0 [∵ ab = ba]

⇒ (b,a) ∈ R.

∴ R is symmetric.

In order to show that R is not transitive, consider (-1,0) and (0,2).

Clearly, (-1,0) ∈ R, since [1 + (-1) x 0] > 0.

And, (0,2) ∈ R, since [1 + 0 x 2] > 0.

But, (-1,2) ∉ R, since [1 + (-1) x 2] is not greater than 0.

Hence, R is reflexive and symmetric but not transitive.

Example 6. Let S be the set of all real numbers and let R be a relation in S, defined by R = {(a,b): a ≤ b}. Show that R is reflexive and transitive but not symmetric.

Solution

Given

Let S be the set of all real numbers and let R be a relation in S, defined by R = {(a,b): a ≤ b}.

Here, R satisfies the following properties:

(1) Reflexivity

Let a be an arbitrary real number.

Then, a ≤ a ⇒ (a,a) ∈ R.

Thus, (a,a) ∈ R ∀ a ∈ S.

∴ R is reflexive.

(2) Transitivity

Let a, b, c be real numbers such that (a,b) ∈ R and (b,c) ∈ R .

Then, (a,b) ∈ R and (b,c) ∈ R

⇒ a ≤ b and b ≤ c

⇒ a ≤ c

⇒ (a,c) ∈ R.

∴ R is transitive.

(3) Nonsymmetry

Clearly, (4,5) ∈ R since 4 ≤ 5.

But, (5,4) ∉ R since 5 ≤ 4 is not true.

∴ R is not symmetric.

Class 11 Physics Class 12 Maths Class 11 Chemistry
NEET Foundation Class 12 Physics NEET Physics

Example 7 Let S be the set of all real numbers and let R be a relation in S, defined by R = {(a,b): a ≤ b2}. Show that R satisfies none of reflexivity, symmetry and transitivity.

Solution

Given

Let S be the set of all real numbers and let R be a relation in S, defined by R = {(a,b): a ≤ b2}.

(1) Nonreflexivity

Clearly, \(\frac{1}{2}\) is a real number and \(\frac{1}{2} \leq\left(\frac{1}{2}\right)^2\) is not true.

∴ \(\left(\frac{1}{2}, \frac{1}{2}\right) \notin R .\)

Hence, R is not reflexive.

(2) Nonsymmetry

Consider the real numbers \(\frac{1}{2}\) and 1.

Clearly, \(\frac{1}{2}\) ≤ 12 ⇒ \(\left(\frac{1}{2}, 1\right) \in R \text {. }\)

But, 1 ≤ (\(\frac{1}{2}\))2 is not true and so \(\left(1, \frac{1}{2}\right) \notin R \text {. }\)

Thus, \(\left(\frac{1}{2}, 1\right) \in R but \left(1, \frac{1}{2}\right) \notin R .\)

Hence, R is not symmetric.

(3) Nontransitivity

Consider the real numbers 2, -2 and 1.

Clearly, 2 ≤ (-2)2 and -2 ≤ (1)2 but 2 ≤ 12 is not true.

Thus, (2,-2) ∈ R and (-2,1) ∈ R, but (2,1) ∉ R.

Hence, R is not transitive.

Step-by-Step Solutions to Relation Problems

Example 8 Let S be the set of all real numbers and let R be a relation in S, defined by R = {(a,b): a ≤ b3}. Show that R satisfies none of reflexivity, symmetry and transitivity.

Solution

Given 

Let S be the set of all real numbers and let R be a relation in S, defined by R = {(a,b): a ≤ b3}.

(1) Nonreflexivity

Clearly, \(\frac{1}{2}\) is a real number and \(\frac{1}{2}\) ≤ (\(\frac{1}{2}\))3 is not true.

∴ \(\left(\frac{1}{2}, \frac{1}{2}\right) \notin R\)

Hence, R is not reflexive.

(2) Nonsymmetry

Take the real numbers \(\frac{1}{2}\) and 1.

Clearly, \(\frac{1}{2}\) ≤ 13 is true and therefore, \(\left(\frac{1}{2}, 1\right) \in R \text {. }\)

But, \(1 \leq\left(\frac{1}{2}\right)^3 is not true and so \left(1, \frac{1}{2}\right) \notin R .\)

Hence R is not symmetric.

(3) Nontransitivity

Consider the real numbers, 3, \(\frac{3}{2}\) and \(\frac{4}{3}\).

Clearly, 3 \(\leq\left(\frac{3}{2}\right)^3 \text { and } \frac{3}{2} \leq\left(\frac{4}{3}\right)^3 \text { but } 3 \leq\left(\frac{4}{3}\right)^3\) is not true.

Thus, \(\left(3, \frac{3}{2}\right) \in R \text { and }\left(\frac{3}{2}, \frac{4}{3}\right) \in R \text {, but }\left(3, \frac{4}{3}\right) \notin R\).

Hence, R is not transitive.

Thus, R satisfies none of reflexivity, symmetry and transitivity.

Example 9 Let N be the set of all natural numbers and let R be a relation in N, defined by R = {(a, b): a is a factor of b}. Then, show that R is reflexive and transitive but not symmetric.

Solution

Given 

Let N be the set of all natural numbers and let R be a relation in N, defined by R = {(a, b): a is a factor of b}.

Here, R satisfies the following properties:

(1) Reflexivity

Let a be an arbitrary element of N.

Then, clearly, a is a factor of a.

∴ (a,a) ∈ R ∀ a ∈ N.

So, R is reflexive.

(2) Transitivity

Let a, b, c ∈ N such that (a,b) ∈ R and (b,c) ∈ R.

Now, (a,b) ∈ R and (b,c) ∈ R

⇒ (a is a factor of b) and (b is a factor of c)

⇒ b = ad and c = be for some d,e ∈ N

⇒ c = (ad)e = a(de) [by associative law]

⇒ a is a factor of c

⇒ (a,c) ∈ R.

∴ (a,b) ∈ R and (b,c) ∈ R ⇒ (a,c) ∈ R.

Hence, R is transitive.

(3) Nonsymmetry

Clearly, 2 and 6 are natural numbers and 2 is a factor of 6.

∴ (2,6) ∈ R.

But, 6 is not a factor of 2.

∴ (6,2) ∉ R.

Thus, (2,6) ∈ R and (6,2) ∉ R.

Hence, R is not symmetric.

Example 10 Let N be the set of all natural numbers and let R be a relation in N, defined by R = {(a, b): a is a multiple of b}. Show that R is reflexive and transitive but not symmetric.

Solution

Given

Let N be the set of all natural numbers and let R be a relation in N, defined by R = {(a, b): a is a multiple of b}.

Here R satisfies the following properties:

(1) Reflexivity

Let a be an arbitrary element of N.

Then, a = (a x a) shows that a is a multiple of a.

∴ (a,a) ∈ R ∀ a ∈ N.

So, R is reflexive.

(2) Transitivity

Let a, b, c ∈ N such that (a,b) ∈ R and (b,c) ∈ R.

Now, (a,b) ∈ R and (b,c) ∈ R

⇒ (a is a multiple of b) and (b is a multiple of c)

⇒ a = bd and b = ce for some d ∈ N and e ∈ N

⇒ a = (ce)d

⇒ a = c(ed)

⇒ a is a multiple of c

⇒ (a,c) ∈ R.

∴ (a,b) ∈ R and (b,c) ∈ R ⇒ (a,c) ∈ R.

Hence, R is transitive.

(3) Nonsymmetry

Clearly, 6 and 2 are natural numbers and 6 is a multiple of 2.

∴ (6,2) ∈ R.

But, 2 is not a multiple of 6.

∴ (2,6) ∉ R.

Thus, (6,2) ∈ R and (2,6) ∉ R.

Hence, R is not symmetric.

Common Questions on Relations and Their Solutions

Example 11 Let X be a nonempty set and let S be the collection of all subsets of X. Let R be a relation in S, defined by R = {(A,B): A ⊂ B}. Show that R is transitive but neither reflexive nor symmetric.

Solution

Given

Let X be a nonempty set and let S be the collection of all subsets of X. Let R be a relation in S, defined by R = {(A,B): A ⊂ B}.

Clearly, R satisfies the following properties:

(1) Transitivity

Let A, B, C ∈ S such that (A,b) ∈ R and (B,c) ∈ R.

Now, (A,b) ∈ R and (B,C) ∈ R

⇒ A ⊂ B and B ⊂ C

⇒ A ⊂ C

⇒ (A, C) ∈ R.

∴ R is transitive.

(2) Nonreflexivity

Let A be any set in S.

Then, A ⊄ A shows that (A,A) ∉ R.

∴ R is not reflexive.

(3) Nonsymmetry

Now (A, B) ∈ R ⇒ A ⊂ B

⇒ B ⊄ A

⇒ (B, A) ∉ R.

∴ R is not symmetric.

Hence, R is transitive but neither reflexive nor symmetric.

Example 12 Give an example of a relation which is

  1. reflexive and transitive but not symmetric;
  2. symmetric and transitive but not reflexive;
  3. reflexive and symmetric but not transitive;
  4. symmetric but neither reflexive nor transitive;
  5. transitive but neither reflexive nor symmetric.

Solution

Let A = {1,2,3).

Then, it is easy to verify that the relation

(1) R1 = {(1,1), (2,2), (3,3), (1,2)} is reflexive and transitive.

R1 is not symmetric, since

(1,2) ∈ R and (2,1) ∉ R.

(2) R2 = {(1,1), (2,2), (1,2), (2,1)} is symmetric and transitive.

But, R2 is not reflexive, since (3,3) ∉ R2.

(3) R3 = {(1,1), (2,2), (3,3), (1,2), (2,1), (2,3), (3,2)} is reflexive and symmetric.

But, R3 is not transitive, since

(1,2) ∈ R3, (2,3) ∈ R3 but (1,3) ∉ R3.

(4) R4 = {(2,2), (3,3), (1,2), (2,1)} is symmetric.

But, R4 is not reflexive since (1,1) ∉ R4.

Also, R4 is not transitive, as

(1,2) ∈ R4 and (2,1) ∈ R4 but (1,1) ∉ R4.

(5) R5 = {(2,2), (3,3), (1,2)} is transitive.

But, R5 is not reflexive, since (1,1) ∉ R.

And, R5 is not symmetric as (1,2) ∈ R5 but (2,1) ∉ R5.

Properties of Relations Explained

Example 13 Let N be the set of all natural numbers and let R be a relation on N x N, defined by (a,b) R (c,d) ⇔ ad = bc. Show that R is an equivalence relation.

Solution

Given

Let N be the set of all natural numbers and let R be a relation on N x N, defined by (a,b) R (c,d) ⇔ ad = bc.

Here R satisfies the following properties:

(1) Reflexivity

Let (a,b) ∈ R. Then,

(a,b) R (a,b), since ab = ba [by commutative law of multiplication on N].

Thus, (a,b) R (a,b) ∀ (a,b) ∈ R.

∴ R is reflexive.

(2) Symmetry

Let (a,b) R (c,d). Then,

(a,b) R (c,d) ⇒ ad = bc

⇒ bc = ad

⇒ cb = da

[by commutativity of multiplication on N]

⇒ (c,d) R (a,b).

∴ R is symmetric.

(3) Transitivity

Let (a,b) R (c,d) and (c,d) R (e,f). Then,

ad = bc and cf = de

⇒ adcf = bcde

⇒ (af)(cd) = (be)(cd)

⇒ af = be [by cancellation law]

⇒ (a,b) R (e,f).

∴ (a,b) R (c,d) and (c,d) R (e,f) ⇒ (a,b) R (e,f).

∴ R is transitive.

Thus, R is reflexive, symmetric and transitive.

Hence, R is an equivalence relation.

Example 14 If R1 and R2 be two equivalence relations on a set A, prove that R1 ∩ R2 is also an equivalence relation on A.

Solution

Given

R1 and R2 be two equivalence relations on a set A

Let R1 and R2 be two equivalence relations on a set A.

Then, R1 ⊆ A x A, R2 ⊆ A x A ⇒ (R1 ∩ R2) ⊆ A x A.

So, (R1 ∩ R2) is a relation on A.

This relation on A satisfies the following properties.

(1) Reflexivity

R1 is reflexive and R2 is reflexive

⇒ (a,a) ∈ R1 and (a,a) ∈ R2 for all a ∈ A

⇒ (a,a) ∈ R1 ∩ R2 for all a ∈ A

⇒ R1 ∩ R2 is reflexive.

(2) Symmetry

Let (a,b) be an arbitrary element of R1 ∩ R2. Then,

(a,b) ∈ R1 ∩ R2

⇒ (a,b) ∈ R1 and (a,b) ∈ R2

⇒ (b,a) ∈ R1 and (b,a) ∈ R2

[∵ R1 is symmetric and R2 is symmetric]

⇒ (b,a) ∈ R1 ∩ R2.

This shows that R1 ∩ R2 is symmetric.

(3) Transitivity

(a,b) ∈ R1 ∩ R2 and (b,c) ∈ R1 ∩ R2

⇒ (a,b) ∈ R1, (a,b) ∈ R2, and (b,c) ∈ R1, (b,c) ∈ R2

⇒ {(a,b) ∈ R1, (b,c) ∈ R1}, and {(a,b) ∈ R2, (b,c) ∈ R2}

⇒ (a,c) ∈ R1 and (a,c) ∈ R2

[∵ R1 is transitive and R2 is transitive]

⇒ (a,c) ∈ R1 ∩ R2.

This shows that (R1 ∩ R2) is transitive.

Thus, R1 ∩ R2 is reflexive, symmetric and transitive.

Hence, R1 ∩ R2 is an equivalence relation.

Examples of Equivalence Relations

Example 15 Give an example to show that the union of two equivalence relations on a set A need not be an equivalence relation on A.

Solution

Let R1 and R2 be two relations on a set A = {1,2,3}, given by

R1 = {(1,1), (2,2), (3,3), (1,2), (2,1)}

and R2 = {(1,1), (2,2), (3,3), (1,3), (3,1)}.

Then, it is easy to verify that each one of R1 and R2 is an equivalence relation.

But, R1 ∪ R2 = {(1,1), (2,2), (3,3), (,2), (2,1), (1,3), (3,1)} is not transitive, as

(3,1) ∈ R1 ∪ R2 and (1,2) ∈ R1 ∪ R2 but (3,2) ∉ R1 ∪ R2.

Hence, (R1 ∪ R2) is not an equivalence relation.

Equivalence Classes Let R be an equivalence relation in a set A and let a ∈ A. Then, the set of all those elements of A which are related to a, is called the equivalence class determined by a and it is denoted by [a].

Thus, [a] = {b ∈ A: (a,b) ∈ R}.

Two equivalence classes are either disjoint or identical.

An Important Result An equivalence relation R on a set A partitions the set into mutually disjoint equivalence classes.

Example 16 On the set Z all integers, consider the relation R = {(a,b):(a-b) is divisible by 3}. Show that R is an equivalence relation on Z. Also find the partitioning of Z into mutually disjoint equivalence classes.

Solution

Given

On the set Z all integers, consider the relation R = {(a,b):(a-b) is divisible by 3}.

The relation R on Z satisfies the following properties:

(1) Reflexivity

Let a ∈ Z.

Then, (a-a) = 0, which is divisible by 3.

∴ a R a ∀ a ∈ Z.

So, R is reflexive.

(2) Symmetry

Let a, b ∈ Z such that a R b. Then,

a R b ⇒ a – b is divisible by 3

⇒ -(a-b) is divisible by 3

⇒ (b-a) is divisible by 3

⇒ b R a.

∴ a R b ⇒ b R a ∀ a,b ∈ Z.

So, R is symmetric.

(3) Transitivity

Let a, b, c ∈ Z such that a R b and b R c. Then,

a R b, b R c ⇒ (a-b) is divisible by 3 and (b-c) is divisible by 3

⇒ [(a-b)+(b-c)] is divisible by 3

⇒ (a-c) is divisible by 3.

Thus, a R b, b R c ⇒ a R c ∀ a, b, c ∈ Z.

∴ R is an equivalence relation on Z.

Now, let us consider [0], [1] and [2].

We have:

[0] = {x ∈ Z: x R 0}

= {x ∈ Z:(x-0) is divisible by 3}

= {…, -6,-3,0,3,6,9,…}.

∴ [0] = {…, -6,-3,0,3,6,9,…}.

Similarly, [1] = {x ∈ Z: x R 1}

= {x ∈ Z: (x-1) is divisible by 3}

= {…,-5,-2,1,4,7,10,…}.

∴ [1] = {…,-5,-2,1,4,7,10,…}.

And, [2] = {x ∈ Z: x R 2}

= {x ∈ Z: (x-2) is divisible by 3}

= {…,-4,-1,2,5,8,11,…}

∴ [2] = {…,-4,-1,2,5,8,11,…}.

Clearly, [0], [1] and [2] are mutually disjoint and Z = [0] ∪ [1] ∪ [2].

Example 17 Let A = {1,2,3,4,5,6,7} and let R be a relation on A, defined by R = {(a,b): both a and b are either odd or even}. Prove that R is an equivalence relation.

Let B = {1,3,5,7} and C = {2,4,6}.

Show that

  1. all elements of B are related to each other;
  2. all elements of C are related to each other;
  3. no element of B is related to any element of C.

Solution

The given relation satisfies the following properties:

(1) Reflexivity

Let a ∈ A.

Then, it is clear that a are both odd or both even.

∴ (a,a) ∈ R ∀ a ∈ A.

So, R is reflexive.

(2) Symmetry

Let (a,b) ∈ R. Then,

(a,b) ∈ R ⇒ both a and b are either odd or even

⇒ both b and a are either odd or even

⇒ (b,a) ∈ R.

∴ R is symmetric.

(3) Transitivity

Let (a,b) ∈ R and (b,c) ∈ R. Then,

(a,b) ∈ R and (b,c) ∈ R

⇒ {both a and b are either odd or even} and {both b and c are either odd or even}

⇒ both a and c are either odd or even

⇒ (a,c) ∈ R.

∴ R is transitive.

Hence, R is an equivalence relation.

  1. If we pick up any two elements of B, then both being odd, they are related to each other.
  2. If we pick up any two elements of C, then both being even, they are related to each other.
  3. If we pick up one element of B and one element of C, then one is even while the other is odd.

So, they are not related to each other.

WBCHSE Class 12 Maths Solutions For Chapter 1 Probability

Chapter 1 Probability

Conditional Probability And Probability Of Independent Events

The concept of probability and various results on it were discussed in class 9. In this chapter, we shall be dealing with problems based on conditional probability and probability of independent events.

Conditional Probability

Let A and B be two events associated with the same random experiment. Then, the probability of occurrence of A under the condition B has already occurred and P(B) ≠ 0, is called conditional probability, denoted by P(A/B).

We define:

P(A/B) = \(\frac{P(A \cap B)}{P(B)}\), where P(B) ≠ 0

and P(B/A) = \(\frac{P(B \cap A)}{P(A)}=\frac{P(A \cap B)}{P(A)}\), where P(A) ≠ 0.

WBCHSE Class 12 Maths Solutions For Chapter 1 Probability

Read and Learn More  Class 12 Math Solutions

Solved Examples

Example 1 A die is rolled. If the outcome is an odd number, what is the probability that it is prime?

Solution

Given

A die is rolled. If the outcome is an odd number,

When a die is rolled, the sample space is given by

S = {1,2,3,4,5,6}.

Let A = event of getting a prime number, and

B = event of getting an odd number.

Then, A = {2,3,5}, B = {1,3,5} and A ∩ B = {3,5}.

∴ P(A) = \(\frac{n(A)}{n(S)}=\frac{3}{6}=\frac{1}{2}\), P(B) = \(\frac{n(B)}{n(S)}=\frac{3}{6}=\frac{1}{2}\)

and P(A ∩ B) = \(\frac{n(A \cap B)}{n(S)}=\frac{2}{6}=\frac{1}{3}\)

Suppose B has already occured and then A occurs.

So, we have to find P(A/B).

Now, P(A/B) = \(\frac{P(A \cap B)}{P(B)}=\frac{(1 / 3)}{(1 / 2)}=\left(\frac{1}{3} \times \frac{2}{1}\right)=\frac{2}{3} \text {. }\)

P(A/B) = \(\frac{P(A \cap B)}{P(B)}=\frac{(1 / 3)}{(1 / 2)}=\left(\frac{1}{3} \times \frac{2}{1}\right)=\frac{2}{3} .\)

Hence, the required probability is \(\frac{2}{3}\).

Example 2 Ten cards numbered 1 to 10 are placed in a box, mixed up thoroughly and then one card is drawn randomly. If it is known that the number on the drawn card is more than 3, what is the probability that it is an even number?

Solution

Given

Ten cards numbered 1 to 10 are placed in a box, mixed up thoroughly and then one card is drawn randomly. If it is known that the number on the drawn card is more than 3

Clearly, the sample is S = {1,2,3,4,5,6,7,8,9,10}.

Let A = event that the number on the drawn card is even, and

B = event that number on the drawn card is more than 3.

Then A = {2,4,6,8,10}, B = {4,5,6,7,8,9,10}

and A ∩ B = {4,6,8,10}.

∴ P(A) = \(\frac{n(A)}{n(S)}=\frac{5}{10}=\frac{1}{2}\), P(B) = \(\frac{n(B)}{n(S)}=\frac{7}{10}\) and

P(A ∩ B) = \(\frac{n(A \cap B)}{n(S)}=\frac{4}{10}=\frac{2}{5} .\)

Suppose B has already occured and then A occurs.

So, we have to find P(A/B).

Now, P(A/B) = \(\frac{P(A \cap B)}{P(B)}=\frac{(2 / 5)}{(7 / 10)}=\left(\frac{2}{5} \times \frac{10}{7}\right)=\frac{4}{7} .\)

Hence, the required probability is \(\frac{4}{7}\).

WBBSE Class 12 Probability Solutions

Example 3 A die is thrown twice and the sum of the numbers appearing is observed to be 6. What is the conditional probability that the number 4 has appeared at least once?

Solution

Given

A die is thrown twice and the sum of the numbers appearing is observed to be 6.

We know that when a die is thrown twice, then the sample space has 36 possible outcomes.

Let A = event that 4 appears at least once, and

B = event that the sum of the numbers appearing is 6.

Then, A = {(4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (1,4), (2,4), (3,4), (5,4), (6,4)}

and B = {(1,5), (2,4), (3,3), (4,2), (5,1)}.

∴ A ∩ B = {(2,4), (4,2)}.

So, P(A) = \(\frac{n(A)}{n(S)}=\frac{11}{36}, P(B) = \frac{n(B)}{n(S)}=\frac{5}{36}\)

and P(A ∩ B) = \(\frac{n(A \cap B)}{n(S)}=\frac{2}{36}=\frac{1}{18}\)

Suppose B has already occured and then A occurs.

So, we have to find P(A/B).

Now, P(A/B) = \(\frac{P(A \cap B)}{P(B)}=\frac{(1 / 18)}{(5 / 36)}=\left(\frac{1}{18} \times \frac{36}{5}\right)=\frac{2}{5}\)

Hence, the required probability is \(\frac{2}{5}\).

Example 4 Assume that each born child is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls given that (1) the youngest child is a girl, (2) at least one of the children is a girl?

Solution

Given

Assume that each born child is equally likely to be a boy or a girl. If a family has two children

We may write the sample space as

S = {G1G2, G1B2, B1G2, B1B2}, where the youngest child appears later.

(1) Let A = event that both the children are girls, and

B = event that the youngest child is a girl.

Then, A = {G1,G2}, B = {G1G2, B1G2} and A ∩ B = {G1,G2}.

∴ P(A) = \(\frac{n(A)}{n(S)}=\frac{1}{4}, P(B) = \frac{n(B)}{n(S)}=\frac{2}{4}=\frac{1}{2}\)

and P(A ∩ B) = \(\frac{n(A \cap B)}{n(S)}=\frac{1}{4}\)

Suppose B has already occured and then A occurs.

So, we have to find P(A/B).

Now, P(A/B) = \(\frac{P(A \cap B)}{P(B)}=\frac{(1 / 4)}{(1 / 2)}=\left(\frac{1}{4} \times \frac{2}{1}\right)=\frac{1}{2} .\)

Hence, the required probability is \(\frac{1}{2}\).

(2) Let A = event that both the children are girls, and

E = event that at least one of the children is a girl.

Then, A = {G1G2}, E = {G1B2, B1G2, G1G2} and A ∩ E = {G1G2}.

∴ P(A) = \(\frac{n(A)}{n(S)}=\frac{1}{4}, P(E) = \frac{n(E)}{n(S)}=\frac{3}{4}\)

and P(A ∩ B) = \(\frac{n(A \cap E)}{n(S)}=\frac{1}{4}\)

Suppose E has already occured and then A occurs.

So, we have to find P(A/E).

Now, P(A/E) = \(\frac{P(A \cap E)}{P(E)}=\frac{(1 / 4)}{(3 / 4)}=\left(\frac{1}{4} \times \frac{4}{3}\right)=\frac{1}{3} \text {. }\)

Hence, the required probability is \(\frac{1}{3}\).

Example 5 An instructor has a question bank consisting of 300 easy true/false questions; 200 difficult true/false questions; 500 easy multiple-choice questions and 400 difficult multiple-choice questions. If a question is selected at random from the question bank, what is the probability that it will be an easy question given that it is a multiple-choice question?

Solution

Given

An instructor has a question bank consisting of 300 easy true/false questions; 200 difficult true/false questions; 500 easy multiple-choice questions and 400 difficult multiple-choice questions. If a question is selected at random from the question bank

Clearly, the sample space consists of 1400 questions.

∴ n(S) = 1400.

Let A = event of selecting an easy question, and

B = event of selecting a multiple-choice question.

Then, A ∩ B = event of selecting an easy multiple-choice question.

∴ n(A) = (300 + 500) = 800, n(B) = (500 + 400) = 900

and n(A ∩ B) = 500.

So, P(A) = \(\frac{n(A)}{n(S)}=\frac{800}{1400}=\frac{4}{7}, P(B) = \frac{n(B)}{n(S)}=\frac{900}{1400}=\frac{9}{14}\)

and P(A ∩ B) = \(\frac{n(A \cap B)}{n(S)}=\frac{500}{1400}=\frac{5}{14}\)

Suppose B has already occured and then A occurs.

Thus we have to find P(A/B).

Now, P(A/B) = \(\frac{P(A \cap B)}{P(B)}=\frac{(5 / 14)}{(9 / 14)}=\left(\frac{5}{14} \times \frac{14}{9}\right)=\frac{5}{9}\)

Hence, the required probability is \(\frac{5}{9}\).

Understanding Probability Concepts for Class 12

Example 6 Two numbers are selected at random from the integers 1 through 9. If the sum is even, find the probability that both the numbers are odd.

Solution

Given

Two numbers are selected at random from the integers 1 through 9. If the sum is eve

Out of the numbers from 1 to 9, there are 5 odd numbers and 4 even numbers.

Let A = event of choosing two odd numbers. and

B = event of choosing two numbers whose sum is even.

Then, n(A) = number of ways of choosing 2 odd numbers out of 5 = 5C2.

n(B) = number of ways of choosing 2 numbers whose sum is even

= (4C2 +5C2) [ 2out of 4 even and 2 out of 5 odd].

n(A ∩ B) = number of ways of choosing 2 odd numbers out of 5 = 5C2.

Suppose B has already occurred and then A occurs.

Then, we have to find P(A/B).

Now, P(A/B) = \(\frac{P(A \cap B)}{P(B)}=\frac{n(A \cap B)}{n(B)}=\frac{{ }^5 C_2}{{ }^4 C_2+{ }^5 C_2}\)

= \(\frac{5 \times 4}{2} \times \frac{2}{(4 \times 3+5 \times 4)}=\frac{20}{32}=\frac{5}{8} .\)

Hence, the required probability is \(\frac{5}{8}\).

Properties of Conditional Probability

Theorem 1 Let A and B be events of a sample space S of an experiment. Then, prove that P(S/B) = P(B/B) = 1.

Proof

We know that:

P(S/B) = \(\frac{P(S \cap B)}{P(B)}=\frac{P(B)}{P(B)}=1\) [∵ S ∩ B = B].

And, P(B/B) = \(\frac{P(B \cap B)}{P(B)}=\frac{P(B)}{P(B)}=1 .\)

Hence, P(S/B) = P(B/B) = 1.

Theorem 2 Let A and B be two events of a sample space S and let E be an event such that P(E) ≠ 0. Then, prove that

P[(A ∪ B)/E] = P(A/E) + P(B/E) – P[(A ∩ B)/E].

Proof

We have

P[(A ∪ B)/E] = \(\frac{P[(A \cup B) \cap E]}{P(E)}\)

= \(\frac{P[(A \cap E) \cup(B \cap E)]}{P(E)}\)

= \(\frac{P(A \cap E)+P(B \cap E)-P[(A \cap E) \cap(B \cap E)]}{P(E)}\)

= \(\frac{P(A \cap E)+P(B \cap E)-P(A \cap B \cap E)}{P(E)}\)

= \(\frac{P(A \cap E)}{P(E)}+\frac{P(B \cap E)}{P(E)}-\frac{P[(A \cap B) \cap E]}{P(E)}\)

= P(A/E) + P(B/E) – P[(A ∩ B)/E].

Hence, P[(A ∪ B)/E] = P(A/E) + P(B/E) – P[(A ∩ B)/E].

Corollary If A and B are disjoint events, prove that

P[(A ∪ B)/E] = P(A/E) + P(B/E).

Proof

For any event A and B, we have

P[(A ∪ B)/E] = P(A/E) + P(B/E) – P[(A ∩ B)/E]

If A and B are disjoint, the P[(A ∩ B)/E] = 0.

Hence, in this case, we have

P[(A ∪ B)/E] = P(A/E) + P(B/E).

Theorem 3 For any events A and B of a sample space S, prove that \(P(\bar{A} / B)=1-P(A / B)\), where \(\bar{A}\) denotes ‘not A’.

Proof

We know that

P(S/B) = 1 ⇒ \(P[(A \cup \bar{A}) / B]=1\) [∵ S = A ∪ \(\bar{A}\)]

⇒ \(P(A / B)+P(\bar{A} / B)=1\) [∵ \(A \cap \bar{A}=\varphi\)]

⇒ \(P(\bar{A} / B)=1-P(A / B)\).

Example 7 If A and B are two events such that P(A) = \(\frac{3}{5}\), P(B) = \(\frac{7}{10}\) and P(A ∪ B) = \(\frac{9}{10}\), then find (1) P(A ∩ B) (2) P(A/B) (3) P(B/A).

Solution

(1) We know that

P(A ∩ B) = P(A) + P(B) – P(A ∪ B)

= \(\left(\frac{3}{5}+\frac{7}{10}-\frac{9}{10}\right)=\frac{(6+7-9)}{10}=\frac{4}{10}=\frac{2}{5}\)

(2) P(A/B) = \(\frac{(A \cap B)}{P(B)}=\frac{(2 / 5)}{(7 / 10)}=\left(\frac{2}{5} \times \frac{10}{7}\right)=\frac{4}{7}\)

(3) P(B/A) = \(\frac{(B \cap A)}{P(A)}=\frac{P(A \cap B)}{P(A)}=\left(\frac{2 / 5}{3 / 5}\right)=\left(\frac{2}{5} \times \frac{5}{3}\right)=\frac{2}{3} .\)

Example 8 Evaluate P(A ∪ B), if 2P(A) = P(B) = \(\frac{6}{13}\) and P(A/B) = \(\frac{1}{3}\).

Solution

2P(A) = P(B) = \(\frac{6}{13}\) ⇒ P(A) = \(\frac{3}{13}\) and P(B) = \(\frac{6}{13}\).

∴ P(A/B) = \(\frac{P(A \cap B)}{P(B)} \Rightarrow P(A \cap B)=P(A / B) \cdot P(B)=\left(\frac{1}{3} \times \frac{6}{13}\right)=\frac{2}{13}\)

So, P(A ∪ B) = P(A) + P(B) – P(A ∩ B)

= \(\left(\frac{3}{13}+\frac{6}{13}-\frac{2}{13}\right)=\frac{(3+6-2)}{13}=\frac{7}{13}\)

Hence, P(A ∪ B) = \(\frac{7}{13}\).

Example 9 Let A and B be events such that P(A) = \(\frac{1}{3}\), P(B) = \(\frac{1}{4}\) and P(A ∩ B) = \(\frac{1}{5}\). Find: (1) P(A/B) (2) P(B/A) (3) P(A ∪ B) (4) P(\(\bar{B} / \bar{A}\))

Solution

We have:

(1) P(A/B) = \(\frac{P(A \cap B)}{P(B)}=\frac{(1 / 5)}{(1 / 4)}=\left(\frac{1}{5} \times \frac{4}{1}\right)=\frac{4}{5} .\)

(2) P(B/A) = \(\frac{P(B \cap A)}{P(A)}=\frac{P(A \cap B)}{P(A)}=\frac{(1 / 5)}{(1 / 3)}=\left(\frac{1}{5} \times \frac{3}{1}\right)=\frac{3}{5}\)

(3) = P(A ∪ B) = P(A) + P(B) – P(A ∩ B)

= \(\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)=\frac{(20+15-12)}{60}=\frac{23}{60}\)

(4) \(P(\bar{B} / \bar{A})=\frac{P(\bar{B} \cap \bar{A})}{P(\bar{A})}=\frac{P(\bar{A} \cap \bar{B})}{P(\bar{A})}=\frac{P(\overline{A \cup B})}{P(\bar{A})}\)

= \(\frac{1-P(A \cup B)}{1-P(A)}=\frac{\left(1-\frac{23}{60}\right)}{\left(1-\frac{1}{3}\right)}=\frac{(37 / 60)}{(2 / 3)}=\left(\frac{37}{60} \times \frac{3}{2}\right)=\frac{37}{40}\)

Multiplication Theorem on Probability

Let A and B be two events associated with a sample space S. Then, the simultaneous occurrence of two events A and B is denoted by (A ∩ B) and also written as AB.

Multiplication Theorem Let A and B be two events associated with a sample space S. Then, prove that

P(AB) = P(A ∩ B) = P(A).P(B/A) = P(B).P(A/B), provided P(A) ≠ 0 and P(B) ≠ 0.

Proof

For any events A and B, we have

P(A/B) = \(\frac{P(A \cap B)}{P(B)}\), where P(A) ≠ 0.

∴ P(A ∩ B) = P(B).P(A/B). …(1)

Again, P(B/A) = \(\frac{P(B \cap A)}{P(A)}=\frac{P(A \cap B)}{P(A)}\), where P(B) ≠ 0.

∴ P(A ∩ B) = P(A).P(B/A). …(2)

From (1) and (2), we get

P(A ∩ B) = P(B).P(A/B) = P(A).P(A/B), where P(A) ≠ 0 and P(B) ≠ 0.

Multiplication Rule for Three Events

For any three events A, B, C of the same sample space, we have

P(A ∩ B ∩ C) = P(A).P(B/A).P[C/(A ∩ B)]

= P(A).P(B/A).(C/AB).

This rule can be extended for four or more events.

Solved Examples

Example 1 An urn contains 8 white and 4 red balls. Two balls are drawn from the urn one after the other without replacement. What is the probability that both drawn balls are white?

Solution

Given

An urn contains 8 white and 4 red balls. Two balls are drawn from the urn one after the other without replacement.

Let A and B denote respectively the events that first and second balls both drawn are white.

Then, we have to find P(A ∩ B).

Now, P(A) = P(white ball in the first draw) = \(\frac{8}{12}\).

After the occurrence of event A, we are left with 7 white and 4 red balls.

The probability of drawing second white ball, given that the first ball drawn is white, is clearly the conditional probability of occurrence of B, given that A has occurred.

∴ P(B/A) = \(\frac{7}{11}\).

By multiplication rule o probability, we have

P(A ∩ B) = P(A).P(B/A) = \(\left(\frac{8}{12} \times \frac{7}{11}\right)=\frac{14}{33}\)

Hence, the required probability is \(\frac{14}{33}\).

The probability that both drawn balls are white is \(\frac{14}{33}\).

Example 2 Three cards are drawn successively without replacement from a pack of 52 well-shuffled cards. What is the probability that first two cards are queens and the third card drawn is a king?

Solution

Given

Three cards are drawn successively without replacement from a pack of 52 well-shuffled cards.

Let Q denote the event that the card drawn is a queen and K be the event that the card drawn is a king. Then, we have to find P(QQK).

Probability of drawing first queen is P(Q) = \(\frac{4}{52}\).

Now, there are 3 queens in remaining 51 cards.

Let P(Q/Q) be the probability of getting the second queen with the condition that one queen has already been drawn.

∴ P(Q/Q) = \(\frac{3}{51}\).

Lastly, P(K/QQ) is probability of third drawn card to be a king, with the condition that two queens have already been drawn.

Now, there are 4 kings in remaining 50 cards.

∴ P(K/QQ) = \(\frac{4}{50}\).

By multiplication law of probability, we have

P(QQK) = P(Q ∩ Q ∩ K)

= P(Q).P(Q/Q).P(K/QQ)

= \(\left(\frac{4}{52} \times \frac{3}{51} \times \frac{4}{50}\right)=\left(\frac{1}{13} \times \frac{1}{17} \times \frac{2}{25}\right)=\frac{2}{5525} .\)

Hence, the required probability is \(\frac{2}{5525}\).

The probability that first two cards are queens and the third card drawn is a king is \(\frac{2}{5525}\).

Independent Events

Two events A and B are said to be independent if

P(A/B) = P(A), where P(B) ≠ 0

and P(B/A) = P(B), where P(A) ≠ 0.

i.e., the event A does not depend on the occurrence of event B and vice versa.

Condition for Independent of Two Events

For any two events A and B, we have

P(A ∩ B) = P(A).P(B/A). …(1)

If A and B are independent, we have P(B/A) = P(B).

∴ (1) becomes P(A ∩ B) = P(A) x P(B).

Thus, two events A and B associated with the same random experiment are said to be independent if P(A ∩ B) = P(A) x P(B).

Note: Two events A and B are said to be dependent if they are not independent, i.e., if P(A ∩ B) ≠ P(A) x P(B).

Difference between Two Mutually Exclusive and Independent Events

Two events A and B are said to be mutually exclusive if A ∩ B = φ and in this case P(A ∩ B) = P(φ) = 0.

Also we know that two events A and B are independent if P(A ∩ B) = P(A) x P(B).

Clearly, two independent events with nonzero probabilities cannot be mutually exclusive.

Also, two mutually exclusive events with nonzero probabilities cannot be mutually independent.

Three events A, B and C are said to be mutually independent, if

P(A ∩ B) = P(A) x P(B), P(A ∩ C) = P(A) x P(C), P(B ∩ C) = P(B) x P(C) and P(A ∩ B ∩ C) = P(A) x P(B) x P(C).

If at least one of the above is not true for true for three given events A, B and C, then we say that these events are not independent.

Step-by-Step Solutions to Probability Problems

Example 3 Let E1 and E2 be two events such that P(E1) = 0.3, P(E1 ∪ E2) = 0.4 and P(E2) = x. Find the value of x such that

(1) E1 and E2 are mutually exclusive,

(2) E1 and E2 are independent.

Solution

(1) Let E1 and E2 be mutually exclusive. Then, E1 ∩ E2 = φ.

∴ P(E1 ∪ E2) = P(E1) + P(E2)

⇒ 0.4 = 0.3 + x

⇒ x = 0.1

Thus, when E1 and E2 mutually exclusive, then x = 0.1.

(2) Let E1 and E2 be two independent events. Then,

P(E1 ∩ E2) = P(E1) x P(E2) = 0.3 x x = 0.3x.

∴ P(E1 ∪ E2) = P(E1) + P(E2) – P(E1 ∩ E2)

⇒ 0.4 = 0.3 + x – 0.3x

⇒ 0.7x = 0.1

⇒ x = \(\frac{0.1}{0.7}=\frac{1}{7}\)

Thus, when E1 and E2 are independent, then x = \(\frac{1}{7}\).

Example 4 Let E1 and E2 are two independent events such that P(E1) = 0.35 and P(E1 ∪ E2) = 0.60, find P(E2).

Solution

Given:

Let E1 and E2 are two independent events such that P(E1) = 0.35 and P(E1 ∪ E2) = 0.60

Let P(E2) = x.

Then, E1 and E2 being independent events, we have

P(E1 ∩ E2) = P(E1) x P(E2) = 0.35 x x = 0.35x.

Now, P(E1 ∪ E2) = P(E1) + P(E2) – P(E1 ∩ E2)

⇒ 0.60 = 0.35 + x – 0.35x

⇒ 0.65x = 0.25

⇒ x = \(\frac{0.25}{0.65}=\frac{25}{65}=\frac{5}{13}\).

Hence, P(E2) = \(\frac{5}{13}\).

Class 11 Physics Class 12 Maths Class 11 Chemistry
NEET Foundation Class 12 Physics NEET Physics

Example 5 A coin is tossed thrice. Let the event e be ‘the first throw results in a head’, and the event F be ‘the last throw results in a tail’. Find whether the events E and F are independent.

Solution

Given:

A coin is tossed thrice. Let the event e be ‘the first throw results in a head’, and the event F be ‘the last throw results in a tail’

When a coin is tossed three times, the sample space is given by

S = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT}.

Now, E = event that the first throw results in a head.

∴ E = {HHH, HHT, HTH, HTT}.

And, F = event that the last throw results in a tail.

∴ F = {HHT, THT, HTT, TTT}.

So, (E ∩ F) = {HHT, HTT}.

Clearly, n(E) = 4, n(F) = 4, n(E ∩ F) = 2 and n(S) = 8.

∴ P(E) = \(\frac{n(E)}{n(S)}=\frac{4}{8}=\frac{1}{2}, P(F) = \frac{n(F)}{n(S)}=\frac{4}{8}=\frac{1}{2}\)

and P(E ∩ F) = \(\frac{n(E \cap F)}{n(S)}=\frac{2}{8}=\frac{1}{4}\)

Thus, P(E ∩ F) = P(E) x P(F).

Hence, E and F are independent events.

Example 6 An unbiased die is tossed twice. Find the probability of getting a 4, 5 or 6 on the first toss and a 1, 2, 3 or 4 on the second toss.

Solution

Given

An unbiased die is tossed twice.

In each case, the sample space is given by S = {1,2,3,4,5,6}.

Let E = event of getting a 4,5 or 6 on the first toss.

And, F = event of getting a 1,2,3 or 4 on the second toss.

Then, P(E) = \(\frac{3}{6}\) = \(\frac{1}{2}\) and P(F) = \(\frac{4}{6}\) = \(\frac{2}{3}\).

Clearly, E and F are independent events.

∴ required probability = P(E ∩ F) = P(E) x P(F) [∵ E and F are independent]

= \(\left(\frac{1}{2} \times \frac{2}{3}\right)=\frac{1}{3}\)

Example 7 Ramesh appears for an interview for two posts, A and B, for which the selection is independent. The probability for his selection for Post A is (1/6) and for Post B, it is (1/7). Find the probability that Ramesh is selected for at least one post.

Solution

Given

Ramesh appears for an interview for two posts, A and B, for which the selection is independent. The probability for his selection for Post A is (1/6) and for Post B, it is (1/7).

Let E1 = event that Ramesh is selected for the post A,

and E2 = event that Ramesh is selected for the post B.

Then, P(E1) = \(\frac{1}{6}\) and P(E2) = \(\frac{1}{7}\).

Clearly E1 and E2 are independent events.

∴ P(E1 ∩ E2) = P(E1) x P(E2) = \(\left(\frac{1}{6} \times \frac{1}{7}\right)=\frac{1}{42}\).

∴ P(Ramesh is selected for at least one post)

= P(E1 ∪ E2)

= P(E1) + P(E2) – P(E1 ∩ E2)

= \(\left(\frac{1}{6}+\frac{1}{7}-\frac{1}{42}\right)=\frac{12}{42}=\frac{2}{7}\)

Hence, the requried probability is \(\frac{2}{7}\).

Common Probability Questions and Answers

Example 8 A can solve 90% of the problems given in a book, and B can solve 70%. What is the probability that at least one of them will solve a problem selected at random from the book?

Solution

Given

A can solve 90% of the problems given in a book, and B can solve 70%.

Let E1 = event that A solves the problem,

and E2 = event that B solves the problem.

Then, P(E1) = \(\frac{90}{100}\) = \(\frac{9}{10}\) and P(E2) = \(\frac{70}{100}\) = \(\frac{7}{10}\).

Clearly, E1 and E2 are independent events.

∴ P(E1 ∩ E2) = P(E1) x P(E2) = \(\left(\frac{9}{10} \times \frac{7}{10}\right)=\frac{63}{100}\)

∴ P(at least one of them will solve the problem)

= P(E1 ∪ E2)

= P(E1) + P(E2) – P(E1 ∩ E2)

= \(\left(\frac{9}{10}+\frac{7}{10}-\frac{63}{100}\right)=\frac{(90+70-63)}{100}=\frac{97}{100}\)

Hence, the required probability is 0.97.

Example 9 The probability that A hits a target is (1/3) and the probability that B hits it is (2/5). What is the probability that the target will be hit if both A and B shoot at it?

Solution

Given:

The probability that A hits a target is (1/3) and the probability that B hits it is (2/5).

Let E1 = event that A hits the target,

and E2 = event that B hits the target.

Then, P(E1) = \(\frac{1}{3}\) and P(E2) = \(\frac{2}{5}\).

Clearly, E1 and E2 are independent events.

∴ P(E1 ∩ E2) = P(E1) x P(E2) = \(\left(\frac{1}{3} \times \frac{2}{5}\right)=\frac{2}{15}\)

∴ P(target is hit) = P(A hits or B hits)

= P(E1 ∪ E2)

= P(E1) + P(E2) – P(E1 ∩ E2)

= \(\left(\frac{1}{3}+\frac{2}{5}-\frac{2}{15}\right)=\frac{9}{15}=\frac{3}{5}.\)

Hence, the required probability is \(\frac{3}{5}\).

Example 10 A and B appear for an interview for two posts. The probability of A’s selection is (1/3) and that of B’s selection is (2/5). Find the probability that only one of them will be selected.

Solution

Given:

A and B appear for an interview for two posts. The probability of A’s selection is (1/3) and that of B’s selection is (2/5)

Let E1 = event that A is selected,

and E2 = event that B is selected.

Then, P(E1) = \(\frac{1}{3}\) and P(E2) = \(\frac{2}{5}\)

⇒ \(P\left(\bar{E}_1\right)=\left(1-\frac{1}{3}\right)=\frac{2}{3} \text { and } P\left(\bar{E}_2\right)=\left(1-\frac{2}{5}\right)=\frac{3}{5} \text {. }\)

∴ P(event that only one of them is selected)

= P[(E1 and not E2) or (E2 and not E1)]

= \(P\left[\left(E_1 \cap \bar{E}_2\right) \text { or }\left(E_2 \cap \bar{E}_1\right)\right]\)

= \(P\left(E_1 \cap \bar{E}_2\right)+P\left(E_2 \cap \bar{E}_1\right)\) [∵ \(\left(E_1 \cap \bar{E}_2\right) \cap\left(E_2 \cap \bar{E}_1\right)=\phi\)]

= \(P\left(E_1\right) \cdot P\left(\bar{E}_2\right)+P\left(E_2\right) \cdot P\left(\bar{E}_1\right)\)

[∵ E1 and \(\bar{E}_2\) are independent, and E2 and \(\bar{E}_1\) are independent]

= \(\left(\frac{1}{3} \times \frac{3}{5}\right)+\left(\frac{2}{5} \times \frac{2}{3}\right)\)

= \(\left(\frac{1}{5}+\frac{4}{15}\right)=\frac{7}{15}\)

Example 11 A speaks the truth in 60% of the cases, and B in 90% of the cases. In what percentage of cases are they likely to contradict each other in stating the same fact?

Solution

Given:

A speaks the truth in 60% of the cases, and B in 90% of the cases.

Let E1 = event that A speaks the truth,

and E2 = event that B speaks the truth.

Then, \(\bar{E}_1\) = event that A tells a lie,

and \(\bar{E}_2\) = event that B tells a lie.

Clearly, E1 and E2 are independent events.

Also, (E1 and \(\bar{E}_2\)) as well as (\(\bar{E}_1\) and E2) are independent.

Now, P(E1) = \(\frac{60}{100}\) = \(\frac{3}{5}\); P(E2) = \(\frac{90}{100}\) = \(\frac{9}{10}\);

\(P\left(\bar{E}_1\right)=\left(1-\frac{3}{5}\right)=\frac{2}{5} \text { and } P\left(\bar{E}_2\right)=\left(1-\frac{9}{10}\right)=\frac{1}{10} \text {. }\)

∴ P(A and B contradict each other) = P[(A speaks the truth and B tells a lie) or (A tells a lie and B speaks the truth)]

= \(P\left[\left(E_1 \cap \bar{E}_2\right) \cup\left(\bar{E}_1 \cap E_2\right)\right]\)

= \(P\left(E_1 \cap \bar{E}_2\right)+P\left(\bar{E}_1 \cap E_2\right) [∵ \left(E_1 \cap \bar{E}_2\right) \cap\left(E_2 \cap \bar{E}_1\right)=\phi]\)

= \(\left\{P\left(E_1\right) \times P\left(\bar{E}_2\right)\right\}+\left\{P\left(\bar{E}_1\right) \times P\left(E_2\right)\right\}\)

= \(\left(\frac{3}{5} \times \frac{1}{10}\right)+\left(\frac{2}{5} \times \frac{9}{10}\right)=\left(\frac{3}{50}+\frac{18}{50}\right)=\frac{21}{50}\)

Percentage of cases in which A and B contradict each other

= \(\left(\frac{21}{50} \times 100\right) \%=42 \%\)

Example 12 The probabilities of a specific problem being solved independently by A and B are 1/2 and 1/3 respectively. If both try to solve the problem independently, find the probability that

(1) the problem is solved

(2) exactly one of them solves the problem.

Solution

Let E1 = event that A solves the problem,

and E2 = event that B solves the problem.

Then, P(E1) = \(\frac{1}{2}\) and P(E2) = \(\frac{1}{3}\)

⇒ \(P\left(\bar{E}_1\right)=\left(1-\frac{1}{2}\right)=\frac{1}{2} \text { and } P\left(\bar{E}_2\right)=\left(1-\frac{1}{3}\right)=\frac{2}{3} \text {. }\)

Clearly, E1 and E2 are independent events.

∴ P(E1 ∩ E2) = P(E1) x P(E2) = \(\left(\frac{1}{2} \times \frac{1}{3}\right)=\frac{1}{6}\)

(1) P(the problem is solved)

= P(at least one of A and B solves the problem)

= P(E1 or E2) = P(E1 ∪ E2)

= P(E1) + P(E2) – P(E1 ∩ E2)

= \(\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{6}\right)=\frac{4}{6}=\frac{2}{3} .\)

(2) P(exactly one of them solves the problem)

= P[(E1 and not E2) or (E2 and not E1)]

= \(P\left(E_1 \cap \bar{E}_2\right)+P\left(E_2 \cap \bar{E}_1\right)\)

= \(P\left(E_1\right) \times P\left(\bar{E}_2\right)+P\left(E_2\right) \times P\left(\bar{E}_1\right)\)

= \(\left(\frac{1}{2} \times \frac{2}{3}\right)+\left(\frac{1}{3} \times \frac{1}{2}\right)=\left(\frac{1}{3}+\frac{1}{6}\right)=\frac{3}{6}=\frac{1}{2}\)

Example 13 Amit and Nisha appear for an interview for two vacancies in a company. The probability of Amit’s selection is 1/5 and that of Nisha’s selection is 1/6. What is the probability that

(1) both of them are selected?

(2) only one of them is selected?

(3) none of them is selected?

Solution

Let E1 = event that Amit is selected,

and E2 = event that Nisha is selected.

Then, P(E1) = \(\frac{1}{5}\) and P(E2) = \(\frac{1}{6}\).

Clearly, E1 and E2 are independent events.

(1) P(both are selected) = P(E1 ∩ E2)

= P(E1) x P(E2)

[∵ E1 and E2 are independent]

= \(\left(\frac{1}{5} \times \frac{1}{6}\right)=\frac{1}{30} .\)

(2) P(only one of them is selected)

= P[(E1 and not E2) or (E2 and not E1)]

= P(E1 and not E2) + P(E2 and not E1)

= P(E1).P(not E2) + P(E2).P(not E1)

= P(E1).[1 – P(E2)] + P(E2).[1 – P(E1)]

= \(\frac{1}{5} \cdot\left(1-\frac{1}{6}\right)+\frac{1}{6} \cdot\left(1-\frac{1}{5}\right)=\left(\frac{1}{5} \times \frac{5}{6}\right)+\left(\frac{1}{6} \times \frac{4}{5}\right)\)

= \(\left(\frac{1}{6}+\frac{2}{15}\right)=\frac{9}{30}=\frac{3}{10}\)

(3) P(none of them is selected)

= P(not E1 and not E2)

= P(not E1) and P(not E2)

= [1 – P(E1)].[1 – P(E2)]

= \(\left(1-\frac{1}{5}\right) \cdot\left(1-\frac{1}{6}\right)=\left(\frac{4}{5} \times \frac{5}{6}\right)=\frac{2}{3}\)

Example 14 Three groups of children contain 3 girls and 1 boy; 2 girls and 2 boys; and 1 girl and 3 boys. One child is selected at random from each group. Find the chance that the three children selected comprise 1 girl and 2 boys.

Solution

Given:

Three groups of children contain 3 girls and 1 boy; 2 girls and 2 boys; and 1 girl and 3 boys. One child is selected at random from each group.

Let G1, G2, G3 be the events of selecting a girl from the first, second and third group respectively, and let B1, B2, B3 be the events of selecting a boy from the first, second and third group respectively.

Then,

P(G1) = \(\frac{3}{4}\); P(G2) = \(\frac{2}{4}\) = \(\frac{1}{2}\); P(G3) = \(\frac{1}{4}\).

P(B1) = \(\frac{1}{4}\); P(B2) = \(\frac{2}{4}\) = \(\frac{1}{2}\) and P(B3) = \(\frac{3}{4}\).

∴ P(selecting 1 girl and 2 boys)

= P[(G1B2B3) or (B1G2B3) or (B1B2G3)]

= P(G1B2B3) + P(B1G2B3) + P(B1B2G3)

= {P(G1)xP(B2)xP(B3)} + {P(B1)xP(G2)xP(B3)} + {P(B1)xP(B2)xP(G3)}

= \(\left(\frac{3}{4} \times \frac{1}{2} \times \frac{3}{4}\right)+\left(\frac{1}{4} \times \frac{1}{2} \times \frac{3}{4}\right)+\left(\frac{1}{4} \times \frac{1}{2} \times \frac{1}{4}\right)=\left(\frac{9}{32}+\frac{3}{32}+\frac{1}{32}\right)=\frac{13}{32}\)

Hence, the chances of selecting 1 girl and 2 boys are \(\frac{13}{32}\).

Example 15 A problem is given to three students whose chances of solving it are 1/3, 2/7 and 3/8. What is the probability that the problem will be solved?

Solution

Given:

A problem is given to three students whose chances of solving it are 1/3, 2/7 and 3/8.

Let the three students be named A, B, and C respectively. Let E1, E2, E3 be the events that the problem is solved by A, B, C respectively. Then,

P(E1) = \(\frac{1}{3}\), P(E2) = \(\frac{2}{7}\), P(E3) = \(\frac{3}{8}\).

∴ \(P\left(\bar{E}_1\right)=\left(1-\frac{1}{3}\right)=\frac{2}{3} ; P\left(\bar{E}_2\right)=\left(1-\frac{2}{7}\right)=\frac{5}{7} \text { and } P\left(\bar{E}_3\right)=\left(1-\frac{3}{8}\right)=\frac{5}{8} \text {. }\)

∴ P(none solves the problem)

= P[(not E1) and (not E2) and (not E3)]

= \(P\left(\bar{E}_1 \cap \bar{E}_2 \cap \bar{E}_3\right)\)

= \(P\left(\bar{E}_1\right) \times P\left(\bar{E}_2\right) \times P\left(\bar{E}_3\right)\) [∵ \(\bar{E}_1, \bar{E}_2, \bar{E}_3\) are independent]

= \(\left(\frac{2}{3} \times \frac{5}{7} \times \frac{5}{8}\right)=\frac{25}{84}\)

∴ P(that the problem is solved)

= 1 – P(none solves the problem)

= \(\left(1-\frac{25}{84}\right)=\frac{59}{84}\)

Hence, the required probability is \(\frac{59}{84}\).

Example 16 A problem in mathematics is given to three students whose chances of solving it correctly are 1/2, 1/3 and 1/4 respectively. What is the probability that only one of them solves it correctly?

Solution

Given

A problem in mathematics is given to three students whose chances of solving it correctly are 1/2, 1/3 and 1/4 respectively.

Let A, B, C be the given students and let E1, E2 and E3 be the events that the problem is solved by A, B, C respectively. Then, \(\bar{E}_1, \bar{E}_2, and \bar{E}_3\) are the events that the given problem is not solved by A, B, C respectively. Then,

P(E1) = \(\frac{1}{2}\); P(E2) = \(\frac{1}{3}\); P(E3) = \(\frac{1}{4}\);

\(P\left(\bar{E}_1\right)=\left(1-\frac{1}{2}\right)=\frac{1}{2} ; P\left(\bar{E}_2\right)=\left(1-\frac{1}{3}\right)=\frac{2}{3} \text { and } P\left(\bar{E}_3\right)=\left(1-\frac{1}{4}\right)=\frac{3}{4} \text {. }\)

P(exactly one of them solves the problem)

= \(P\left[\left(E_1 \cap \bar{E}_2 \cap \bar{E}_3\right) \text { or }\left(\bar{E}_1 \cap E_2 \cap \bar{E}_3\right) \text { or }\left(\bar{E}_1 \cap \bar{E}_2 \cap E_3\right)\right]\)

= \(P\left(E_1 \cap \bar{E}_2 \cap \bar{E}_3\right)+P\left(\bar{E}_1 \cap E_2 \cap \bar{E}_3\right)+P\left(\bar{E}_1 \cap \bar{E}_2 \cap E_3\right)\)

= \(\left\{P\left(E_1\right) \times P\left(\bar{E}_2\right) \times P\left(\bar{E}_3\right)\right\}+\left\{P\left(\bar{E}_1\right) \times P\left(E_2\right) \times P\left(\bar{E}_3\right)\right\}+\left\{P\left(\bar{E}_1\right) \times P\left(\bar{E}_2\right) \times P\left(E_3\right)\right\}\)

= \(\left(\frac{1}{2} \times \frac{2}{3} \times \frac{3}{4}\right)+\left(\frac{1}{2} \times \frac{1}{3} \times \frac{3}{4}\right)+\left(\frac{1}{2} \times \frac{2}{3} \times \frac{1}{4}\right)\)

= \(\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{12}\right)=\frac{11}{24}\)

Hence, the required probability is \(\frac{11}{24}\).

Applications of Probability in Real Life

Example 17 Three critics review a book. For the three critics, the odds in favour of the book are (5:2), (4:3) and (3:4) respectively. Find the probability that the majority is in favour of the book.

Solution

Given

Three critics review a book. For the three critics, the odds in favour of the book are (5:2), (4:3) and (3:4) respectively.

Let A, B, C denote the events that the book be favoured by the first, second and third critic respectively. Then,

P(A) = \(\frac{5}{7}\); P(B) = \(\frac{4}{7}\); P(C) = \(\frac{3}{7}\);

\(P(\bar{A})=\left(1-\frac{5}{7}\right)=\frac{2}{7} ; P(\bar{B})=\left(1-\frac{4}{7}\right)=\frac{3}{7} \text { and } P(\bar{C})=\left(1-\frac{3}{7}\right)=\frac{4}{7} \text {. }\)

Required probability

= P(2 critics favour the book or 3 critics favour the book)

= P(2 critics favour the book) + P(3 critics favour the book)

= P[{A and B and not C} or {A and C and not B} or {B and C and not A}] + P(A and B and C)

= \(P(A \cap B \cap \bar{C})+P(A \cap \bar{B} \cap C)+P(\bar{A} \cap B \cap C)+P(A \cap B \cap C)\)

= \(\{P(A) \times P(B) \times P(\bar{C})\}+\{P(A) \times P(\bar{B}) \times P(C)\}+\{P(\bar{A}) \times P(B) \times P(C)\}+\)

\(\{P(A) \times P(B) \times P(C)\}\)

= \(\left(\frac{5}{7} \times \frac{4}{7} \times \frac{4}{7}\right)+\left(\frac{5}{7} \times \frac{3}{7} \times \frac{3}{7}\right)+\left(\frac{2}{7} \times \frac{4}{7} \times \frac{3}{7}\right)+\left(\frac{5}{7} \times \frac{4}{7} \times \frac{3}{7}\right)\)

= \(\left(\frac{80}{343}+\frac{45}{343}+\frac{24}{343}+\frac{60}{343}\right)=\frac{209}{343} .\)

Hence, the required probability is \(\frac{209}{343}\).

The probability that the majority is in favour of the book is \(\frac{209}{343}\).

Example 18 The odds against a man who is 45 years old, living till he is 70 are 7:5, and the odds against his wife who is now 36, living till she is 61 are 5:3. Find the probability that

(1) the couple will be alive 25 years hence

(2) at least one of them will be alive 25 years hence.

Solution

Let E1 = event that the husband will be alive 25 years hence, and

E2 = event that the wife will be alive 25 years hence.

Then, P(E1) = \(\frac{5}{12}\) and P(E2) = \(\frac{3}{8}\).

∴ \(P\left(\bar{E}_1\right)=\left(1-\frac{5}{12}\right)=\frac{7}{12} \text { and } P\left(\bar{E}_2\right)=\left(1-\frac{3}{8}\right)=\frac{5}{8} \text {. }\)

Clearly, E1 and E2 are independent events.

(1) P(the couple will be alive 25 years hence)

= P(E1 and E2) = P(E1 ∩ E2)

= \(P\left(E_1\right) \cdot P\left(E_2\right)=\left(\frac{5}{12} \times \frac{3}{8}\right)=\frac{5}{32} .\)

(2) P(at least one of them will be alive 25 years hence)

= 1 – P(none will be alive 25 years hence)

= 1 – P[(not E1) and (not E2)]

= 1 – \(P\left(\bar{E}_1 \cap \bar{E}_2\right)\)

= 1 – \(\left[P\left(\bar{E}_1\right) \cdot P\left(\bar{E}_2\right)\right]\) [∵ \(\bar{E}_1\) and \(\bar{E}_2\) are independent]

= \(1-\left(\frac{7}{12} \times \frac{5}{8}\right)=\left(1-\frac{35}{96}\right)=\frac{61}{96} .\)

Example 19 A, B and C shoot to hit a target. Iff A hits the target 4 times in 5 trails; B hits it 3 times in 4 trails and C hits it 2 times in 3 trails, what is the probability that the target is hit by at least 2 persons?

Solution

Given

A, B and C shoot to hit a target. Iff A hits the target 4 times in 5 trails; B hits it 3 times in 4 trails and C hits it 2 times in 3 trails,

Let E1, E2 and E3 be the events that A hits the target, B hits the target and C hits the target respectively. Then,

P(E1) = \(\frac{4}{5}\), P(E2) = \(\frac{3}{4}\), P(E3) = \(\frac{2}{3}\);

\(P\left(\bar{E}_1\right)=\left(1-\frac{4}{5}\right)=\frac{1}{5}, P\left(\bar{E}_2\right)=\left(1-\frac{3}{4}\right)=\frac{1}{4} \text { and } P\left(\bar{E}_3\right)=\left(1-\frac{2}{3}\right)=\frac{1}{3} \text {. }\)

Case 1 A, B, C all hit the target

In this case, P(A, B and C all hit the target)

= P(E1 and E2 and E3)

= P(E1).P(E2).P(E3) [∵ E1, E2, E3 are independent]

= \(\left(\frac{4}{5} \times \frac{3}{4} \times \frac{2}{3}\right)=\frac{2}{5}\)

Case 2 A and B hit but not C

In this case, P(A and B hit but not C)

= P(E1 and E2 and not E3)

= P(E1 ∩ E2 ∩ \(\bar{E}_3\))

= P(E1).P(E2).P(\(\bar{E}_3\)) [∵ E1, E2, \(\bar{E}_3\) are independent]

= \(\left(\frac{4}{5} \times \frac{3}{4} \times \frac{1}{3}\right)=\frac{1}{5}\)

Case 3 A and C both hit but not B

In this case, P(A and C hit but not B)

= P(E1 and E3 and \(\bar{E}_2\))

= P(E2).P(E3).P(\(\bar{E}_1\)) [∵ E2, E3, \(\bar{E}_1\) are independent]

= \(\left(\frac{3}{4} \times \frac{2}{3} \times \frac{1}{5}\right)=\frac{1}{10}\)

Clearly, all these are mutually exclusive.

Hence, required probability = \(\left(\frac{2}{5}+\frac{1}{5}+\frac{2}{15}+\frac{1}{10}\right)=\frac{5}{6}\)

Chapter 2 Bayes’ Theorem And Its Applications

Theorem of Total Probability

Theorem Let E1, E2,….,En be mutually exclusive and exhaustive events associated with a random experiment and let E be an event that occurs with some Ei. then, prove that

P(E) = \(\sum_{i=1}^n P\left(E / E_i\right) \cdot P\left(E_j\right)\)

Proof

Let S be the sample space. Then,

S = E1 ∪ E2 ∪ … En and Ei ∩ Ej = Φ for i ≠ j.

∴ E = E ∩ S = E ∩(E1 ∪ E2 ∪ … ∪ En)

= (E ∩ E1) ∪ (E ∩ E2)∪ … ∪(E ∩ En)

⇒ P(E) = P{(E ∩ E1) ∪ (E ∩ E2) ∪ … ∪(E ∩ En)}

= P(E ∩ E1) + P(E ∩ E2) + … + P(E ∩ En)

{∵ (E ∩ E1), (E ∩ E2), …,(E ∩ En) are pairwise disjoint}

= P(E/E1).P(E1) + P(E/E2).P(E2) + … + P(E/En).P(En) [by multiplication theorem]

P(E)= \(\sum_{i=1}^n P\left(E / E_i\right) \cdot P\left(E_i\right)\)

Example There are three urns containing 3 white and 2 black balls; 2 white and 3 black balls; 1 black and 4 white balls respectively.

Solution

Let E1, E2 and E3 be the events of choosing the first, second and third urn respectively. Then,

P(E1) = P(E2) = P(E3) = \(\frac{1}{3}\).

Let E be the event that a white ball is drawn. Then,

P(E/E1) = \(\frac{3}{5}\), P(E/E2) = \(\frac{2}{5}\) and P(E/E3) = \(\frac{4}{5}\).

By the theorem of total probability, we have

P(E) = P(E/E1).P(E1) + P(E/E2).P(E2) + P(E/E3).P(E3)

= \(\left(\frac{3}{5} \times \frac{1}{3}+\frac{2}{5} \times \frac{1}{3}+\frac{4}{5} \times \frac{1}{3}\right)=\left(\frac{1}{5}+\frac{2}{15}+\frac{4}{15}\right)=\frac{9}{15}=\frac{3}{5} .\)

Bayes’ Theorem Let E1, E2, …, En be mutually exclusive and exhaustive events, associated with a random experiment, and let E be any event that to occurs with some Ei. Then,

\(P\left(E_i / E\right)=\frac{P\left(E / E_i\right) \cdot P\left(E_i\right)}{\sum_{i=1}^n P\left(E / E_i\right) \cdot P\left(E_i\right)} ; i=1,2,3, \ldots, n .\)

Proof

By the theorem of total probability, we have

\(P(E)=\sum_{i=1}^n P\left(E / E_i\right) \cdot P\left(E_i\right)\) …(1)

∴ \(P\left(E_i / E\right)=\frac{P\left(E \cap E_i\right)}{P(E)}\) [by multiplication theorem]

= \(\frac{P\left(E / E_i\right) \cdot P\left(E_i\right)}{P(E)}\left[\quad P\left(E / E_i\right)=\frac{P\left(E \cap E_i\right)}{P\left(E_i\right)}\right]\)

= \(\frac{P\left(E / E_i\right) \cdot P\left(E_i\right)}{\sum_{i=1}^n P\left(E / E_i\right) \cdot P\left(E_i\right)}\) [using(1)].

Hence, P(Ei/E) = \(\frac{P\left(E / E_i\right) \cdot P\left(E_i\right)}{\sum_{i=1}^n P\left(E / E_i\right) \cdot P\left(E_i\right)}\)

Solved Examples

Example 1 A factory has three machines, X, Y and Z, producing 1000, 2000 and 3000 bolts per day respectively. The machine X produces 1% defective bolts, Y produces 1.5% defective bolts and Z produces 2% defective bolts. At the end of the day, a bolt is drawn at random and it is found to be defective. What is the probability that this defective bolt has been produced by the machine X?

Solution

Given:

A factory has three machines, X, Y and Z, producing 1000, 2000 and 3000 bolts per day respectively. The machine X produces 1% defective bolts, Y produces 1.5% defective bolts and Z produces 2% defective bolts. At the end of the day, a bolt is drawn at random and it is found to be defective.

Total number of bolts produced in a day = (1000 + 2000 + 3000) = 6000.

Let E1, E2 and E3 be the events of drawing a bolt produced by machines X, Y and Z respectively. Then,

P(E1) = \(\frac{1000}{6000}\) = \(\frac{1}{6}\); P(E2) = \(\frac{2000}{6000}\) = \(\frac{1}{3}\) and P(E3) = \(\frac{3000}{6000}\) = \(\frac{1}{2}\).

Let E be the event of drawing a defective bolt. Then,

P(E/E1) = probability of drawing a defective bolt, given that it is produced by the machine X

= \(\frac{1}{100}\).

P(E/E2) = probability of drawing a defective bolt, given that it is produced by the machine Y

= \(\frac{1.5}{100}\) = \(\frac{15}{1000}\) = \(\frac{3}{200}\).

P(E/E3) = probability of drawing a defective bolt, given that it is produced by the machine Z

= \(\frac{2}{100}\) = \(\frac{1}{50}\).

Required probability

= P(E1/E)

= probability that the bolt drawn is produced by X, given that it is defective

= \(\frac{P\left(E_1\right) \cdot P\left(E / E_1\right)}{P\left(E_1\right) \cdot P\left(E / E_1\right)+P\left(E_2\right) \cdot P\left(E / E_2\right)+P\left(E_3\right) \cdot P\left(E / E_3\right)}\)

= \(\frac{\left(\frac{1}{6} \times \frac{1}{100}\right)}{\left(\frac{1}{6} \times \frac{1}{100}\right)+\left(\frac{1}{3} \times \frac{3}{200}\right)+\left(\frac{1}{2} \times \frac{1}{50}\right)}\)

= \(\left(\frac{1}{600} \times \frac{600}{10}\right)=\frac{1}{10}=0.1\)

Hence, the required probability is 0.1.

Example 2 In a bolt factory, three machines, A, B, C, manufacture 5%, 35% and 40% of the total production respectively. Of thier respective outputs, 5%, % and 2% are defective. Find the probability that it was manufactured by the machine C.

Solution

Given

In a bolt factory, three machines, A, B, C, manufacture 5%, 35% and 40% of the total production respectively. Of thier respective outputs, 5%, % and 2% are defective.

Let E1, E2 and E3 be the events of drawing a bolt produced by machine A, B and C respectively. Then,

P(E1) = \(\frac{25}{100}\) = \(\frac{1}{4}\), P(E2) = \(\frac{35}{100}\) = \(\frac{7}{20}\), and P(E3) = \(\frac{40}{100}\) = \(\frac{2}{5}\).

Let E be the event of drawing a defective bolt. Then,

P(E/E1) = probability of drawing a defective bolt, given that it is produced by the machine A

= \(\frac{5}{100}\) = \(\frac{1}{20}\).

P(E/E2) = probability of drawing a defective bolt, given that it is produced by the machine B

= \(\frac{2}{100}\) = \(\frac{1}{50}\).

Probability that the bolt drawn is manufactured by C, given that it is defective

= P(E3/3)

= \(\frac{P\left(E / E_3\right) \cdot P\left(E_3\right)}{P\left(E / E_1\right) \cdot P\left(E_1\right)+P\left(E / E_2\right) \cdot P\left(E_2\right)+P\left(E / E_3\right) \cdot P\left(E_3\right)}\) [by Bayes’ theorem]

= \(\frac{\left(\frac{1}{50} \times \frac{2}{5}\right)}{\left(\frac{1}{20} \times \frac{1}{4}\right)+\left(\frac{1}{25} \times \frac{7}{20}\right)+\left(\frac{1}{50} \times \frac{2}{5}\right)}=\left(\frac{1}{125} \times \frac{2000}{69}\right)=\frac{16}{69} \text {. }\)

Hence, the required probability is \(\frac{16}{69}\).

Example 3 A company has two plants to manufacture bicycles. The first plant manufactures 60% of the bicycles and the second plant, 40%. Also, 80% of the bicycles are rated of standard quality at the first plant and 90% of standard quality at the second plant. A bicycle is picked up at random and found to be of standard quality. Find the probability that it comes from the second plant.

Solution

Given:

A company has two plants to manufacture bicycles. The first plant manufactures 60% of the bicycles and the second plant, 40%. Also, 80% of the bicycles are rated of standard quality at the first plant and 90% of standard quality at the second plant. A bicycle is picked up at random and found to be of standard quality.

Let E1 and E2 be the events of choosing a bicycle from the first plant and the second plant respectively. Then,

P(E1) = \(\frac{60}{10}\) = \(\frac{3}{5}\), and P(E2) = \(\frac{40}{100}\) = \(\frac{2}{5}\).

Let E be the event of choosing a bicycle of standard quality. then,

P(E/E1) = probability of choosing a bicycle of standardd quality, given that it is produced by the first plant

= \(\frac{80}{100}\) = \(\frac{4}{5}\).

P(E/E2) = probability of choosing a bicycle of standard quality, given that it is produced by the second plant

= \(\frac{90}{100}\) = \(\frac{9}{10}\).

The required probability

P(E2/E) = probability of choosing a bicycle from the second plant, given that it is of standard quality

= \(\frac{P\left(E_2\right) \cdot P\left(E / E_2\right)}{P\left(E_1\right) \cdot P\left(E / E_1\right)+P\left(E_2\right) \cdot P\left(E / E_2\right)}\) [by Bayes’ theorem]

= \(\frac{\left(\frac{2}{5} \times \frac{9}{10}\right)}{\left(\frac{3}{5} \times \frac{4}{5}\right)+\left(\frac{2}{5} \times \frac{9}{10}\right)}=\frac{3}{7} .\)

Examples of Conditional Probability

Example 4 An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000 truck drivers. The probability of an accident involving a scooter, a car and a truck is \(\frac{1}{100}\), \(\frac{3}{100}\) and \(\frac{3}{20}\) respectively. One of the insured persons meets with an accident. What is the probability that he is a scooter driver?

Solution

Given:

An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000 truck drivers. The probability of an accident involving a scooter, a car and a truck is \(\frac{1}{100}\), \(\frac{3}{100}\) and \(\frac{3}{20}\) respectively. One of the insured persons meets with an accident.

Total number of persons insured = (2000 + 4000 + 6000) = 12000.

Let E1, E2 and E3 be the events of choosing a scooter driver, a car driver and a truck driver respectively. Then,

P(E1) = \(\frac{2000}{12000}\) = \(\frac{1}{6}\), P(E2) = \(\frac{4000}{12000}\) = \(\frac{1}{3}\), and P(E3) = \(\frac{6000}{12000}\) = \(\frac{1}{2}\).

Let E be the event of an insured person meeting with an accident. Then,

P(E/E1) = probability that an insured person meets with an accident, given that he is a scooter driver

= \(\frac{1}{100}\)

Similarly, P(E/E2) = \(\frac{3}{100}\) and P(E/E3) = \(\frac{3}{20}\).

Required Probability

= P(E1/E) [by Bayes’ theorem]

= probability of choosing a scooter driver, given that he meets with an accident

= \(\frac{P\left(E / E_1\right) \cdot P\left(E_1\right)}{P\left(E / E_1\right) \cdot P\left(E_1\right)+P\left(E / E_2\right) \cdot P\left(E_2\right)+P\left(E / E_3\right) \cdot P\left(E_3\right)}\)

= \(\frac{\left(\frac{1}{100} \times \frac{1}{6}\right)}{\left(\frac{1}{100} \times \frac{1}{6}\right)+\left(\frac{3}{100} \times \frac{1}{3}\right)+\left(\frac{3}{20} \times \frac{1}{2}\right)}=\frac{1}{52} .\)

Hence, the required probability is \(\frac{1}{52}\).

Example 5 A doctor is to visit a patient. From past experience, it is known that the probabilities that he will come by train, bus, scooter or by car are respectively \(\frac{3}{10}\), \(\frac{1}{5}\), \(\frac{1}{10}\) and \(\frac{2}{5}\). The probabilities that he will be late are \(\frac{1}{4}\), \(\frac{1}{3}\) and \(\frac{1}{12}\), if he comes by train, bus and scooter respectively; but if he comes by car, he will not be late. When he arrives, he is late. What is the probability that he come by train?

Solution

Given:

A doctor is to visit a patient. From past experience, it is known that the probabilities that he will come by train, bus, scooter or by car are respectively \(\frac{3}{10}\), \(\frac{1}{5}\), \(\frac{1}{10}\) and \(\frac{2}{5}\). The probabilities that he will be late are \(\frac{1}{4}\), \(\frac{1}{3}\) and \(\frac{1}{12}\), if he comes by train, bus and scooter respectively; but if he comes by car, he will not be late.

Let E1, E2, E3 and E4 be the events that the doctor comes by train, bus, scooter and car respectively. Then,

P(E1) = \(\frac{3}{10}\), P(E2) = \(\frac{1}{5}\), P(E3) = \(\frac{1}{10}\) and P(E4) = \(\frac{2}{5}\).

Let E be the event that the doctor is late. Then,

P(E/E1) = probability that the doctor is late, given that he comes by train

= \(\frac{1}{4}\).

P(E/E2) = probability that the doctor is late, given that he comes by b us

= \(\frac{1}{3}\).

P(E/E3) = probability that the doctor is late, given that he comes by scooter

= \(\frac{1}{12}\).

P(E/E4) = probability that the doctor is late, given that he comes by car

= 0.

Probability that he comes by train, given that he is late

= P(E1/E)

= \(\frac{P\left(E_1\right) \cdot P\left(E / E_1\right)}{P\left(E_1\right) \cdot P\left(E / E_1\right)+P\left(E_2\right) \cdot P\left(E / E_2\right)+P\left(E_3\right) \cdot P\left(E / E_3\right)+P\left(E_4\right) \cdot P\left(E / E_4\right)}\)

[by Bayes’ theorem]

= \(\frac{\left(\frac{3}{10} \times \frac{1}{4}\right)}{\left(\frac{3}{10} \times \frac{1}{4}\right)+\left(\frac{1}{5} \times \frac{1}{3}\right)+\left(\frac{1}{10} \times \frac{1}{12}\right)+\left(\frac{2}{5} \times 0\right)}=\left(\frac{3}{40} \times \frac{120}{18}\right)=\frac{1}{2} \text {. }\)

Hence, the required probability is \(\frac{1}{2}\).

Real-Life Applications of Bayes’ Theorem

Example 6 A man is known to speak the truth 3 out of 4 times. He throws a die and reports that it is a six. Find the probability that it is actually a six.

Solution

Given

A man is known to speak the truth 3 out of 4 times. He throws a die and reports that it is a six.

In a throw of a die, let

E1 = event of getting a six,

E2 = event of not getting a six, and

E = event that the man reports that it is a six.

Then, P(E1) = \(\frac{1}{6}\), and \(P\left(E_2\right)=\left(1-\frac{1}{6}\right)=\frac{5}{6}\).

P(E/E1) = [probability that the man reports that six occurs, when six has actually occurred

= probability that the man speaks the truth

= \(\frac{3}{4}\).

P(E/E2) = probability that the man reports that six occurs, when six has not actually occurred

= probability that the man does not speak the truth

= \(\left(1-\frac{3}{4}\right)=\frac{1}{4}\).

Probability of getting a six, given that the man reports it to be six

= P(E1/E)

= \(\frac{P\left(E / E_1\right) \cdot P\left(E_1\right)}{P\left(E / E_1\right) \cdot P\left(E_1\right)+P\left(E / E_2\right) \cdot P\left(E_2\right)}\) [by Bayes’ theorem]

= \(\frac{\left(\frac{3}{4} \times \frac{1}{6}\right)}{\left(\frac{3}{4} \times \frac{1}{6}\right)+\left(\frac{1}{4} \times \frac{5}{6}\right)}=\left(\frac{1}{8} \times 3\right)=\frac{3}{8} .\)

Hence, the required probability is \(\frac{3}{8}\).

Example 7 In an examination, an examine either guesses or copies or knows the answer to a multiple-choice question with four choices. The probability that he makes a guess is (1/3) and the probability that he copies the answer is (1/6). The probability that his answer is correct, given that he copied it, is (1/8). The probability that his answer is correct, given that he guessed it, is (1/4). Find the probability that he knew the answer to the question, given that he correctly answered it.

Solution

Given

In an examination, an examine either guesses or copies or knows the answer to a multiple-choice question with four choices. The probability that he makes a guess is (1/3) and the probability that he copies the answer is (1/6). The probability that his answer is correct, given that he copied it, is (1/8). The probability that his answer is correct, given that he guessed it, is (1/4).

Let E1 = event that the examinee guesses the answer,

E2 = event that he copies the answer,

E3 = event that he knows the answer, and

E = event that he answers correctly.

Then, P(E1) = \(\frac{1}{3}\), P(E2) = \(\frac{1}{6}\), and P(E3) = \(1-\left(\frac{1}{3}+\frac{1}{6}\right)=\frac{1}{2}\)

[∵ E1, E2, E3 are mutually exclusive and exhaustive].

∴ P(E/E1) = probability that he answers correctly, given that he guesses

= \(\frac{1}{4}\).

P(E/E2) = probability that he answers correctly, given that he copies

= \(\frac{1}{8}\).

P(E/E3) = probability that he answers correctly, given that he knew the answer

= 1.

Required probability

= P(E3/E)

= \(\frac{P\left(E / E_3\right) \cdot P\left(E_3\right)}{P\left(E / E_1\right) \cdot P\left(E_1\right)+P\left(E / E_2\right) \cdot P\left(E_2\right)+P\left(E / E_3\right) \cdot P\left(E_3\right)}\)

[by Bayes’ theorem]

= \(\frac{\left(1 \times \frac{1}{2}\right)}{\left(\frac{1}{4} \times \frac{1}{3}\right)+\left(\frac{1}{8} \times \frac{1}{6}\right)+\left(1 \times \frac{1}{2}\right)}=\frac{24}{29} .\)

Hence, the required probability is \(\frac{24}{29}\).

Example 8 By examining the chest X-ray, the probability that a person is diagnosed with TB when he is actually suffering from it, is 0.99. The probability that the doctor incorrectly diagnoses a person to be having TB, on the basis of X-ray reports, is 0.001. In a certain city, 1 in 1000 persons suffers from TB. A person is selected at random and is diagnosed to have TB. What is the chance that he actually has TB?

Solution

Given:

By examining the chest X-ray, the probability that a person is diagnosed with TB when he is actually suffering from it, is 0.99. The probability that the doctor incorrectly diagnoses a person to be having TB, on the basis of X-ray reports, is 0.001. In a certain city, 1 in 1000 persons suffers from TB. A person is selected at random and is diagnosed to have TB.

Let E = event that the doctor diagnoses TB,

E1 = event that the person selected is suffering from TB, and

E2 = event that the person selected is not suffering from TB.

Then, P(E1) = \(\frac{1}{1000}\) and P(E2) = \(\left(1-\frac{1}{1000}\right)=\frac{999}{1000}\)

P(E/E1) = probability that TB is diagnosed, when the person actually has TB

= \(\frac{99}{100}\).

P(E\E2) = probability that Tb is diagnosed, when the person has no TB

= \(\frac{1}{1000}\).

Using Bayes’ theorem, we have

P(E1/E) = probability of a person actually having TB, if it is known that he is diagnosed to have TB

= \(\frac{P\left(E / E_1\right) \cdot P\left(E_1\right)}{P\left(E / E_1\right) \cdot P\left(E_1\right)+P\left(E / E_2\right) \cdot P\left(E_2\right)}\)

= \(\frac{\left(\frac{99}{100} \times \frac{1}{1000}\right)}{\left(\frac{99}{100} \times \frac{1}{1000}\right)+\left(\frac{1}{1000} \times \frac{999}{1000}\right)}=\frac{110}{221} .\)

Hence, the required probability is \(\frac{110}{221}\).

Comparative Analysis of Different Types of Events

Example 9 Bag A contains 2 white and 3 red balls, and bag B contains 4 white and 5 red balls. One ball is drawn at random from one of the bag and it is found to be red. Find the probability that it was drawn from bag B.

Solution

Given

Bag A contains 2 white and 3 red balls, and bag B contains 4 white and 5 red balls. One ball is drawn at random from one of the bag and it is found to be red.

Let E1 = event of choosing bag A,

E2 = event of choosing bag B, and

E = event of drawing a red ball.

Then, P(E1) = \(\frac{1}{2}\) and P(E2) = \(\frac{1}{2}\).

Also, P(E/E1) = event of drawing a red ball from bag A = \(\frac{3}{5}\), and

P(E/E2) = event of drawing a red ball from bag B = \(\frac{5}{9}\).

Probability of drawing a ball from B, it being given that it is red

= P(E2/E)

= \(\frac{P\left(E / E_2\right) \cdot P\left(E_2\right)}{P\left(E / E_1\right) \cdot P\left(E_1\right)+P\left(E / E_2\right) \cdot P\left(E_2\right)}\)

[by Bayes’ theorem]

= \(\frac{\left(\frac{5}{9} \times \frac{1}{2}\right)}{\left(\frac{3}{5} \times \frac{1}{2}\right)+\left(\frac{5}{9} \times \frac{1}{2}\right)}=\frac{25}{52} .\)

Hence, the required probability is \(\frac{25}{52}\).

Example 10 There are 5 bags, each containing 5 white balls and 3 black balls. Also, there are 6 bags, each containing 2 white balls and 4 black balls. A white ball is drawn at random. Find the probability that this white ball is from a bag of the first group.

Solution

Given

There are 5 bags, each containing 5 white balls and 3 black balls. Also, there are 6 bags, each containing 2 white balls and 4 black balls. A white ball is drawn at random.

Let E1 = event of selecting a bag from the first group,

E2 = event of selecting a bag from the second group, and

E = event of drawing a white ball.

Then, P(E1) = \(\frac{5}{11}\) and P(E2) = \(\frac{6}{11}\).

P(E/E1) = probability of getting a white ball, given that it is from a bag of the first group

= \(\frac{5}{8}\).

P(E/E2) = probability of getting a white ball, given that it is from a bag of the second group

= \(\frac{2}{6}\) = \(\frac{1}{3}\).

Probability of getting the ball from a bag of the first group, given that it is white

= P(E1/E)

= \(\frac{P\left(E / E_1\right) \cdot P\left(E_1\right)}{P\left(E / E_1\right) \cdot P\left(E_1\right)+P\left(E / E_2\right) \cdot P\left(E_2\right)}\) [by Bayes’ theorem]

= \(\frac{\left(\frac{5}{8} \times \frac{5}{11}\right)}{\left(\frac{5}{8} \times \frac{5}{11}\right)+\left(\frac{1}{3} \times \frac{6}{11}\right)}=\frac{75}{123}\)

Example 11 Urn A contains 1 white, 2 black and 3 red balls; urn B contains 2 white, 1 black and 1 red ball; and urn C contains 4 white, 5 black and 3 red balls. One urn is chosen at random and two balls are drawn. These happen to be one white and one red. What is the probability that they come from urn A?

Solution

Given

Urn A contains 1 white, 2 black and 3 red balls; urn B contains 2 white, 1 black and 1 red ball; and urn C contains 4 white, 5 black and 3 red balls. One urn is chosen at random and two balls are drawn. These happen to be one white and one red.

Let E1, E2, E3 be the events that the balls are drawn from urn A, urn B and urn C respectively, and let E be the event that the balls drawn are one white and one red. Then, P(E1) = P(E2) = P(E3) = \(\frac{1}{3}\).

P(E/E1) = probability that the balls drawn are one white and one red, given that the balls are from urn A

= \(\frac{{ }^1 C_1 \times{ }^3 C_1}{{ }^6 C_2}=\frac{3}{15}=\frac{1}{5}\)

P(E/E2) = probability that the balls drawn are one white and one red, given that the balls are from urn B

= \(\frac{{ }^2 C_1 \times{ }^1 C_1}{{ }^4 C_2}=\frac{2}{6}=\frac{1}{3} .\)

P(E/E3) = probability that the balls drawn are one white and one red, given that the balls are from urn C

= \(\frac{{ }^4 C_1 \times{ }^3 C_1}{{ }^{12} C_2}=\frac{12}{66}=\frac{2}{11}\)

Probability that the balls drawn are from urn A, it being given that the balls drawn are one white and one red

= P(E1/E)

= \(\frac{P\left(E / E_1\right) \cdot P\left(E_1\right)}{P\left(E / E_1\right) \cdot P\left(E_1\right)+P\left(E / E_2\right) \cdot P\left(E_2\right)+P\left(E / E_3\right) \cdot P\left(E_3\right)}\)

[by Bayes’ theorem]

= \(\frac{\left(\frac{1}{5} \times \frac{1}{3}\right)}{\left(\frac{1}{5} \times \frac{1}{3}\right)+\left(\frac{1}{3} \times \frac{1}{3}\right)+\left(\frac{2}{11} \times \frac{1}{3}\right)}\)

= \(\left(\frac{1}{15} \times \frac{495}{118}\right)=\frac{33}{118}\)

Hence, the required probability is \(\frac{33}{118}\).

Example 12 A card from a pack of 52 cards is lost. From the remaining cards of the pack, two cards are drawn and are found to be both spades. Find the probability of the lost card being a spade.

Solution

Given:

A card from a pack of 52 cards is lost. From the remaining cards of the pack, two cards are drawn and are found to be both spades.

Let E1, E2, E3 and E4 be the events of losing a card of spades, clubs, hearts and diamonds respectively.

Then, P(E1) = P(E2) = P(E3) = P(E4) = \(\frac{13}{52}\) = \(\frac{1}{4}\).

Let E be the event of drawing 2 spades from the remaining 51 cards. Then,

P(E/E1) = probability of drawing 2 spades, given that a card of spades is missing

= \(\frac{{ }^{12} C_2}{{ }^{51} C_2}=\frac{(12 \times 11)}{2 !} \times \frac{2 !}{(51 \times 50)}=\frac{22}{425} .\)

P(E/E2) = probability of drawing 2 spades, given that a card of clubs is missing

= \(\frac{{ }^{13} C_2}{{ }^{51} C_2}=\frac{(13 \times 12)}{2 !} \times \frac{2 !}{(51 \times 50)}=\frac{26}{425}\)

P(E/E3) = probability of drawing 2 spades, given that a card of hearts is missing

= \(\frac{{ }^{13} C_2}{{ }^{51} C_2}=\frac{26}{425}\)

P(E/E4) = probability of drawing 2 spades, given that a card of diamonds is missing

= \(\frac{{ }^{13} C_2}{{ }^{51} C_2}=\frac{26}{425}\)

∴ P(E1/E) = probability of the lost card being a spade, given that 2 spades are drawn from the remaining 51 cards

= \(\frac{P\left(E_1\right) \cdot P\left(E / E_1\right)}{P\left(E_1\right) \cdot P\left(E / E_1\right)+P\left(E_2\right) \cdot P\left(E / E_2\right)+P\left(E_3\right) \cdot P\left(E / E_3\right)+P\left(E_4\right) \cdot P\left(E / E_4\right)}\)

= \(\frac{\left(\frac{1}{4} \times \frac{22}{425}\right)}{\left(\frac{1}{4} \times \frac{22}{425}\right)+\left(\frac{1}{4} \times \frac{26}{425}\right)+\left(\frac{1}{4} \times \frac{26}{425}\right)+\left(\frac{1}{4} \times \frac{26}{425}\right)}\)

= \(\frac{22}{100}\) = 0.22.

Hence, the required probability is 0.22.

WBCHSE Class 12 Maths Solutions For Probability Distribution

Chapter 3 Probability Distribution

RANDOM VARIABLE Let S be the sample space associated with a given random experiment. A real-valued function X which assigns a unique real number X(w) to each w ∈ S, is called a random variable.

A random variable which can assume only a finite number of values is called a discrete random variable.

Example Suppose that a coin is tossed twice.

Then, sample space S = {TT, HT, TH, HH}.

Consider a real-valued function X on S, defined by

X : S → R : X(w) = number of heads in w, for all w ∈ S.

Then, X is a random variable such that

X(TT) = 0, X(HT) = 1, X(TH) = 1 and X(HH) = 2.

Range (X) = {0,1,2}.

WBCHSE Class 12 Maths Solutions For Probability Distribution

WBBSE Class 12 Probability Distribution Solutions

Probability Distribution of a Random Variable

A description giving the values of a random variable along with the corresponding probabilities is called the probability distribution of the random variable.

If a random variable X takes the values x1, x2, …, xn with respective probabilities p1, p2, …, pn then the probability distribution of X is given by

Read and Learn More  Class 12 Math Solutions

Class 12 Maths Probability Distribution

Remark The above probability distribution of X is defined only when (1) each pi ≥ 0 (2) \(\sum_{i=1}^n p_i=1\)

Mean and Variance of Random Variables

Let a random variable X assume values x1, x2, …, xn with probabilities p1, p2, …, pn respectively such that each pi ≥ 0 and \(\sum_{i=1}^n p_i=1\). Then mean of X, denoted by μ [or expected value of X, denoted by E(X)], is defined as

μ = \(E(X)=\sum_{i=1}^m x_i p_i\)

And, the variance, denoted by σ2, is defined as

σ2 = \(\left(\Sigma x_i^2 p_i-\mu^2\right)\).

Standard deviation, σ, is given by

\(\sigma=\sqrt{\text { variance }}\).

Solved Examples

Example 1 Find the mean, variance and standard deviation of the number of tails in two tosses of a coin.

Solution

In two tosses of a coin, the sample space is given by

S = {HH, HT, TH, TT}.

∴ n(S) = 4.

So, every single outcome has a probability \(\frac{1}{4}\).

Let X = number of tails in two tosses.

In two tosses, we may have no tail, 1 tail or 2 tails.

So, the possible values of X are 0, 1, 2.

P(X=0) = P(getting no tail) = P(HH) = \(\frac{1}{4}\).

P(X=1) = P(getting 1 tail) = P(HT or TH) = P(TT) = \(\frac{2}{4}\) = \(\frac{1}{2}\).

P(x=2) = P(getting 2 tails) = P(TT) = \(\frac{1}{4}\).

Hence, the probability distribution of X is given by

Class 12 Maths Probability Distribution Example 1

∴ mean, μ = \(\Sigma x_i p_i=\left(0 \times \frac{1}{4}\right)+\left(1 \times \frac{1}{2}\right)+\left(2 \times \frac{1}{4}\right)=1.\)

Variance, σ2 = \(\Sigma x_i^2 p_i-\mu^2\)

= \(\left[\left(0 \times \frac{1}{4}\right)+\left(1 \times \frac{1}{2}\right)+\left(4 \times \frac{1}{4}\right)\right]-1^2\)

= \(\frac{1}{2}\).

Standard deviation, \(\sigma=\frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{2}=\frac{1.414}{2}=0.707\)

Example 2 Find the mean, variance and standard deviation of the number of heads when three coins are tossed.

Solution

Here, S = {TTT, TTH, THT, HTT, THH, HTH, HHT, HHH}.

∴ n(s) = 8.

So, every single outcome has a probability \(\frac{1}{8}\).

Let X = number of heads in tossing three coins.

The number of heads may be 0, 1, 2, or 3.

So, the possible values of X are 0, 1, 2, 3.

P(X=0) = P(getting to head) = P(TTT) = \(\frac{1}{8}\).

P(X=1) = P(getting 1 head) = P(TTH or THT or HTT) = \(\frac{3}{8}\).

P(X=2) = P(getting 2 heads) = P(THH, HTH, HHT) = \(\frac{3}{8}\).

P(X=3) = P(getting 3 heads) = P(HHH) = \(\frac{1}{8}\).

Thus, we have the following probability distribution:

Class 12 Maths Probability Distribution Example 2

∴ mean, μ = \(\Sigma x_i p_i=\left(0 \times \frac{1}{8}\right)+\left(1 \times \frac{3}{8}\right)+\left(2 \times \frac{3}{8}\right)+\left(3 \times \frac{1}{8}\right)=\frac{3}{2}.\)

Variance, σ2 = \(\Sigma x_i^2 p_i-\mu^2\)

= \(\left[\left(0 \times \frac{1}{8}\right)+\left(1 \times \frac{3}{8}\right)+\left(4 \times \frac{3}{8}\right)+\left(9 \times \frac{1}{8}\right)-\frac{9}{4}\right]=\frac{3}{4} .\)

Standard deviation, σ = \(\frac{\sqrt{3}}{2} \text {. }\)

Class 11 Physics Class 12 Maths Class 11 Chemistry
NEET Foundation Class 12 Physics NEET Physics

Example 3 A die is tossed once. If the random variable X is defined as

\(X=\left\{\begin{array}{l}
1, \text { if the die results in an even number } \\
0, \text { if the die results in an odd number }
\end{array}\right.\)

then find the mean and variance of X.

Solution

In tossing a die once, the sample space is given by

S = {1,2,3,4,5,6}.

∴ P(getting an even number) = \(\frac{3}{6}\) = \(\frac{1}{2}\),

P(getting an odd number) = \(\frac{3}{6}\) = \(\frac{1}{2}\).

As given, X takes the value 0 or 1.

P(X=0) = P(getting an odd number) = \(\frac{1}{2}\).

P(X=1) = P(getting an even number) = \(\frac{1}{2}\).

Thus, the probability distribution of X is given by

Class 12 Maths Probability Distribution Example 3

∴ mean, μ = \(\Sigma x_i p_i=\left(0 \times \frac{1}{2}\right)+\left(1 \times \frac{1}{2}\right)=\frac{1}{2} .\)

Variance, σ2 = \(\Sigma x_i^2 p_i-\mu^2\)

= \(\left(0 \times \frac{1}{2}\right)+\left(1 \times \frac{1}{2}\right)-\left(\frac{1}{2}\right)^2=\left(\frac{1}{2}-\frac{1}{4}\right)=\frac{1}{4}\)

Example 4 Find the mean, variance and standard deviation of the number of sixes in two tosses of a die.

Solution

In a single toss, we have

probability of getting a six = \(\frac{1}{6}\), and

probability of getting a non-six = \(\left(1-\frac{1}{6}\right)=\frac{5}{6}\)

Let X denote the number of sixes in two tosses.

Then, clearly X can assume the value 0, 1, or 2.

P(X=0) = P[(non-six in the 1st draw) and (non-six in the 2nd draw)]

= P(non-six in the 1st draw) x P(non-six in the 2nd draw)

= \(\left(\frac{5}{6} \times \frac{5}{6}\right)=\frac{25}{36} .\)

P(X=1) = P[(six in the 1st draw and non-six in the 2nd draw) or (non-six in the 1st draw and six in the 2nd draw)

= P(six in the 1st draw and non-six in the 2nd draw) + P(non-six in the 1st draw and six in the 2nd draw)

= \(\left(\frac{1}{6} \times \frac{5}{6}\right)+\left(\frac{5}{6} \times \frac{1}{6}\right)=\left(\frac{5}{36}+\frac{5}{36}\right)=\frac{10}{36}=\frac{5}{18} .\)

P(X=2) = P[six in the 1st draw and six in the 2nd draw]

= P(six in the 1st draw) x P(six in the 2nd draw)

= \(\left(\frac{1}{6} \times \frac{1}{6}\right)=\frac{1}{36} \text {. }\)

Hence, the probability distribution is given by

Class 12 Maths Probability Distribution Example 4

∴ mean, μ = \(\Sigma x_i p_i=\left(0 \times \frac{25}{36}\right)+\left(1 \times \frac{5}{18}\right)+\left(2 \times \frac{1}{36}\right)=\frac{6}{18}=\frac{1}{3}\)

Variance, σ2 = \(\Sigma x_i^2 p_i-\mu^2\)

= \(\left[\left(0 \times \frac{25}{36}\right)+\left(1 \times \frac{5}{18}\right)+\left(4 \times \frac{1}{36}\right)-\frac{1}{9}\right]=\frac{5}{18} .\)

Standard deviation, σ = \(\sqrt{\frac{5}{18}}=\frac{1}{3} \cdot \sqrt{\frac{5}{2}}\)

Step-by-Step Solutions to Probability Distribution Problems

Example 5 Two cards are drawn successively with replacement from a well-shuffled pack of 52 cards. Find the mean and variance of the number of kings.

Solution

Given

Two cards are drawn successively with replacement from a well-shuffled pack of 52 cards.

Let X be the random variable. Then,

X = number of kings obtained in two draws.

Clearly, X can assume the value 0, 1 or 2.

P(drawing a king) = \(\frac{4}{52}\) = \(\frac{1}{13}\).

P(not drawing a king) = \(\left(1-\frac{1}{13}\right)=\frac{12}{13}\)

P(X=0) = P(not a king in the 1st draw and not a king in the 2nd draw)

= \(\left(\frac{12}{13} \times \frac{12}{13}\right)=\frac{144}{169}\)

P(X=1) = P(a king in the 1st draw and not a king in the 2nd draw) or P(not a king in the 1st draw and a king in the 2nd draw)

= \(\left(\frac{1}{13} \times \frac{12}{13}+\frac{12}{13} \times \frac{1}{13}\right)=\frac{24}{169} .\)

P(X=2) = P(a king in the 1st draw and a king in the 2nd draw)

= \(\left(\frac{1}{13} \times \frac{1}{13}\right)=\frac{1}{169}\)

Hence, the probability distribution is given by

Class 12 Maths Probability Distribution Example 5

∴ mean, μ = \(\Sigma x_i p_i=\left(0 \times \frac{144}{169}\right)+\left(1 \times \frac{24}{169}\right)+\left(2 \times \frac{1}{169}\right)=\frac{2}{13} \text {. }\)

Variance, σ2 = \(\Sigma x_i^2 p_i-\mu^2\)

= \(\left[\left(0 \times \frac{144}{169}\right)+\left(1 \times \frac{24}{169}\right)+\left(4 \times \frac{1}{169}\right)-\frac{4}{169}\right]=\frac{24}{169} .\)

Example 6 Two cards are drawn simultaneously (or successively with out replacement) from a well-shuffled pack of 52 cards. Find the mean and variance of the number of aces.

Solution

Given

Two cards are drawn simultaneously (or successively with out replacement) from a well-shuffled pack of 52 cards.

Let X be the random variable.

Then, X denotes the number of aces in a draw of 2 cards.

∴ X can assume the value 0, 1 or 2.

Number of ways of drawing 2 cards out of 52 = C(52,2).

P(X=0) = P(both non-aces, i.e., 2 non-aces out of 48)

= \(\frac{{ }^{48} C_2}{{ }^{52} C_2}=\left(\frac{48 \times 47}{2 \times 1} \times \frac{2}{52 \times 51}\right)=\frac{188}{221}\)

P(X=1) = P[(one ace out of 4) and (one non-ace out of 48)]

= \(\frac{{ }^4 C_1 \times{ }^{48} C_1}{{ }^{52} C_2}=\left(\frac{4 \times 48}{52 \times 51} \times 2\right)=\frac{32}{221}\)

P(X=2) = P(both aces) = \(\frac{{ }^4 C_2}{{ }^{52} C_2}=\left(\frac{4 \times 3}{2 \times 1} \times \frac{2 \times 1}{52 \times 51}\right)=\frac{1}{221}\)

Thus, we have the following probability distribution:

Class 12 Maths Probability Distribution Example 6

∴ mean, μ = \(\Sigma x_i p_i=\left(0 \times \frac{188}{221}\right)+\left(1 \times \frac{32}{221}\right)+\left(2 \times \frac{1}{221}\right)=\frac{2}{13} \text {. }\)

Variance, σ2 = \(\Sigma x_i^2 p_i-\mu^2\)

= \(\left(0 \times \frac{188}{221}\right)+\left(1 \times \frac{32}{221}\right)+\left(4 \times \frac{1}{221}\right)-\frac{4}{169}\)

= \(\left(\frac{36}{221}-\frac{4}{169}\right)=\frac{400}{2873}\)

Example 7 Three defective bulbs are mixed with 7 good ones. Let X be the number of defective bulbs when 3 bulbs are drawn at random. Find the mean and variance of X.

Solution

Given

Three defective bulbs are mixed with 7 good ones. Let X be the number of defective bulbs when 3 bulbs are drawn at random.

Let X denote the random variable showing the number of defective bulbs.

Then, X can take the value 0, 1, 2 or 3.

∴ P(X=0) = P(none of the bulbs is defective)

= P(all the 3 bulbs are good ones)

= \(\frac{{ }^7 C_3}{{ }^{10} C_3}=\left(\frac{7 \times 6 \times 5}{3 \times 2 \times 1} \times \frac{3 \times 2 \times 1}{10 \times 9 \times 8}\right)=\frac{7}{24} .\)

P(X=1) = P(1 defective and 2 non-defective bulbs)

= \(\frac{{ }^3 C_1 \times{ }^7 C_2}{{ }^{10} C_3}=\left(3 \times \frac{7 \times 6}{2 \times 1} \times \frac{3 \times 2 \times 1}{10 \times 9 \times 8}\right)=\frac{21}{40} .\)

P(X=2) = P(2 defective and 1 good one)

= \(\frac{{ }^3 C_2 \times{ }^7 C_1}{{ }^{10} C_3}=\left(\frac{3 \times 2}{2 \times 1} \times 7 \times \frac{3 \times 2 \times 1}{10 \times 9 \times 8}\right)=\frac{7}{40}\)

P(X=3) = P(3 defective bulbs)

= \(\frac{{ }^3 C_3}{{ }^{10} C_3}=\left(1 \times \frac{3 \times 2 \times 1}{10 \times 9 \times 8}\right)=\frac{1}{120}\)

Thus, the probability distribution is given by

Class 12 Maths Probability Distribution Example 7

∴ mean, μ = \(\Sigma x_i p_i=\left(0 \times \frac{7}{24}\right)+\left(1 \times \frac{21}{40}\right)+\left(2 \times \frac{7}{40}\right)+\left(3 \times \frac{1}{120}\right)=\frac{9}{10}\)

Variance, σ2 = \(\Sigma x_i^2 p_i-\mu^2\)

= \(\left(0 \times \frac{7}{24}\right)+\left(1 \times \frac{21}{40}\right)+\left(4 \times \frac{7}{40}\right)+\left(9 \times \frac{1}{120}\right)-\frac{81}{100}\)

= \(\left(\frac{13}{10}-\frac{81}{100}\right)=\frac{49}{100}\)

Example 8 An urn contains 4 white and 3 red balls. Let X be the number of red balls in a random draw of 3 balls. Find the mean and variance of X.

Solution

Given

An urn contains 4 white and 3 red balls. Let X be the number of red balls in a random draw of 3 balls.

When 3 balls are drawn at random, there may be no red ball, 1 red ball, 2 red balls or 3 red balls.

Let X denote the random variable showing the number of red balls in a draw of 3 balls.

Then X can take the value 0, 1, 2 or 3.

P(X=0) = P(getting no red ball)

= P(getting 3 white balls)

= \(\frac{{ }^4 C_3}{{ }^7 C_3}=\left(\frac{4 \times 3 \times 2}{3 \times 2 \times 1} \times \frac{3 \times 2 \times 1}{7 \times 6 \times 5}\right)=\frac{4}{35} .\)

P(X=1) = P(getting 1 red and 2 white balls)

= \(\frac{{ }^3 C_1 \times{ }^4 C_2}{{ }^7 C_3}=\left(\frac{3 \times 4 \times 3}{2} \times \frac{3 \times 2 \times 1}{7 \times 6 \times 5}\right)=\frac{18}{35}\)

P(X=2) = P(getting 1 red and 1 white ball)

= \(\frac{{ }^3 C_2 \times{ }^4 C_1}{{ }^7 C_3}=\left(\frac{3 \times 2}{2 \times 1} \times 4 \times \frac{3 \times 2 \times 1}{7 \times 6 \times 5}\right)=\frac{12}{35} .\)

P(X=3) = P(getting 3 red balls) = \(\frac{{ }^3 C_3}{{ }^7 C_3}=\frac{1 \times 3 \times 2 \times 1}{7 \times 6 \times 5}=\frac{1}{35} .\)

Thus, the probability distribution of X is given below.

Class 12 Maths Probability Distribution Example 8

∴ mean, μ = \(\Sigma x_i p_i=\left(0 \times \frac{4}{35}\right)+\left(1 \times \frac{18}{35}\right)+\left(2 \times \frac{12}{35}\right)+\left(3 \times \frac{1}{35}\right)=\frac{9}{7}\)

Variance, σ2 = \(\Sigma x_i^2 p_i-\mu^2\)

= \(\left[\left(0 \times \frac{4}{35}\right)+\left(1 \times \frac{18}{35}\right)+\left(4 \times \frac{12}{35}\right)+\left(9 \times \frac{1}{35}\right)-\frac{81}{49}\right]\)

= \(\left(\frac{15}{7}-\frac{81}{49}\right)=\frac{24}{49} \text {. }\)

Example 9 In a game, 3 coins are tossed. A person in paid Rs 5 if he gets all heads or all tails; and he is supposed to pay Rs 3 if he gets one head or two heads. What can he expect to win on an average per game?

Solution

Given

In a game, 3 coins are tossed. A person in paid Rs 5 if he gets all heads or all tails; and he is supposed to pay Rs 3 if he gets one head or two heads.

In tossing 3 coins, the sample space is given by

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}.

∴ n(s) = 8.

P(getting all heads or all tails) = \(\frac{2}{8}\) = \(\frac{1}{4}\)

P(getting one head or 2 heads) = \(\frac{6}{8}\) = \(\frac{3}{4}\).

Let X = number of rupees the person gets.

Then, possible values of X are 5 an d-3.

P(X=5) = \(\frac{1}{4}\) and P(X=-3) = \(\frac{3}{4}\)

Thus, we have

Class 12 Maths Probability Distribution Example 9

∴ the required expectations = mean, μ = Σxipi

= \(\left(5 \times \frac{1}{4}\right)+(-3) \times \frac{3}{4}=-1\), i.e., he loses Re 1 per toss.

Chapter 4 Binomial Distribution

Understanding Probability Distributions in Class 12

Success And Failure In An Experiment There are certain kinds of experiments which have two possible outcomes. One of these two outcomes is called a success, while the other is called a failure.

For example, in tossing a coin, we get either a head or a tail. If getting head is taken as a success then getting a tail is a failure.

Bernoulli’s Theorem Let there be n independent trails in an experiment and let the random variable X denote the number of successes in these trails. Let the probability of getting a success in a single trail be p and that of getting a failure be q so that p + q = 1. Then,

P(X=r) = nCr.pr.q(n-r).

Proof

Let us denote a success by S and a failure by F.

Number of ways of getting r successes in n trails nCr.

∴ \(P(X=r)={ }^n C_r \cdot P\{\underbrace{S S S \ldots S}_{r \text { times }} \text { and } \underbrace{F F F \ldots F}_{(n-r) \text { times }}\}\)

= nCr.{P(S).P(S)…r times} x {P(F).P(F)…(n-r)times}

= nCr.(p.p.p…r times) x [q.q.q…(n-r) times]

= nCr.pr.q(n-r).

Hence, P(X=r) = nCr . pr . q(n-r).

Remark

We have

P(X=0) = qn; P(X=1) = npq(n-1); P(X=2) = nC2.p2.q(n-2), etc.

The probability distribution of X may be expressed as

\(\left(\begin{array}{lllll}
X: & 0 & 1 & \ldots & r \\
P(X): & q^n & n p q^{(n-1)} & \ldots & C_r \cdot p^r \cdot q^{(n-r)}
\end{array}\right)\)

This distribution is called a binomial distribution.

Conditions for the Applicability of a Binomial Distribution

(1) The experiment is performed for a finite and fixed number of trials.

(2) Each trial must give either a success or a failure.

(3) The probability of a success in each trial is the same.

Solved Examples

Example 1 A coin is tossed 4 times. If X is the number of heads observed, find the probability distribution of X.

Solution

Given

A coin is tossed 4 times. If X is the number of heads observed,

When a coin is tossed, we have S = {H,T}.

P(getting a head) = \(\frac{1}{2}\), and

P(not getting a head) = \(\left(1-\frac{1}{2}\right)=\frac{1}{2}\)

Let x be the random variable denoting the number of heads.

In 4 trials, we may get 0 or 1 or 2 or 3 or 4 heads.

So, X may assume the values 0, 1, 2, 3, 4.

P(X=0) = \({ }^4 C_0 \cdot\left(\frac{1}{2}\right)^0 \cdot\left(\frac{1}{2}\right)^{(4-0)}=\frac{1}{16}\)

P(X=1) = \({ }^4 C_1:\left(\frac{1}{2}\right)^1 \cdot\left(\frac{1}{2}\right)^{(4-1)}=\frac{1}{4}\)

P(X=2) = \({ }^4 C_2 \cdot\left(\frac{1}{2}\right)^2 \cdot\left(\frac{1}{2}\right)^{(4-2)}=\frac{3}{8} .\)

P(X=3) = \({ }^4 C_3 \cdot\left(\frac{1}{2}\right)^3 \cdot\left(\frac{1}{2}\right)^{(4-3)}=\frac{1}{4} .\)

P(X=4) = \({ }^4 C_4 \cdot\left(\frac{1}{2}\right)^4 \cdot\left(\frac{1}{2}\right)^{(4-4)}=\frac{1}{16}\)

Hence, the required probability distribution is given by

\(\left(\begin{array}{lccccc}
X: & 0 & 1 & 2 & 3 & 4 \\
P(X): & \frac{1}{16} & \frac{1}{4} & \frac{3}{8} & \frac{1}{4} & \frac{1}{16}
\end{array}\right) .\)

Examples of Binomial and Poisson Distributions

Example 2 Find the probability distribution of the number of sixes in three tosses of a die.

Solution

When a die is tossed, we have S = {1,2,3,4,5,6}.

∴ P(getting a six) = \frac{1}{6} and P(not getting a six) = \(\left(1-\frac{1}{6}\right)=\frac{5}{6}\)

Let X be the random variable denoting the number of sixes.

In 3 trials, the number of sixes may be 0 or 1 or 2 or 3.

So, X may assume the values 0, 1, 2, 3.

P(X=0) = \({ }^3 C_0 \cdot\left(\frac{1}{6}\right)^0 \cdot\left(\frac{5}{6}\right)^{(3-0)}=\frac{125}{216}\)

P(X=1) = \({ }^3 C_1 \cdot\left(\frac{1}{6}\right)^1 \cdot\left(\frac{5}{6}\right)^{(3-1)}=\frac{25}{72}\)

P(X=2) = \({ }^3 C_2 \cdot\left(\frac{1}{6}\right)^2 \cdot\left(\frac{5}{6}\right)^{(3-2)}=\frac{5}{72}\)

P(X=3) = \({ }^3 C_3 \cdot\left(\frac{1}{6}\right)^3 \cdot\left(\frac{5}{6}\right)^{(3-3)}=\frac{1}{216}\)

The required probability distribution of X is given below:

\(\left(\begin{array}{lcccc}
X: & 0 & 1 & 2 & 3 \\
P(X): & \frac{125}{216} & \frac{25}{72} & \frac{5}{72} & \frac{1}{216}
\end{array}\right)\)

Example 3 Find the probability distribution of the number of doublets in four throws of a pair of dice.

Solution

When a pair of dice is thrown, there are 36 possible outcomes.

∴ n(S) = 36.

All possible doublets are (1,1), (2,2), (3,3), (4,4), (5,5), (6,6).

P(getting a doublet) = \(\frac{6}{36}\) = \(\frac{1}{6}\), and

P(not getting a doublet) = \(\left(1-\frac{1}{6}\right)=\frac{5}{6}\)

Let X denote the number of doublets.

In 4 throws, we can have 0 or 1 or 2 or 3 or 4 doublets.

P(X=0) = \({ }^4 C_0 \cdot\left(\frac{1}{6}\right)^0 \cdot\left(\frac{5}{6}\right)^4=\frac{625}{1296}\)

P(X=1) = \({ }^4 C_1 \cdot\left(\frac{1}{6}\right)^1 \cdot\left(\frac{5}{6}\right)^3=\frac{125}{324}\)

P(X=2) = \({ }^4 C_2 \cdot\left(\frac{1}{6}\right)^2 \cdot\left(\frac{5}{6}\right)^2=\frac{25}{216}\)

P(X=3) = \({ }^4 C_3 \cdot\left(\frac{1}{6}\right)^3 \cdot\left(\frac{5}{6}\right)^1=\frac{5}{324}\)

P(X=4) = \({ }^4 C_4 \cdot\left(\frac{1}{6}\right)^4 \cdot\left(\frac{5}{6}\right)^0=\frac{1}{1296}\)

The required probability distribution is given below:

\(\left(\begin{array}{lccccc}
X: & 0 & 1 & 2 & 3 & 4 \\
P(X): & \frac{625}{1296} & \frac{125}{324} & \frac{25}{216} & \frac{5}{324} & \frac{1}{1296}
\end{array}\right)\)

Example 4 An unbiased coin is tossed 6 times. Find, using binomial distribution, the probability of getting at least 5 heads.

Solution

Given

An unbiased coin is tossed 6 times.

In a single throw of a coin, we have S = {H,T}.

P(getting a head) = \(\frac{1}{2}\), and P(not getting a head) = \(\left(1-\frac{1}{2}\right)=\frac{1}{2}\)

∴ p = \(\frac{1}{2}\) and q = \(\frac{1}{2}\).

P(X=r) = nCr.pr.q(n-r) = \({ }^6 C_r \cdot\left(\frac{1}{2}\right)^r \cdot\left(\frac{1}{2}\right)^{(6-r)}={ }^6 C_r \cdot\left(\frac{1}{2}\right)^6\)

∴ P(getting at least 5 heads)

= P(X ≥ 5)

= P(X=5) + P(X=6)

= \({ }^6 C_5 \cdot\left(\frac{1}{2}\right)^6+{ }^6 C_6 \cdot\left(\frac{1}{2}\right)^6=\left(\frac{3}{32}+\frac{1}{64}\right)=\frac{7}{64} .\)

Hence, the required probability is \(\frac{7}{64}\).

Types of Probability Distributions Explained

Example 5 An unbiased coin is tossed 8 times. Find, by using binomial distribution, the probability of getting at least 3 heads.

Solution

Given

An unbiased coin is tossed 8 times.

In a single throw of a coin, we have S = (H,T}.

P(getting a head) = \(\frac{1}{2}\), and P(not getting a head) = \(\left(1-\frac{1}{2}\right)=\frac{1}{2} \text {. }\)

∴ p = \(\frac{1}{2}\) and q = \(\frac{1}{2}\).

P(X=r) = \({ }^n C_r \cdot p^r \cdot q^{(n-r)}={ }^8 C_r \cdot\left(\frac{1}{2}\right)^r \cdot\left(\frac{1}{2}\right)^{(8-r)}={ }^8 C_r\left(\frac{1}{2}\right)^8\)

∴ P(getting at least 3 heads)

= P(X ≥ 3)

= 1 – [P(X=0) + P(X=1) + P(X=2)]

= \(1-\left[{ }^8 C_0 \cdot\left(\frac{1}{2}\right)^8+{ }^8 C_1 \cdot\left(\frac{1}{2}\right)^8+{ }^8 C_2 \cdot\left(\frac{1}{2}\right)^8\right]\)

= \(1-\frac{1}{256} \cdot(1+8+28)=\left(1-\frac{37}{256}\right)=\frac{219}{256} .\)

Hence, the required probability is \(\frac{219}{256}\).

Example 6 Six coins are tossed simultaneously. Find the probability of getting

(1) 3 heads (2) no head (3) at least one head (4) not more than 3 heads.

Solution

The experiment may be taken as throwing a single coin 6 times.

In a single throw of a coin, we have S = {H,T}.

P(getting a head) = \(\frac{1}{2}\), and P(not getting a head) = \(\left(1-\frac{1}{2}\right)=\frac{1}{2}\)

Let X be the random variable showing the number of heads.

P(X=r) = \({ }^n C_r \cdot p^r \cdot q^{(n-r)}={ }^6 C_r \cdot\left(\frac{1}{2}\right)^r \cdot\left(\frac{1}{2}\right)^{6-r}={ }^6 C_r \cdot\left(\frac{1}{2}\right)^6\)

(1) P(getting 3 heads) = P(X=3) = \({ }^6 C_3 \cdot\left(\frac{1}{2}\right)^6=\frac{5}{16} \text {. }\)

(2) P(getting no head) = P(X=0) = \({ }^6 C_0 \cdot\left(\frac{1}{2}\right)^6=\frac{1}{64} .\)

(3) P(getting at least 1 head)

= \(1-P(X=0)=1-\left[{ }^6 C_0 \cdot\left(\frac{1}{2}\right)^6\right]\)

= \(\left(1-\frac{1}{64}\right)=\frac{63}{64}\)

(4) P(getting not more thatn 3 heads)

= P(no head or 1 head or 2 heads or 3 heads)

= P(X=0) + P(X-1) + P(X=2) + P(X=3)

= \({ }^6 C_0 \cdot\left(\frac{1}{2}\right)^6+{ }^6 C_1 \cdot\left(\frac{1}{2}\right)^6+{ }^6 C_2 \cdot\left(\frac{1}{2}\right)^6+{ }^6 C_3 \cdot\left(\frac{1}{2}\right)^6\)

= \(\left(\frac{1}{2}\right)^6 \cdot(1+6+15+20)=\left(\frac{1}{64} \times 42\right)=\frac{21}{32} \text {. }\)

Example 7 A die is thrown 5 times. If getting an odd number is a success, find the probability of getting at least 4 successes.

Solution

Given

A die is thrown 5 times. If getting an odd number is a success

When a die is thrown, we have S = {1,2,3,4,5,6}.

∴ P(getting an odd number) = \(\frac{3}{6}\) = \(\frac{1}{2}\).

∴ P(a success) = \(\frac{1}{2}\), and P(not a success) = \(\left(1-\frac{1}{2}\right)=\frac{1}{2}\)

Let X be the random variable showing the number of successes.

P(X=r) = \({ }^n C_r \cdot p^r \cdot q^{(n-r)}={ }^5 C_r \cdot\left(\frac{1}{2}\right)^r \cdot\left(\frac{1}{2}\right)^{(5-r)}={ }^5 C_r \cdot\left(\frac{1}{2}\right)^5 \cdot\)

P(at least 4 successes) = P(4 successes or 5 successes)

= P(X=4) + P(X=5)

= \({ }^5 C_4 \cdot\left(\frac{1}{2}\right)^5+{ }^5 C_5 \cdot\left(\frac{1}{2}\right)^5=\left(\frac{5}{32}+\frac{1}{32}\right)=\frac{6}{32}=\frac{3}{16} .\)

The probability of getting at least 4 successes = \({ }^5 C_4 \cdot\left(\frac{1}{2}\right)^5+{ }^5 C_5 \cdot\left(\frac{1}{2}\right)^5=\left(\frac{5}{32}+\frac{1}{32}\right)=\frac{6}{32}=\frac{3}{16} .\)

Example 8 In 4 throws with a pair of dice, what is the probability of throwing doublets at least twice?

Solution

Given

In 4 throws with a pair of dice

In a single throw of a pair of dice, the number of all possible outcomes is 36.

All doublets are (1,1), (2,2), (3,3), (4,4), (5,5), (6,6).

P(getting a doublet) = \(\frac{6}{36}\) = \(\frac{1}{6}\), and

P(not getting a doublet) = \(\left(1-\frac{1}{6}\right)=\frac{5}{6}\)

Let X be the random variable denoting the number of doublets.

Then, P(X=r) = \({ }^n C_r \cdot p^r \cdot q^{(n-r)}={ }^4 C_r \cdot\left(\frac{1}{6}\right)^r \cdot\left(\frac{5}{6}\right)^{(4-r)} .\)

P(at least 2 doublets)

= P(X=2) + P(X=3) + P(X=4)

= \({ }^4 C_2 \cdot\left(\frac{1}{6}\right)^2 \cdot\left(\frac{5}{6}\right)^{(4-2)}+{ }^4 C_3 \cdot\left(\frac{1}{6}\right)^3 \cdot\left(\frac{5}{6}\right)^{(4-3)}+{ }^4 C_4 \cdot\left(\frac{1}{6}\right)^4 \cdot\left(\frac{5}{6}\right)^{(4-4)}\)

= \(6 \cdot\left(\frac{1}{6}\right)^2 \cdot\left(\frac{5}{6}\right)^2+4 \cdot\left(\frac{1}{6}\right)^3 \cdot\left(\frac{5}{6}\right)^1+\left(\frac{1}{6}\right)^4 \cdot\left(\frac{5}{6}\right)^0\)

= \(\left(\frac{25}{216}+\frac{5}{324}+\frac{1}{1296}\right)=\frac{171}{1296}\)

The probability of throwing doublets at least twice = \(\left(\frac{25}{216}+\frac{5}{324}+\frac{1}{1296}\right)=\frac{171}{1296}\)

Real-Life Applications of Probability Distribution Concepts

Example 9 The bulbs produced in a factory are supposed to contain 5% defective bulbs. What is the probability that a sample of 10 bulbs will contain not more than 2 defective bulbs?

Solution

Given 

The bulbs produced in a factory are supposed to contain 5% defective bulbs.

P(getting a defective bulb) = \(\frac{5}{100}\) = \(\frac{1}{20}\), and

P(getting a non-defective bulb) = \(\left(1-\frac{1}{20}\right)=\frac{19}{20}\)

Then, p = \(\frac{1}{20}\) and q = \(\frac{19}{20}\).

Let X denote the number of dective bulbs.

P(X=r) = \({ }^n C_r \cdot p^r \cdot q^{(n-r)}={ }^{10} C_r \cdot\left(\frac{1}{20}\right)^r \cdot\left(\frac{19}{20}\right)^{(10-r)}\)

P(getting not more than 2 defective bulbs)

= P(X=0 or X=1 or X=2)

= P(X=0) + P(X=1) + P(X=2)

= \({ }^{10} C_0 \cdot\left(\frac{1}{20}\right)^0 \cdot\left(\frac{19}{20}\right)^{10}+{ }^{10} C_1 \cdot\left(\frac{1}{20}\right)^1 \cdot\left(\frac{19}{20}\right)^9+{ }^{10} C_2 \cdot\left(\frac{1}{20}\right)^2 \cdot\left(\frac{19}{20}\right)^8\)

= \(\left(\frac{19}{20}\right)^{10}+\frac{1}{2} \cdot\left(\frac{19}{20}\right)^9+\frac{9}{80} \cdot\left(\frac{19}{20}\right)^8=\left(\frac{19}{20}\right)^8 \cdot\left(\frac{149}{100}\right) .\)

Let A = \(\left(\frac{19}{20}\right)^8 \cdot\left(\frac{149}{100}\right)\). Then,

log A = 8(log19 – log20) + log159 – log 100

= 8(1.2788 – 1.3010) + 2.1732 – 2

= -0.0044 = 1.9956.

∴ A = antilog (1.9956) = 0.99.

Hence, the required probability = \(\frac{99}{100}\).

Example 10 If on an average, out of 10 ships, one gets drowned then what is the probability that out of 5 ships at least 4 reach the shore safely?

Solution

Probability of a ship to reach the shore safely = \(\frac{9}{10}\).

Probability that a ship gets drowned = \(\left(1-\frac{9}{10}\right)=\frac{1}{10} \text {. }\)

Let X be the random variable showing the number of ships reaching the shore safely.

∴ P(atleast 4 reaching safely)

= P(4 reaching safely or 5 reaching safely)

= P(4 reaching safely) + P(5 reaching safely)

= P(X=4) + P(X=5)

= \({ }^5 C_4 \cdot\left(\frac{9}{10}\right)^4 \cdot\left(\frac{1}{10}\right)^{(5-4)}+{ }^5 C_5 \cdot\left(\frac{9}{10}\right)^5 \cdot\left(\frac{1}{10}\right)^0\)

= \(\frac{1}{2} \cdot\left(\frac{9}{10}\right)^4+\left(\frac{9}{10}\right)^5=\left(\frac{9}{10}\right)^4\left(\frac{1}{2}+\frac{9}{10}\right)=\frac{7}{5} \cdot\left(\frac{9}{10}\right)^4\)

Let A = \(\frac{7}{5} \cdot\left(\frac{9}{10}\right)^4=\frac{7 \times(9)^4}{5 \times(10)^4}\)

⇒ log A = log 7 + 4 x log 9 – log 5 – 4 x log 10

= (0.8451 + 4 x 0.9542 – 0.6990 – 4)

= \(-0.0371=\overline{1} .9629\)

⇒ A = antilog \(\overline{1} .9629\) = 0.9181.

Hence, the required probability is 0.9181.

Mean and Variance of a Binomial Distribution

Mean If a random variable X assumes the values x1, x2, …, xn with probabilites p1, p2, …, pn respectively then the mean of X is defined by

\(\mu=\sum_{i=1}^n x_i p_i .\)

To Find the Mean of a Binomial Distribution

For the binomial distribution

P(X=r) = P(r) = nCr . pr . q(n-r), where r = 0,1,2,…,n the mean, μ, is given by

μ = \(\sum_{r=0}^n r \cdot p(r)=\sum_{r=0}^n r \cdot{ }^n C_r \cdot p^r \cdot q^{(n-r)}\)

= nC1 . p . qn-1 + 2 . nC2 . p2 . q(n-2) + … + n . nCn . pnq0

= 1 . np . qn-1 + n(n-1) . p2 .q(n-2)+ … + npn

= np . [(n-1)C0 . p0 . q(n-1) + (n-1)C1 . p1 . q(n-2) + … + (n-1)C(n-1) . pn-1 . q0]

= (np) . (q+p)n-1 = (np) [∵ q + p = 1].

Hence, the mean is given by μ = np.

The variance = σ2 is given by

σ2 = \(\sum_{r=0}^n r^2 \cdot p(r)-(\text { mean })^2\)

= \(\sum_{r=0}^n r^2 \cdot{ }^n C_r \cdot p^r q^{(n-r)}-(n p)^2\) [∵ mean = np]

= \(\sum_{r=0}^n\{r+r(r-1)\} \cdot{ }^n C_r p^r q^{(n-r)}-(n p)^2\)

= \(\sum_{r=0}^n r \cdot{ }^n C_r p^r q^{(n-r)}+\sum_{r=0}^n r(r-1) \cdot{ }^n C_r \cdot p^r \cdot q^{(n-r)}-(n p)^2\)

= \(n p+\sum_{r=2}^n r(r-1) \cdot \frac{n(n-1)}{r(r-1)} \cdot{ }^{(n-2)} C_{(r-2)} \cdot p^2 \cdot p^{(r-2)} \cdot q^{(n-r)}-(n p)^2\)

[∵ \(\sum_{r=0}^n r \cdot{ }^n C_r \cdot p^r \cdot q^{(n-r)}\) = mean = np]

= \(n p+n(n-1) \cdot p^2 \cdot\left(\sum_{r=2}^n{ }^{(n-2)} C_{(r-2)} \cdot p^{(r-2)} \cdot q^{(n-r)}\right)-n^2 p^2\)

= np + n(n-1)p2(q+p)(n-2) – n2p2

= np + n(n-1)p2(q+p)(n-2) – n2p2

= np + n(n-1)p2 – n2p2 [∵ q + p = 1]

= np – np2 = np(1-p) = npq.

Hence, variance = npq.

∴ standard deviation = \(\sqrt{n p q}\).

Common Questions on Probability Distributions and Their Solutions

Recurrence Relation for a Binomial Distribution

We have

P(r) = nCr . pr . q(n-r) and P(r+1) = nC(r+1) . p(r+1) . qn-r-1.

∴ \(\frac{P(r+1)}{P(r)}=\frac{{ }^n C_{(r+1)} \cdot p^{(r+1)} \cdot q^{n-r-1}}{{ }^n C_r \cdot p^r \cdot q^{(n-r)}}\)

= \(\frac{(n !)}{(r+1) ! \cdot(n-r-1) !} \cdot \frac{(r) ! \cdot(n-r) !}{(n) !} \cdot \frac{p}{q}=\frac{(n-r)}{(r+1)} \cdot \frac{p}{q}\)

∴ \(P(r+1)=\frac{(n-r)}{(r+1)} \cdot \frac{p}{q} \cdot P(r)\)

Example 11 If X follows a binomial distribution with mean 3 and variance (3/2), find (1) P(X ≥ 1) (2) (X ≤ 5).

Solution

We know that mean = np and variance = npq.

∴ np = 3 and npq = \(\frac{3}{2}\) ⇒ 3q = \(\frac{3}{2}\) ⇒ q = \(\frac{1}{2}\).

∴ p = (1-q) = \(\left(1-\frac{1}{2}\right)=\frac{1}{2}\)

Now, np = 3 and p = \(\frac{1}{2}\) ⇒ n x \(\frac{1}{2}\) = 3 ⇒ n = 6.

So, the binomial distribution is given by

P(X=r) = \({ }^n C_r \cdot p^r \cdot q^{(n-r)}={ }^6 C_r \cdot\left(\frac{1}{2}\right)^r \cdot\left(\frac{1}{2}\right)^{(6-r)}={ }^6 C_r\left(\frac{1}{2}\right)^6 \cdot\)

(1) P(X ≥ 1) = 1 – P(X = 0)

= \(1-{ }^6 C_0 \cdot\left(\frac{1}{2}\right)^6=\left(1-\frac{1}{64}\right)=\frac{63}{64}\).

(2) P(X ≤ 5) = 1 – P(X = 6)

= \(1-{ }^6 C_6\left(\frac{1}{2}\right)^6=\left(1-\frac{1}{64}\right)=\frac{63}{64}\)

Example 12 If X follows a binomial distribution with mean 4 and variance 2, find P(X ≥ 5).

Solution

We know that mean = np and variance = npq.

∴ np = 4 and npq = 2.

Now, np = 4 and npq = 2 ⇒ 4q = 2 ⇒ q = \(\frac{1}{2}\).

∴ p = \((1-q)=\left(1-\frac{1}{2}\right)=\frac{1}{2}\)

Now, np = 4 and p = \(\frac{1}{2}\) ⇒ \(\frac{1}{2}n\) = 4 ⇒ n = 8.

So, the binomial distribution is given by

P(X=r) = \({ }^n C_r \cdot p^r \cdot q^{(n-r)}={ }^8 C_r \cdot\left(\frac{1}{2}\right)^r \cdot\left(\frac{1}{2}\right)^{(8-r)}={ }^8 C_r \cdot\left(\frac{1}{2}\right)^8\)

∴ P(X ≥ 5) = P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8)

= \({ }^8 C_5 \cdot\left(\frac{1}{2}\right)^8+{ }^8 C_6 \cdot\left(\frac{1}{2}\right)^8+{ }^8 C_7 \cdot\left(\frac{1}{2}\right)^8+{ }^8 C_8 \cdot\left(\frac{1}{2}\right)^8\)

= \(\left[{ }^8 C_3+{ }^8 C_2+{ }^8 C_1+1\right]\left(\frac{1}{2}\right)^8\)

= \((56+28+8+1) \cdot \frac{1}{256}=\frac{93}{256} .\)

Example 13 Find the binomial distribution for which the mean and variance are 12 and 3 respectively.

Solution

Let X be a binomial variate for which mean = 12 and variance = 3.

Then, np = 12 and npq = 3 ⇔ 12 x q = 3 ⇔ q = \(\frac{1}{4}\).

∴ p = (1-q) = \(\left(1-\frac{1}{4}\right)=\frac{3}{4}\).

And, np = 12 ⇔ n = \(\frac{12}{p}\) = \(\left(12 \times \frac{4}{3}\right)=16\)

Thus, n = 16, p = \(\frac{3}{4}\) and q = \(\frac{1}{4}\).

Hence, the binomial distribution is given by

P(X=r) = \({ }^{16} C_r \cdot\left(\frac{3}{4}\right)^r \cdot\left(\frac{1}{4}\right)^{(16-r)}\), where r = 0, 1, 2, 3, …, 15.

Example 14 If the sum of the mean and variance of a binomial distribution for 5 trials is 1.8, find the distribution.

Solution

Given

If the sum of the mean and variance of a binomial distribution for 5 trials is 1.8

We know that

mean = np and variance = npq.

It is being given that n = 5 and mean + variance = 1.8.

∴ np + npq = 1.8, where n = 5

⇔ 5p + 5pq = 1.8

⇔ p + p(1-p) = 0.36 [∵ q = (1-p)]

⇔ p2 – 2p + 0.36 = 0

⇔ 100p2 – 200p + 36 = 0

⇔ 25p2 – 50p + 9 = 0

⇔ 25p2 – 45p – 5p + 9 = 0

⇔ 5p(5p-9) – (5p-9) = 0

⇔ (5p-9)(5p-1) = 0

⇔ p = \(\frac{1}{5}\) = 0.2 [∵ p cannot exceed 1].

Thus, n = 5, p = 0.2, and q = (1-p) = (1-0.2) = 0.8

Let X denote the binomial variate. Then, the required distribution is

P(X=r) = nCr. pr . q(n-r) = 5Cr . (0.2)r . (0.8)(5-r), where r = 0, 1, 2, 3, 4, 5.

Mean and Variance of Probability Distributions

Example 15 The sum and the product of the mean and variance of a binomial distribution are 24 and 128 respectively. Find the distribution.

Solution

Given

The sum and the product of the mean and variance of a binomial distribution are 24 and 128 respectively.

We have

np + npq = 24 and np x npq = 128

⇔ (np)(1+q) = 24 and n2p2 x q = 128

⇔ \(n^2 p^2=\frac{576}{(1+q)^2} and n2p2 x q = 128\)

⇔ \(\frac{576}{(1+q)^2}=\frac{128}{q} \Leftrightarrow 2\left(1+q^2+2 q\right)=9 q\)

⇔ 2q2 – 5q + 2 = 0 ⇔ (2q -1)(q – 2) = 0

⇔ q = \(\frac{1}{2}\) [∵ q ≠ 2].

∴ p = (1-q) = \(\left(1-\frac{1}{2}\right)=\frac{1}{2}\)

Now, np(1 + q) = 24 ⇔ \(n \times \frac{1}{2}\left(1+\frac{1}{2}\right)=24\) ⇔ n = 32.

Hence, the required probability distribution is given by

P(X=r) = \({ }^{32} C_r \cdot\left(\frac{1}{2}\right)^{32}\) .

Example 16 In a binomial distribution, prove that mean > variance.

Solution

Let X be a binomial variate with parameters n and p. Then, mean = np and variance = npq.

∴ (mean) – (variance) = (np – npq) = np(1-q) = np2 > 0

[∵(1-q) = p and np2 > 0 as n ∈ N]

⇒ [(mean)-(variance)] > 0

⇒ mean > variance

Hence, mean > variance.

Example 17 A die is tossed thrice. Getting an even number is considered a success. What is the variance of the binomial distribution?

Solution

Given

A die is tossed thrice. Getting an even number is considered a success.

Here, n = 3.

Let p = probability of getting an even number in a single throw

⇒ p = \(\frac{3}{6}\) = \(\frac{1}{2}\)

⇒ \(q=(1-p)=\left(1-\frac{1}{2}\right)=\frac{1}{2}\)

∴ variance = npq = \(\left(3 \times \frac{1}{2} \times \frac{1}{2}\right)=\frac{3}{4}\).

The variance of the binomial distribution = npq = \(\left(3 \times \frac{1}{2} \times \frac{1}{2}\right)=\frac{3}{4}\).

Example 18 A die is rolled 20 times. Getting a number greater than 4 is a success. Find the mean and variance of the number of successes.

Solution

Given

A die is rolled 20 times. Getting a number greater than 4 is a success.

In a single throw of a die, we have

p = probability of getting a number greater than 4 = \(\frac{2}{6}\) = \(\frac{1}{3}\).

∴ q = (1-p) = \(\left(1-\frac{1}{3}\right)=\frac{2}{3}\).

Also, n = 20 (given).

∴ mean = np = \(\left(20 \times \frac{1}{3}\right)=6.67 \text {, and }\)

variance = npq = \(\left(20 \times \frac{1}{3} \times \frac{2}{3}\right)=4.44\)

Example 19 A die is tossed 180 times. Find the expected number (μ) of times the face with the number 5 will appear. Also, find the standard deviation (σ), and variance (σ2).

Solution

Given

A die is tossed 180 times.

In a single throw of a die, S = {1,2,3,4,5,6}.

p = (probability of getting the number 5) = \(\frac{1}{6}\).

∴ q = (1-p) = \(\left(1-\frac{1}{6}\right)=\frac{5}{6}\)

Thus, n = 180, p = \(\frac{1}{6}\) and q = \(\frac{5}{6}\).

∴ μ = \(\left(180 \times \frac{1}{6}\right)=30\)

Variance = \(\sigma^2=n p q=\left(180 \times \frac{1}{6} \times \frac{5}{6}\right)=25\).

Standard deviation = σ = √25 = 5.