WBBSE Solutions For Class 8 Maths Algebra Chapter 7 Factorization By Breaking The Middle Term

Algebra Chapter 7 Factorisation By Breaking The Middle Term

Factorization By Breaking The Middle-Term Introduction

In the previous chapter, we resolved the algebraic expressions into factors by using the formulae. Here also we aim to resolve the algebraic expressions into factors by using a different method— the method of breaking the middle term. Although this method is easier than the method discussed in the previous chapter, we cannot apply this method to all algebraic expressions due to some restrictions. This method applies only to those algebraic expressions which have exactly three terms and the power of the variable of the first term is twice that of the second when arranged in descending order of the power.

Factorization of the expressions of the form x² + px + q

Any algebraic expression of the form \(x^2+p x+q\)  is called a quadratic expression since the highest power of x is 2. This type of expression can be factorized by splitting the middle coefficients. Here we should find two quantities such that their algebraic sum is p and product is q Let us consider the expression,

x + (a + b)x + ab.

It is of the form \(x^2+p x+q\), where a + b -p and ab = q.

Now, \(x^2+(a+b) x+a b\)

= \(x^2+a x+b x+a b\)

= x (x + a) + b(x + a)

= (x + a) (x + b).

So we may conclude that x2 + px + q can be resolved into two linear factors (x + a) and (x + 6), when a + b = p and ab = q.

Read And Learn More WBBSE Solutions For Class 8 Maths

Algebra Chapter 7 Factorization By Breaking The Middle Term Some Examples

Example 1

Factorize : \(x^2+7 x+12\)

Solution :

Given: \(x^2+7 x+12\)

\(x^2+7 x+12\)

= \(x^2\) + (4 + 3)x + 12

= \(x^2\) + 4x + 3x + 12

= x (x + 4) + 3(x + 4)

= (x + 4) (x + 3)

\(x^2\) + 7x + 12 = \(x^2\) + (4 + 3)x + 12

WBBSE Solutions For Class 8 Maths Algebra Chapter 7 Factorization By Breaking The Middle Term

WBBSE Class 8 Factorisation by Middle Term Notes

Example 2

Factorize : \(x^2-3 x-10\).

Solution :

Given: \(x^2-3 x-10\)

\(x^2-3 x-10\)

= \(x^2 – (5 – 2)x – 10\)

= \(x^2 – 5x + 2x – 10\)

= x(x – 5) + 2(x – 5)

= (x – 5) (x + 2)

\(x^2-3 x-10\) = (x – 5) (x + 2)

Example 3

Factorize : \(x^2-9 x+20\)

Solution :

Given: \(x^2-9 x+20\)

\(x^2-9 x+20\)

= \(x^2 – (5 + 4)x + 20\)

= \(x^2 – 5x – 4x + 20\)

= x(x – 5) – 4(x – 5)

= (x – 5) (x – 4)

\(x^2 – 9x + 20\) = (x – 5) (x – 4)

Example 4

Factorize : \(x^2+2 x-35\)

Solution :

Given \(x^2+2 x-35\)

\(x^2+2 x-35\)

= \(x^2+(7-5) x-35 s=x^2+7 x-5 x-35\) = x(x + 7) – 5(x + 7)

= (x + 7) (x – 5)

\(x^2+2 x-35\) = (x + 7) (x – 5)

Example 5

Factorize : 

Solution:

Given: \(x^2+20 x y+75 y^2\)

\(x^2+20 x y+75 y^2\)

= \(x^2+(15+5) x y+75 y^2\)

= \(x^2+15 x y+5 r y+75 y^2\)

= x(x + 15y) + 5y(x + 15y)

= (x + 15y) (x + by)

\(x^2+20 x y+75 y^2\). = (x + 15y) (x + by)

Understanding Middle Term Factorisation

WBBSE Solutions For Class 8 School Science Long Answer Type Questions WBBSE Solutions For Class 8 School Science Short Answer Type Questions
WBBSE Solutions For Class 8 School Science Very Short Answer Type Questions WBBSE Solutions For Class 8 School Science Review Questions
WBBSE Solutions For Class 8 School Science Solved Numerical Problems WBBSE Solutions For Class 8 School Science Experiments Questions
WBBSE Solutions For Class 8 Maths WBBSE Class 8 History Notes
WBBSE Class 8 History Multiple Choice Questions WBBSE Solutions For Class 8 History
WBBSE Solutions For Class 8 Geography

 

Example 6

Factorize : \((x+y)^2-11(x+y)+30\)

Solution :

Given: \((x+y)^2-11(x+y)+30\)

\((x+y)^2-11(x+y)+30\)

= \((x+y)^2\) – 6(x + y) – 5(x + y) + 30

= (x + y) (x + y – 6) – 5(x + y – 6)

= (x + y- 6) (x +y- 5)

\((x+y)^2-11(x+y)+30\) = (x + y- 6) (x +y- 5)

Example 7

Factorize : \((a+b)^2+(a+b)-56\)

Solution:

Given: \((a+b)^2+(a+b)-56\)

\((a+b)^2+(a+b)-56\)

= (a + b)2 + 8(a + b) – 7(a + b) – 56

= (a + b) (a + b + 8) – 7(a + 6 + 8)

= (a + b + 8) (a + b – 7)

\((a+b)^2+(a+b)-56\) = (a + b + 8) (a + b – 7)

Example 8

Factorize : \(x^2+x-(a+1)(a+2)\)

Solution :

Given: \(x^2+x-(a+1)(a+2)\)

\(x^2+x-(a+1)(a+2)\)

= \(x^2\) + {(a + 2) – (a + 1)}x – (a + 1)(a + 2)

= \(x^2\) + (a + 2)x – (a + 1)x – (a + 1) (a + 2)

= x(x + a + 2) – (a + 1) (x + a + 2)

= (x + a + 2) (x – a – 1)

\(x^2\)+x-(a+1)(a+2) = (x + a + 2) (x – a – 1)

Step-by-Step Guide to Breaking the Middle Term

Example 9

Factorize : \(x^4-13 x^2+42\)

Solution :

Given: \(x^4-13 x^2+42\)

\(x^4-13 x^2+42\)

= \(x^4-(6+7) x^2+42\)

= \(x^4-6 x^2-7 x^2+42\)

= \(x^2\left(x^2-6\right)-7\left(x^2-6\right)\)

= \(\left(x^2-6\right)\left(x^2-7\right)\)

\(x^4-13 x^2+42=\left(x^2-6\right)\left(x^2-7\right)\)

Example 10

Factorize : \(x^6-10 x^3+16\)

Solution :

Given:

\(x^6-10 x^3+16\)

= \(x^6-(8+2) x^3+16\)

= \(x^6-8 x^3-2 x^3+16\)

= \(x^3\left(x^3-8\right)-2\left(x^3-8\right)\)

= \(\left(x^3-8\right)\left(x^3-2\right)\)

= \(\left\{(x)^3-(2)^3\right\}\left(x^3-2\right)\)

= \((x-2)\left(x^2+2 x+4\right)\left(x^3-2\right)\)

\(x^6-10 x^3+16=(x-2)\left(x^2+2 x+4\right)\left(x^3-2\right)\)

Example 11

Factorize : (p – 1) (p – 2) (p + 3) (p + 4) + 6.

Solution:

Given

(p – 1) (p – 2) (p + 3) (p + 4) + 6

(p – 1) (p – 2) (p + 3) (p + 4) + 6

= {(p – 1) (p + 3} {(p – 2) (p + 4)} + 6

= (p2 + 3p – p – 3) (p2 + 4p – 2p – 8) + 6

= (p2 + 2p – 3) (p2 + 2p – 8) + 6

Let, p2 + 2p = a.

Then the given expression

= (a-3) (a-8)+ 6 = a2 – 8a – 3a + 24 + 6

= a2 – 11a + 30 = a2 – (6 + 5)a + 30

= a2 – 6a – 5a + 30

= a(a – 6) – 5(a – 6)

= (a – 6) (a – 5)

= (p2 + 2p – 6) (p2 + 2p – 5)             [∵ putting the value of a]

(p – 1) (p – 2) (p + 3) (p + 4) + 6 = (p2 + 2p – 6) (p2 + 2p – 5)

Practice Problems on Middle Term Factorisation

Example 12

Factorize : p2 + ( a+1/a)p + 1.

Solution:

Given  p2 + ( a+1/a)p + 1.

p2 – (a+1/a)p + 1

=p2 – a . p – 1/a . p + 1/a . a

= p(p-a) – 1/a (p-a)

= (p-a)(p – 1/a)

p2 + ( a+1/a)p + 1. = (p-a)(p – 1/a)

Example 13

Factorize : \(x^2\) – bx – (a + 36)(a + 26).

Solution :

Given \(x^2\) – bx – (a + 36)(a + 26).

\(x^2\) – bx – (a + 3b)(a + 2b)

= \(x^2\) – {(a + 3b) – (a + 2b)}x – (a + 3b)(a + 2b)

= \(x^2\) – (a + 3b)x +(a + 2b)x-(a+3b)(a+2b)

= x{x – a – 3b} + (a + 2b){x – a – 3b}

= (x – a – 3b)(x + a + 2b)

\(x^2\) – bx – (a + 36)(a + 26). = (x – a – 3b)(x + a + 2b)

Example 14

Factorize : \((x+y)^2-5 x-5 y+6\)

Solution :

Given \((x+y)^2-5 x-5 y+6\)

\((x+y)^2-5 x-5 y+6\)

= \((x+y)^2-5 x-5 y+6\)

Let, x + y = a.

Then the given expression

= \(a^2-5 a+6=a^2-2 a-3 a+6\)

= a(a – 2) – 3 (a – 2) = (a – 2) (a – 3)

= (x + y-2)(x + y-3)         [∵ putting the value of a ]

\((x+y)^2-5 x-5 y+6\) = (x + y-2)(x + y-3)

Example 15

Factorize : (x + 1)(x + 3)(x – 4)(x – 6) + 24.

Solution :

Given  (x + 1)(x + 3)(x – 4)(x – 6) + 24

= (x + l)(x – 4)(x + 3)(x – 6) + 24

= (x2 – 4x + x – 4XX2 – 6x + 3x – 18) + 24

= (x2 – 3x – 4)(x2 – 3x – 18) + 24

Let, x2 – 3x = a.

Then the given expression

= a2 – 18a – 4a + 72 + 24

= a2 – 22a + 96

= a2 – 6a – 16a + 96

= a(a – 6) — 16(a — 6)

= (a – 6) (a – 16)

= (x2-3x-6)(x2-3x- 16)           [∵ putting the value of a]

(x + 1)(x + 3)(x – 4)(x – 6) + 24 = (x2-3x-6)(x2-3x- 16)

Factorization of the expressions of the form ax 2+ bx +c

This type of quadratic expression can also be factorized by splitting the middle coefficients. Here we should find two quantities such that their algebraic sum is b and the product is ac.

Algebra Chapter 7 Factorization By Breaking The Middle Term Some Examples

Example 1

Factorize : 3x2 + 8x + 5.

Solution :

Given: 3X2 + 8x + 5

3X2 + 8x + 5

= 3X2 + (3 + 5)x + 5

= 3x2 + 3x + 5x + 5

= 3x(x + 1) + 5(x + 1)

= (x + 1) (3x + 5)

3X2 + 8x + 5 = (x + 1) (3x + 5)

Examples of Quadratic Factorisation by Middle Term

Example 2

Factorize : 6x2 + x – 40.

Solution:

Given 6x2 + x – 40.

6x2 + x – 40

= 6x2 + (16 – 15)x – 40

= 6x2 + 16x – 15* – 40

= 2x(3x + 8) – 5(3x + 8)

= (3x + 8) (2x – 5)

6x2 + x – 40. = (3x + 8) (2x – 5)

Example 3

Factorize : 10x2 – x – 24.

Solution :

Given 10x2 – x – 24.

10x2 – x – 24

= 10x2 + (- 16 + 15)x – 24

= 10x2 – I6x + 15x – 24

= 2x(5x – 8) + 3(5x – 8)

= (5x – 8) (2x + 3)

10x2 – x – 24. = (5x – 8) (2x + 3)

Example 4

Factorize : 63x – 59x + 10.

Solution :

Given 63x – 59x + 10.

63x2 – 59x + 10

= 63x2 + (- 45 – 14)x + 10

= 63x2 – 45x – 14x + 10

= 9x (7x – 5) – 2(7x – 5)

= (7x – 5) (9x – 2)

63x2 – 59x + 10 = (7x – 5) (9x – 2)

Example 5

Factorize : 10x2 + 31xy + 24y2.

Solution :

Given 10x2 + 31xy + 24y2.

10x2 + 31xy + 24y2

= 10x2 + (15 + 16)xy + 24y2

= 10x2 + 15xy + 16xy + 24y2

= 5x(2x + 3y) + 8y (2x + 3y)

= (2x + 3y) (5x + 8y)

10x2 + 31xy + 24y2. = (2x + 3y) (5x + 8y)

Conceptual Questions on Quadratic Factorisation

Example 6

Factorize : 21 (a + b)2 + 8(a + b) – 45.

Solution :

Given 21 (a + b)2 + 8(a + b) – 45.

21(a + b)2 + 8(a + 6) – 45

= 21(a + b)2 + 35(a + b) – 27(a + b) – 45

= 7(a + b) {3(a + b) + 5} – 9 {3(a + b) + 5}

= {3(a + b) + 5} (7(a + b) – 9}

= (3a + 35 + 5) (7a + 75-9)

21 (a + b)2 + 8(a + b) – 45. = (3a + 35 + 5) (7a + 75-9)

Example 7

Factorize : 15(x + y)2 – 26(x + y) + 8.

Solution :

Given 15(x + y)2 – 26(x + y) + 8.

15(x + y)2 – 26(x + y) + 8

= 15(x + y)2 – 20(x + y) – 6(x + y) + 8

= 5(x + y) {3(x + y) – 4} -2{3(x + y) – 4}

= {3(x + y) – 4} {5(x + y) – 2}

= (3x + 3y-4)(5x + 5y-2)

15(x + y)2 – 26(x + y) + 8. = (3x + 3y-4)(5x + 5y-2)

Example 8

Factorize : (a – 1)x2 + a2xy + (a + 1)y2.

Solution :

Given (a – 1)x2 + a2xy + (a + 1)y2.

(a – 1)x2 + a2xy + (a + 1)y2

= (a – 1)x2 + {(a2 — 1) + l}xy + (a + 1)y2

= (a – 1)x2 + (a2 – 1):xy + xy + (a + 1)y2

= (a – 1)x {x + (a + l)y} + y{x + (a + 1)y}

= {x + (a + 1)y} {(a – 1)x + y}

= (x + ay + y) (ax-x +y)

(a – 1)x2 + a2xy + (a + 1)y2. = (x + ay + y) (ax-x +y)

Example 9

Factorize : 6x4 + 17x2 – 45.

Solution:

Given 6x4 + 17x2 – 45.

6x4 + 17x2 – 45

= 6x4 + (27 – 10)x2 – 45

= 6x4 + 27x2 – 10x2 – 45

= 3x2(2x2 + 9) – 5(2x2 + 9)

= (2x2 + 9) (3x2 – 5)

6x4 + 17x2 – 45. = (2x2 + 9) (3x2 – 5)

Example 10

Factorize : 21x6 — 29x3 +10.

Solution :

Given 21x6 — 29x3 +10.

2 1x6 – 29x3 + 10

= 21x6 – (14 + 15)x3 + 10

= 2 1x6 – 14x3 – 15x3 + 10

= 7x3(3x3 – 2) – 5(3x3 – 2)

= (3x3 – 2) (7x3 — 5)

21x6 — 29x3 +10. = (3x3 – 2) (7x3 — 5)

Example 11

Factorize : 5{a2-b2)2— 8ab (a2 – b2) – 13a2b2.

Solution :

Given 5{a2-b2)2— 8ab (a2 – b2) – 13a2b2.

Let a – b = x and ab = -y

To the given expression

= 5x2 – 8xy – 13y2

= 5x2 – (13 – 5)xy – 13y2

= 5x2 – 13xy + 5xy – 13y2

= x(5x – 13y) + y(5x – 13;y)

= (5x – 13y) (x + y)

= {5(a2 – b2) – 13ab} {a2 – b2 + ab}

= (5a2 – 5b2 – 13a6) (a2 – b2 + ab)

5{a2-b2)2– 8ab (a2 – b2) – 13a2b2. = (5a2 – 5b2 – 13ab) (a2 – b2 + ab)

Example 12

Factorize : (x + 1) (x + 2) (3x— 1)(3x – 4) + 12.

Solution :

Given (x + 1) (x + 2) (3x— 1)(3x – 4) + 12.

(x + 1) (x + 2) (3x-l) (3x – 4) + 12

= {(x + 1) (3x – 1)} {(x + 2) (3x – 4)} + 12

= (3x2 – x + 3x – 1) (3x2 – 4x + 6x – 8) + 12

= (3x2 + 2x- 1) (3x2 + 2x – 8) + 12 Let, 3x2 + 2x = a

The given expression

= (a – 1) (a – 8) + 12

= a2 – 8a – a + 8 + 12

= a2 – 9a + 20

= a – 5a – 4a + 20

= a(a -5)- 4 (a – 5)

= (a – 5) (a – 4)

= (3x2 + 2x – 5) (3x2 + 2x – 4)

= (3x2 + 5x – 3x – 5) (3x2 + 2x – 4)

= {x(3x + 5) -1(3x + 5)} (3x2 + 2x – 4)

= (3x + 5) (x- 1) (3x2 + 2x- 4)

(x + 1) (x + 2) (3x – 1)(3x – 4) + 12. = (3x + 5) (x – 1) (3x2 + 2x – 4)

Leave a Comment