WBBSE Solutions For Class 8 Maths Algebra Chapter 6 Fraction By Formulae

Algebra Chapter 6 Fraction By Formulae

Fraction By Formulae Introduction

A very important topic in algebra is to resolve an expression into factors. In the previous chapter, we studied some of the very important formulae. In this chapter, our aim is to apply those formulae to resolve algebraic expressions into factors.

The sum and difference of two cubes

In the previous chapter we have seen that, (a + b) (a2 – ab + b²) = a3 + b 3 and

(a – b) (a2 + ab + b2) = a3 – b3.

Thus, we may conclude that the two factors of a3 + b3 are (a + b) and (a2 – ab + b2),

and also the two factors of a3 – b3 are (a – b) and (a2 + ab + b2).

We may also verify the above two formulae from the reverse direction as shown below

a3 + b3 = a3 + a2b – a2b – ab2 + ab2 + b3

= a2(a + b) – ab(a + b) + b2(a + b)

= (a + b) (a2 – ab + b2).

a3 – b3 = a3 – a2b + a2b – ab2 + ab2 – b3

= a2(a – b) + ab(a – b) + b2(a – b)

= (a – b) (a2 + ab + b2)

Read And Learn More WBBSE Solutions For Class 8 Maths

Algebra Chapter 6 Fraction By Formulae Some Examples of Factors

Example 1

Factorize: x3 + 64.

Solution :

Given:

x3 + 64

x3 + 64 = (x)3 + (4)3

= (x + 4) {(x)2 – x.4 + (4)2}

= (x + 4) (x2 – 4x + 16)

x3 + 64 = (x + 4) (x2 – 4x + 16)

Example 2

Factorize: 8a3 – 27b3.

Solution :

Given:

8a3 – 27b3.

8a3 – 27b3 = (2a)3 – (3b)3

= (2a – 3b) {(2a)2 + 2a.3b + (36)2}

= (2a – 3b) (4a2 + 6ab + 9b2)

8a3 – 27b3 = (2a – 3b) (4a2 + 6ab + 9b2)

WBBSE Class 8 Fraction by Formulae Notes

Example 3

Factorize: a6 – b6.

Solution :

Given:

a6 – b6

a6 – b6 = (a3)2 – (b3)2

= (a3 + b3) (a3 – b3)

= (a + b) (a2-ab+b2) (a-b) (a2+ab + b2)

a6 – b6 = (a + b) (a2-ab+b2) (a-b) (a2+ab + b2)

Example 4

Factorize: 3x3 + 375.

Solution :

Given:-

3x3 + 375

3x3 + 375 = 3(x3 + 125) = 3{(x)3 + (5)3}

= 3(x + 5) {(x)2 – x.5 + (5)2}

= 3(x + 5) (x2 – 5x + 25)

3x3 + 375 = 3(x + 5) (x2 – 5x + 25)

Example 5

Factorize: a4b- ab4.

WBBSE Solutions For Class 8 School Science Long Answer Type Questions WBBSE Solutions For Class 8 School Science Short Answer Type Questions
WBBSE Solutions For Class 8 School Science Very Short Answer Type Questions WBBSE Solutions For Class 8 School Science Review Questions
WBBSE Solutions For Class 8 School Science Solved Numerical Problems WBBSE Solutions For Class 8 School Science Experiments Questions
WBBSE Solutions For Class 8 Maths WBBSE Class 8 History Notes
WBBSE Class 8 History Multiple Choice Questions WBBSE Solutions For Class 8 History
WBBSE Solutions For Class 8 Geography

 

Solution :

Given: a4b- ab4

a4 b- ab4

= ab(a3 – b3)

= ab(a – b) (a2 + ab + b2)

a4b- ab4 = ab(a – b) (a2 + ab + b2)

Understanding Fraction Operations in Algebra

Example 6

Factorize : a3 + 3a2 b+ 3ab2 + 2b3.

Solution :

Given:

a3 + 3a2 b + 3ab2 + 2b3

a3 + 3a2 b + 3ab2 + 2b3

= a3 + 3a2 b+ 3ab2 + b3 + b3

= (a + b)3 + (b)3

= (a + b + b) {(a + b)2 – (a + b).b + (b)2}

= (a + 2b) (a² + 2ab + b2 – ab – b2 + b2)

= (a + 2b) (a2 + ab + b2)

a3 + 3a2 b + 3ab2 + 2b3 = (a + 2b) (a2 + ab + b2)

WBBSE Solutions For Class 8 Maths Algebra Chapter 6 Fraction By Formulae

Example 7

Factorize : 8a3 + 36a2b + 54ab2 + 27b3.

Solution :

Given:

8a3 + 36a2 b + 54ab2 + 27b3

8a3 + 36a2 b + 54ab2 + 27b3

= (2a)3 + 3 (2a)2 x 3b + 3 x 2a (3b)2 + (3b)3

= (2a + 3b)3

= (2a + 3b) (2a + 3b) (2a + 3b)

8a3 + 36a2 b + 54ab2 + 27b3 = (2a + 3b) (2a + 3b) (2a + 3b)

Example 8

Factorize: 35 – a3 + 6a2 – 12a.

Solution :

Given:

35 – a3 + 6a2 – 12a

35 – a3 + 6a2 – 12a

= 27 + 8 – a3 + 6a2 – 12a

= 27 – (a3 – 6a2 + 12a – 8)

= 27 – {(a)3 – 3.(a)2.2 + 3.a.(2)2 – (2)3}

= (3)3 – (a – 2)3

= {3 – (a – 2)} {(3)2 + 3.(a – 2) + (a – 2)2}

= (3 – a + 2) (9 + 3a – 6 + a² – 4a + 4)

= (5 – a) (a2 – a + 7)

35 – a3 + 6a2 – 12a = (5 – a) (a2 – a + 7)

Step-by-Step Guide to Adding and Subtracting Fractions

Example 9

Factorize : 8(a + b)3 + 27(6 + c)3.

Solution :

Given:

8(a + b)3 + 27(6 + c)3.

8(a + b)3 + 27(b + c)3 = {2(a + b)}3 + {3(b + c)}3

= (2a + 2b)3 + (3b + 3c)3

= (2a + 2b + 3b + 3c) {(2a + 2b)2 – (2a + 2b) (3b + 3c) + (3b + 3c)2}

= (2a + 5b + 3c) {(2a)2 + 2 x 2a x 2b + (2b)2 – (6ab + 6ac + 6b2 + 6bc) + (3b)2 + 2 x 3b x 3c + (3c)2}

= (2a + 5b + 3c) {4a2 + 8ab + 462 – 6ab – 6ac – 6b2 – 6bc + 9b2 + 18bc + 9c2}

= (2a + 56 + 3c) (4a² + 7b² + 9c2 + 2ab + 12bc – 6ac)

8(a + b)3 + 27(6 + c)3.= (2a + 56 + 3c) (4a² + 7b² + 9c2 + 2ab + 12bc – 6ac)

Example 10

Factorize : x3 + y3 – x(x2 – y2) + y(x + y)2.

Solution :

Given

x3 + y3 – x(x2 – y2) + y(x + y)2.

x3 + y3 – x(x2 – y2) + y(x + y)2

= (x +y)(x2-xy +y2) -x(x +y)(x-y) +y(x+y)

= (x+y) {(x²-xy+y³)-x(x-y)+y(x+y)}

= (x + y) {x2– xy + y2 – x2 + xy + xy + y2}

= (x +y) (xy + 2y2)

= (x+y) y(x + 2y)

= y(x + y) (x + 2y)

x3 + y3 – x(x2 – y2) + y(x + y)2. = y(x + y) (x + 2y)

Practice Problems on Fractions for Class 8

Example 11

Factorize : x3 + 9x2 + 21x + 26.

Solution :

Given:

x3 + 9x2 + 21x + 26.

x3 + 9x2 + 21 x + 26

= (x)3 + 3(x)2 + 3x (3)2 + (3)3 – 1

= (x + 3)3 – (1)3

= (x + 3 – 1) {(x + 3)2 + (x + 3)1 + (1)2}

= (x + 2) {x2 + 3x + 9 + x + 3 + 1} .

= (x + 2) (x2 + 7x + 13)

x3 + 9x2 + 21x + 26. = (x + 2) (x2 + 7x + 13)

Example 12

Factorize : x3 – 6xy + 12x2 y- 8y3 – z + 3z2  – 3z + 1.

Solution:

Given:

x3 – 6x2y + 12xy2 – 8y3 – z3 + 3z2 – 3z + 1

x3 – 6x2y + 12xy2 – 8y3 – z3 + 3z2 – 3z + 1

= (x)3 – 3(x)2 2y + 3x(2y)2 – (2y)3 – {(z)3 – 3(z)2 x 1 + 3z(1)2 – (1)3}

= (x – 2y)3 – (z-1)3

= {(x-2y) – (z-1)}{(x-2y)2 + (x-2y) . (z-1) + (z-1)2}

= (x – 2y – z +1)(x2 + 4y2 + z2 – 4xy + zx – 2yz – x + 2y – 2z +1)

x3 – 6x2y + 12xy2 – 8y3 – z3 + 3z2 – 3z + 1 = (x – 2y – z +1)(x2 + 4y2 + z2 – 4xy + zx – 2yz – x + 2y – 2z +1)

Examples of Multiplying and Dividing Fractions

Example 13

Factorize : 16a3 – 54(a – b)3.

Solution :

Given

16a3 – 54(a – b)3

16a3 – 54(a – b)3

= 2[8a3 – 27(a – b)3]

= 2[(2a)3 – {3(a – b)}3]

= 2{(2a)3 – (3a – 3b)3}

= 2(2a – 3a + 3b){(2a)2 + 2a(3a – 3b) + (3a – 3b)2}

= 2(36 – a)(4a2 + 6a2 — 6ab + 9a2 – 18ab + 9b2)

= 2(36 – a)(19a2 — 24ab + 9b2)

16a3 – 54(a – b)= 2(36 – a)(19a2 — 24ab + 9b2)

Example 14

Factorize: 8 – a3 + 3a2b – 3ab2 + b3.

Solution :

Given:

8 – a3 + 3a2b – 3ab2 + b3

8 – a3 + 3a2b- 3ab2 + b3 = 8 – (a3 – 3a2 b+ 3ab2 – b3)

= (2)3 – (a – b)3

= (2 – a + b){(2)2 + 2(a – b) + (a – b)2}

= (2 – a + b)(4 + 2a — 2b + a2 – 2ab + b2)

= (2 – a + b)(a2 — 2ab + b2 + 2a – 2b + 4)

8 – a3 + 3a2b – 3ab2 + b3 = (2 – a + b)(a2 — 2ab + b2 + 2a – 2b + 4)

Conceptual Questions on Fractions and Their Applications

Example 15

Factorize : m3 – n3 – m(m2 – n2) + n(m – n.)2.

Solution :

Given

m3 – n3 – m(m2 – n2) + n(m – n.)2

m3 – n3 – m(m2 – n2) + n(m – rc)2

= (m – n)(m2 + mn + n2) – m(m + n)(m – n) + n(m – n)2

= (m – n)(m2+ mn + n2– m2– mn+mn – n2)

= (m – n)(mn)

= mn(m – n)

m3 – n3 – m(m2 – n2) + n(m – n.)2 = mn(m – n)

Example 16

Factorize : 8x3+12x2+6x – y3+9y2-27y + 28.

Solution :

Given

8x3+12x2+6x – y3+9y2-27y + 28.

8x3+ 12X2 + 6x – y3 + 9y2 – 27y + 28

= 8x3 + I2x2 + 6x + 1 -y3 + 9y2 – 27y + 27

= (2x)3 + 3 (2x)2 x 1 + 3 x 2x (1)2 + 1- {(y)3-3y2x3 + 3y(3)2-(3)3}

= (2x + 1)3 – (y – 3)3

= {(2x + 1) – (y – 3)}{(2x + 1)2 + (2x + 1)(y – 3) + (y – 3)2}

= (2x + 1 – y + 3)(4x2 + 4x + 1 + 2xy – 6x + y – 3 + y2 – 6y + 9)

= (2x – y + 4 x 4x2 + 2xy + y2 -2x- 5y + 7)

8x3+12x2+6x – y3+9y2-27y + 28. = (2x – y + 4 x 4x2 + 2xy + y2 -2x- 5y + 7)

Example 17

Factorize : x3-9y3– 3xy(x-y)

Solution :

Given 

x3-9y3– 3xy(x-y)

x3 – 9y3 – 3xy (x – y)

= [x3-y3– 3xy (x – y)] – 8y3

= (x- y)3 – 8y3

= (x- y)3 – (2y)3

= {(x – y)-2y} . {(x – y)2 + (x – y) . 2y + (2y)2}

= (x- 3y).(x2 – 2xy + y2 + 2xy – 2y2 + 4y2)

= (x-3y). (x2 + 3y2)

x3-9y3– 3xy(x-y) = (x-3y). (x2 + 3y2)

Example 18

Factorize : a3 – 9b3 + (a + b)3

Solution :

Given

a3 – 9b3 + (a + b)3

a3 – 9b3+ (a + b)3

= a3 – b3 + (a + b)3 – 8b3

= a3 – b3 +(a + b)3 – (2b)3

= (a – b) (a2 + ab + b2) + {(a + b) – 2b}. {(a + b)2 + (a + 6).2b + (2b)2}

= (a – b) (a2 + ab + b2) + (a – b) (a2 + 4ab + 7b2) = (a – b)(a2 + ab + b2 +a2 + 4ab + 7b2)

= (a – b).(2a2 + 5ab + 3b2)

a3 – 9b3 + (a + b)3 = (a – b).(2a2 + 5ab + 3b2)

Example 19

Resolve into factors : 2x3 – 3x2 + 3x  1

Solution :

Given:

2x3 – 3x2 + 3x  1

2x3 – 3x2 + 3x – 1 = x3 + x3 – 3x2 + 3x – 1

= x3 + (x – l)3

= {x + (x – 1)} {x2 – x.(x – 1)+ (x – l)2}

= (2x – 1) (x2 – x2 + x + x2 – 2x + 1)

= (2x – 1) (x2 – x + 1)

2x3 – 3x2 + 3x 1 = (2x – 1) (x2 – x + 1)

Example 20

Resolve into factors : a3 – 12a – 16

Solution :

Given:

a3 – 12a – 16

a3 – 12a – 16

= a3 + 8 – 12a – 24

= a3 + 23 – 12(a + 2)

= (a + 2) (a2 – 2a +22) – 12(a + 2)

= (a + 2) (a2 – 2a + 4 – 12)

= (a + 2) (a2 – 2a – 8)

= (a + 2). (a2 – 4a + 2a – 8)

= (a + 2) {a(a – 4) + 2 (a – 4)}

= (a + 2) (a – 4) ( a + 2)

a3 – 12a – 16 = (a + 2) (a – 4) ( a + 2).

Leave a Comment