WBBSE Solutions For Class 8 Maths Algebra Chapter 10 Simplification Of Fractions

Algebra Chapter 10 Simplification Of Fractions

Introduction

In arithmetic, you have learned a lot about fractions. By 5/7 part of an article we mean any 5 parts of the article when it is divided into 7 equal parts. Also, you know that for the fraction 5/7, 5 is the numerator and 7 is the denominator. The conception of fractions in algebra is similar to that in arithmetic.

The general form of a fraction in algebra

In algebra, we denote a fraction by a/b. It represents a fraction for any value of a and b (except b = 0). a/b may also be written saves and it indicates any a parts of a quantity when it is divided into b equal parts. In any fraction, the alphabetic symbol above the fraction line is the numerator and the alphabetic symbol below the line is the denominator. So in the fraction a/b, a is the numerator and b is the denominator.

If both the numerator and the denominator of a fraction are multiplied or divided by the same number, then the value of the fraction remains unchanged.

Thus, a/b = a x x / b x x and a/b = a ÷ x / b ÷ x

The sign of a fraction is positive when both the numerator and denominator are of the same sign (i.e., either both + or both -).

The sign of a fraction is negative when the numerator and denominator are of the opposite sign (i.e., one is + and the other is -).

The Lowest form of a fraction

Like arithmetic, an algebraic fraction can also be reduced to its lowest form.

An algebraic fraction is said to be in its lowest form when there does not exist any factor common to both the numerator and denominator.

Like arithmetic, we can reduce a fraction to its lowest form by dividing both the numerator and denominator by their H.C.F.

For Example : \(\frac{x^2 y}{x y^2}=\frac{x^2 y \div x y}{x y^2 \div x y}=\frac{x}{y}\)

In practice, to reduce a fraction into its lowest form we resolve both the numerator and denominator of the fraction into factors and then their common factors are canceled. Then the given fraction reduces to its lowest form.

Read And Learn More WBBSE Solutions For Class 8 Maths

Algebra Chapter 10 Simplification Of Fractions Some examples

Example 1

Reduce \(\frac{18 x^5 y^6 z^9}{24 x^2 y^3 z^8}\) into its lowest term.

Solution:

Given \(\frac{18 x^5 y^6 z^9}{24 x^2 y^3 z^8}\).

= \(\frac{18 x^5 y^6 z^9}{24 x^2 y^3 z^8}=\frac{6 \times 3 \times x^5 \times y^6 \times z^9}{6 \times 4 \times x^2 \times y^3 \times z^8}\)

= \(\frac{3 \times x^3 \times y^3 \times z}{4}=\frac{3 x^3 y^3 z}{4}\)

Example 2 

Reduce \(\frac{56 a^5 b c^2}{42 a^2 b^3 c^4}\) into its lowest term.

Solution:

Given \(\frac{56 a^5 b c^2}{42 a^2 b^3 c^4}\).

\(\frac{56 a^5 b c^2}{42 a^2 b^3 c^4}=\frac{14 \times 4 \times a^5 \times b \times c^2}{14 \times 3 \times a^2 \times b^3 \times c^4}\)

= \(\frac{4 \times a^4}{3 \times b^2 \times c^2}=\frac{4 a^3}{3 b^2 c^2}\)

= \(\frac{4 a^3}{3 b^2 c^2}\)

WBBSE Class 8 Simplification of Fractions Notes

Example 3

Reduce \(\frac{x^2+3 x+2}{x^2+4 x+3}\) into its lowest term.

Solution:

Given \(\frac{x^2+3 x+2}{x^2+4 x+3}\).

\(\frac{x^2+3 x+2}{x^2+4 x+3}=\frac{x^2+2 x+x+2}{x^2+3 x+x+3}\)

= \(\frac{x(x+2)+1(x+2)}{x(x+3)+1(x+3)}=\frac{(x+2)(x+1)}{(x+3)(x+1)}=\frac{x+2}{x+3}\)

= \(\frac{x+2}{x+3}\)

Example 4

Reduce \(\frac{25 x^2-36 y^2}{5 x-6 y}\) into its lowest term.

Solution:

Given \(\frac{25 x^2-36 y^2}{5 x-6 y}\).

\(\frac{25 x^2-36 y^2}{5 x-6 y}=\frac{(5 x)^2-(6 y)^2}{5 x-6 y}\)

= \(\frac{(5 x+6 y)(5 x-6 y)}{5 x-6 y}=5 x+6 y\)

= 5x + 6y

Example 5

Reduce \(\frac{15\left(a^3-b^3\right)}{25\left(a^2+a b+b^2\right)}\) into its lowest term.

Solution:

Given \(\frac{15\left(a^3-b^3\right)}{25\left(a^2+a b+b^2\right)}\)

\(\frac{15\left(a^3-b^3\right)}{25\left(a^2+a b+b^2\right)}\)

= \(\frac{5 \times 3 \times(a-b)\left(a^2+a b+b^2\right)}{5 \times 5 \times\left(a^2+a b+b^2\right)}=\frac{3(a-b)}{5}\)

= \(\frac{3(a-b)}{5}\)

Example 6

Reduce \(\frac{\left(x^3+y^3\right)\left(x^3-y^3\right)}{x^4+x^2 y^2+y^4}\) into its lowest term.

Solution:

Given

\(\frac{\left(x^3+y^3\right)\left(x^3-y^3\right)}{x^4+x^2 y^2+y^4}\)

= \(\frac{\left(x^3+y^3\right)\left(x^3-y^3\right)}{x^4+x^2 y^2+y^4}\)

= \(\frac{(x+y)\left(x^2-x y+y^2\right)(x-y)\left(x^2+x y+y^2\right)}{\left(x^2\right)^2+2 \times x^2 \times y^2+\left(y^2\right)^2-x^2 y^2}\)

= \(\frac{(x+y)(x-y)\left(x^2-x y+y^2\right)\left(x^2+x y+y^2\right)}{\left(x^2+y^2\right)^2-(x y)^2}\)

= \(\frac{(x+y)(x-y)\left(x^2-x y+y^2\right)\left(x^2+x y+y^2\right)}{\left(x^2+y^2+x y\right)\left(x^2+y^2-x y\right)}\)

= \((x+y)(x-y)=x^2-y^2\)

= \(x^2-y^2\)

WBBSE Solutions For Class 8 Maths Algebra Chapter 10 Simplification Of Fractions

Step-by-Step Guide to Simplifying Fractions

Application of four basic operations on fractions

Addition, subtraction, multiplication, and division of fractions are similar to those in arithmetic.

For Example:

1. \(\frac{\mathrm{a}}{\mathrm{b}}+\frac{\mathrm{c}}{\mathrm{d}}=\frac{\mathrm{ad}+\mathrm{bc}}{\mathrm{bd}}\)

2. \(\frac{\mathrm{p}}{\mathrm{q}}-\frac{\mathrm{r}}{\mathrm{s}}=\frac{\mathrm{ps}-\mathrm{qr}}{\mathrm{qs}}\)

3. \(\frac{x}{y} \times \frac{p}{q}=\frac{p x}{q y}\)

4. \(\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \times \frac{d}{c}\)

= \(\frac{\mathrm{ad}}{\mathrm{bc}}\)

Some Examples

WBBSE Solutions For Class 8 School Science Long Answer Type Questions WBBSE Solutions For Class 8 School Science Short Answer Type Questions
WBBSE Solutions For Class 8 School Science Very Short Answer Type Questions WBBSE Solutions For Class 8 School Science Review Questions
WBBSE Solutions For Class 8 School Science Solved Numerical Problems WBBSE Solutions For Class 8 School Science Experiments Questions
WBBSE Solutions For Class 8 Maths WBBSE Class 8 History Notes
WBBSE Class 8 History Multiple Choice Questions WBBSE Solutions For Class 8 History
WBBSE Solutions For Class 8 Geography

 

Example 1

Simplify: \(\frac{9 x^2-16 y^2}{x^2-16} \times \frac{x^2-4 x}{3 x-4 y}\)

Solution:

Given \(\frac{9 x^2-16 y^2}{x^2-16} \times \frac{x^2-4 x}{3 x-4 y}\)

= \frac{9 x^2-16 y^2}{x^2-16} \times \frac{x^2-4 x}{3 x-4 y}

= \frac{(3 x)^2-(4 y)^2}{(x)^2-(4)^2} \times \frac{x(x-4)}{3 x-4 y}

= \frac{(3 x+4 y)(3 x-4 y)}{(x+4)(x-4)} \times \frac{x(x-4)}{3 x-4 y}

= \frac{x(3 x+4 y)}{x+4}

 

Example 2

Simplify: \(\frac{x^3-y^3}{x+y} \times \frac{x^2-y^2}{x^2+x y+y^2}\)

Solution:

Given \(\frac{x^3-y^3}{x+y} \times \frac{x^2-y^2}{x^2+x y+y^2}\).

= \(\frac{x^3-y^3}{x+y} \times \frac{x^2-y^2}{x^2+x y+y^2}\)

= \(\frac{(x-y)\left(x^2+x y+y^2\right)}{x+y} \times \frac{(x+y)(x-y)}{x^2+x y+y^2}\)

= \((x-y)^2\)

Example 3

Simplify: \(\frac{a}{a-b}+\frac{b}{a+b}+\frac{2 a b}{b^2-a^2} .\)

Solution:

Given \(\frac{a}{a-b}+\frac{b}{a+b}+\frac{2 a b}{b^2-a^2} .\).

= \(\frac{\mathrm{a}}{\mathrm{a}-\mathrm{b}}+\frac{\mathrm{b}}{\mathrm{a}+\mathrm{b}}+\frac{2 \mathrm{ab}}{\mathrm{b}^2-\mathrm{a}^2}\)

= \(\frac{a}{a-b}+\frac{b}{a+b}-\frac{2 a b}{a^2-b^2}\)

= \(\frac{a}{a-b}+\frac{b}{a+b}-\frac{2 a b}{(a+b)(a-b)}\)

= \(\frac{a(a+b)+b(a-b)-2 a b}{(a-b)(a+b)}\)

= \(\frac{a^2+a b+a b-b^2-2 a b}{(a-b)(a+b)}=\frac{a^2-b^2}{a^2-b^2}=1\)

 

Example 4

Simplify: \(\frac{1}{a^2-8 a+15}+\frac{1}{a^2-4 a+3}-\frac{2}{a^2-6 a+5}\)

Solution:

Given \(\frac{1}{a^2-8 a+15}+\frac{1}{a^2-4 a+3}-\frac{2}{a^2-6 a+5}\)

= a2 – 8a + 15

= a2 – 5a – 3a + 15

= a(a – 5) – 3 (a – 5)

= (a – 5) (a – 3) a2 – 4a + 3

= a2 – 3a – a + 3

= a(a – 3) – 1(a – 3)

= (a – 3) (a – 1) a2 – 6a + 5

= a2 – 5a – a + 5

= a(a – 5) – 1(a – 5)

= (a – 5) (a – 1)

Hence, the given expression

\(\frac{1}{a^2-8 a+15}+\frac{1}{a^2-4 a+3}-\frac{2}{a^2-6 a+5}\) = (a – 5) (a – 1)

Understanding Equivalent Fractions

Example 5

Simplify: \(\frac{8 a^3}{a^2+a b+b^2} \times \frac{a+b}{2 a\left(a^3+b^3\right)} \times \frac{a^4+a^2 b^2+b^4}{4 a^2} .\)

Solution:

Given \(\frac{8 a^3}{a^2+a b+b^2} \times \frac{a+b}{2 a\left(a^3+b^3\right)} \times \frac{a^4+a^2 b^2+b^4}{4 a^2} .\)

= \(\frac{8 a^3}{a^2+a b+b^2} \times \frac{a+b}{2 a\left(a^3+b^3\right)} \times \frac{a^4+a^2 b^2+b^4}{4 a^2}\)

= \(\frac{8 a^3}{a^2+a b+b^2} \times \frac{a+b}{2 a(a+b)\left(a^2-a b+b^2\right)}\times \frac{a^4+a^2 b^2+b^4}{4 a^2}\)

= \(\frac{8 a^3(a+b)\left(a^4+a^2 b^2+b^4\right)}{8 a^3(a+b)\left(a^4+a^2 b^2+b^4\right)}=1\)

 

Example: 6

Simplify: \(\frac{x-y}{x y}+\frac{y-z}{y z}+\frac{z-x}{z x} .\)

Solution: 

Given \(\frac{x-y}{x y}+\frac{y-z}{y z}+\frac{z-x}{z x} .\).

= \(\frac{x-y}{x y}+\frac{y-z}{y z}+\frac{z-x}{z x}\)

= \(\frac{x}{x y}-\frac{y}{x y}+\frac{y}{y z}-\frac{z}{y z}+\frac{z}{z x}-\frac{x}{z x}\)

= \(\frac{1}{y}-\frac{1}{x}+\frac{1}{z}-\frac{1}{y}+\frac{1}{x}-\frac{1}{z}=0\)

 

Example 7

Simplify: \(\frac{x-y}{x(x+y)} \div \frac{x^2+y^2}{2 x^2} \times \frac{2\left(x^4-y^4\right)}{x^2-2 x y+y^2}\)

Solution:

Given \(\frac{x-y}{x(x+y)} \div \frac{x^2+y^2}{2 x^2} \times \frac{2\left(x^4-y^4\right)}{x^2-2 x y+y^2}\)

= \(\frac{x-y}{x(x+y)} \div \frac{x^2+y^2}{2 x^2} \times \frac{2\left(x^4-y^4\right)}{x^2-2 x y+y^2}\)

= \(\frac{x-y}{x(x+y)} \times \frac{2 x^2}{x^2+y^2} \times \frac{2\left(x^4-y^4\right)}{x^2-2 x y+y^2}\)

= \(\frac{x-y}{x(x+y)} \times \frac{2 x^2}{x^2+y^2} \times \frac{2\left(x^2+y^2\right)(x+y)(x-y)}{(x-y)^2}\)

= 4x

Common Mistakes in Simplifying Fractions

Example 8

Simplify: \(\frac{x^2+3 x+2}{x^2+5 x+6} \times \frac{x^2+2 x-3}{x^2-4}\)

Solution:

Given \(\frac{x^2+3 x+2}{x^2+5 x+6} \times \frac{x^2+2 x-3}{x^2-4}\).

= \(\frac{x^2+3 x+2}{x^2+5 x+6} \times \frac{x^2+2 x-3}{x^2-4}\)

= \(\frac{x^2+2 x+x+2}{x^2+3 x+2 x+6} \times \frac{x^2+3 x-x-3}{x^2-4}\)

= \(\frac{x(x+2)+1(x+2)}{x(x+3)+2(x+3)} \times \frac{x(x+3)-1(x+3)}{(x+2)(x-2)}\)

= \(\frac{(x+1)(x+2)}{(x+2)(x+3)} \times \frac{(x+3)(x-1)}{(x+2)(x-2)}\)

= \(\frac{(x+1)(x-1)}{(x+2)(x-2)}=\frac{x^2-1}{x^2-4}\)

 

Example: 9

Simplify: \(\frac{x-2 y}{x y}+\frac{3 y-a}{a y}+\frac{3 x-2 a}{a x} \text {. }\)

Solution:

Given \(\frac{x-2 y}{x y}+\frac{3 y-a}{a y}+\frac{3 x-2 a}{a x} \text {. }\).

= \(\frac{x-2 y}{x y}+\frac{3 y-a}{a y}+\frac{3 x-2 a}{a x}\)

= \(\frac{a(x-2 y)+x(3 y-a)-y(3 x-2 a)}{a x y}\)

= \(\frac{a x-2 a y+3 x y-a x-3 x y+2 a y}{a x y}\)

= \(\frac{0}{a x y}=0\)

 

Example 10

Simplify: \(\frac{1}{x^2-3 x+2}+\frac{1}{x^2-5 x+6}+\frac{1}{x^2-4 x+3}\)

Solution:

Given

\(\frac{1}{x^2-3 x+2}+\frac{1}{x^2-5 x+6}+\frac{1}{x^2-4 x+3}\).

x2 – 3x + 2

= x2 – 2x – x +2

= x (x – 2) – 1 (x – 2)

= (x – 2)(x – 1)

x2 – 5x + 6 = x2 – 3x – 2x + 6

= x ( x – 3) – 2 (x – 3)

= (x – 3)(x – 2)

x2 – 4x + 3 = x2 -3x – x + 3

= x (x – 3) – 1 (x – 3)

= (x – 3)(x – 1)

∴ the given expression

= \(\frac{1}{(x-1)(x-2)}+\frac{1}{(x-2)(x-3)}+\frac{1}{(x-3)(x-1)}\)

= \(\frac{x-3+x-1+x-2}{(x-1)(x-2)(x-3)}\)

= \(\frac{3 x-6}{(x-1)(x-2)(x-3)}=\frac{3(x-2)}{(x-1)(x-2)(x-3)}\)

= \(\frac{3}{(x-1)(x-3)}=\frac{3}{x^2-4 x+3}\)

Conceptual Questions on Fraction Operations

Example 11

Simplify: \(\frac{\frac{x^2}{5-x}+\frac{y^2}{5-y}+\frac{z^2}{5-z}+x+y+z}{\frac{x}{5-x}+\frac{y}{5-y}+\frac{z}{5-z}}\)

Solution:

Given

\(\frac{\frac{x^2}{5-x}+\frac{y^2}{5-y}+\frac{z^2}{5-z}+x+y+z}{\frac{x}{5-x}+\frac{y}{5-y}+\frac{z}{5-z}}\).

= \(\frac{\frac{x^2}{5-x}+x+\frac{y^2}{5-y}+y+\frac{z^2}{5-z}+z}{\frac{x}{5-x}+\frac{y}{5-y}+\frac{z}{5-z}}\)

= \(\frac{\frac{x^2+5 x-x^2}{5-x}+\frac{y^2+5 y-y^2}{5-y}+\frac{z^2+5 z-z^2}{5-z}}{\frac{x}{5-x}+\frac{y}{5-y}+\frac{z}{5-z}}\)

= \(\frac{\frac{5 x}{5-x}+\frac{5 y}{5-y}+\frac{5 z}{5-z}}{5-x}+\frac{y}{5-y}+\frac{z}{5-z}\)

= \(\text { 5. } \frac{\frac{x}{5-x}+\frac{y}{5-y}+\frac{z}{5-z}}{\frac{x}{5-x}+\frac{y}{5-y}+\frac{z}{5-z}}\)

= 5

 

Example 12

Simplify: \(\left(a+\frac{a x}{a-x}\right) \times\left(a-\frac{a x}{a+x}\right) \times \frac{a^2-x^2}{a^2+x^2}\)

Solution:

The given Expression \(\left(a+\frac{a x}{a-x}\right) \times\left(a-\frac{a x}{a+x}\right) \times \frac{a^2-x^2}{a^2+x^2}\)

= \(\left(a+\frac{a x}{a-x}\right) \times\left(a-\frac{a x}{a+x}\right) \times \frac{a^2-x^2}{a^2+x^2}\)

= \(\frac{a^2-a x+a x}{a-x} \times \frac{a^2+a x-a x}{a+x} \times \frac{a^2-x^2}{a^2+x^2}\)

= \(\frac{a^2}{a-x} \times \frac{a^2}{a+x} \times \frac{a^2-x^2}{a^2+x^2}\)

= \(\frac{a^4 \times\left(a^2-x^2\right)}{\left(a^2-x^2\right)\left(a^2+x^2\right)}=\frac{a^4}{a^2+x^2}\)

Practice Problems on Simplifying Fractions

Example 13

Simplify: \(\frac{1+8 x^3}{(2-x)^2} \times \frac{4 x-x^3}{1-4 x^2} \div \frac{(1-2 x)^2+2 x}{2-5 x+2 x^2}\)

Solution:

The given expression \(\frac{1+8 x^3}{(2-x)^2} \times \frac{4 x-x^3}{1-4 x^2} \div \frac{(1-2 x)^2+2 x}{2-5 x+2 x^2}\)

= \frac{1+8 x^3}{(2-x)^2} \times \frac{4 x-x^3}{1-4 x^2} \times \frac{2-5 x+2 x^2}{(1-2 x)^2+2 x}

= \frac{1+(2 x)^3}{(2-x)^2} \times \frac{x\left(4-x^2\right)}{1-(2 x)^2} \times \frac{2-4 x-x+2 x^2}{1-4 x+4 x^2+2 x}

= \frac{(1+2 x)\left(1-2 x+4 x^2\right)}{(2-x)^2} \times \frac{x(2+x)(2-x)}{(1+2 x)(1-2 x)}\times \frac{2(1-2 x)-x(1-2 x)}{1-2 x+4 x^2}

= \frac{(1+2 x)\left(1-2 x+4 x^2\right)}{(2-x)^2} \times \frac{x(2+x)(2-x)}{(1+2 x)(1-2 x)}

= x(2 + x)

 

Example 14

Simplify: \(\frac{(b-c)^2}{(c-a)(a-b)}+\frac{(c-a)^2}{(a-b)(b-c)}+\frac{(a-b)^2}{(b-c)(c-a)} .\)

Solution:

The given expression

\(\frac{(b-c)^2}{(c-a)(a-b)}+\frac{(c-a)^2}{(a-b)(b-c)}+\frac{(a-b)^2}{(b-c)(c-a)} .\)

= \(\frac{(b-c)^3+(c-a)^3+(a-b)^3}{(a-b)(b-c)(c-a)}\)

= \(\frac{b^3-c^3-3 b c(b-c)+c^3-a^3-3 c a(c-a)+a^3-b^3-3 a b(a-b)}{(a-b)(b-c)(c-a)}\)

= \(-\frac{3}{(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})}\{\mathrm{ab}(\mathrm{a}-\mathrm{b})+\mathrm{bc}(\mathrm{b}-\mathrm{c})+\mathrm{ca}(\mathrm{c}-\mathrm{a})\}\)

= \(-\frac{3}{(a-b)(b-c)(c-a)}\left\{a b(a-b)+b^2 c-b c^2+c^2 a-a^2 c\right\}\)

= \(-\frac{3}{(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})}\left\{\mathrm{ab}(\mathrm{a}-\mathrm{b})-\mathrm{c}\left(\mathrm{a}^2-\mathrm{b}^2\right)+\mathrm{c}^2(\mathrm{a}-\mathrm{b})\right\}\)

= \(-\frac{3}{(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})}\left\{\mathrm{ab}(\mathrm{a}-\mathrm{b})-\mathrm{c}(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})+\mathrm{c}^2(\mathrm{a}-\mathrm{b})\right\}\)

= \(-\frac{3(\mathrm{a}-\mathrm{b})}{(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})}\left\{\mathrm{ab}-\mathrm{ac}-\mathrm{bc}+\mathrm{c}^2\right\}\)

= \(-\frac{3(\mathrm{a}-\mathrm{b})}{(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})}\{\mathrm{a}(\mathrm{b}-\mathrm{c})-\mathrm{c}(\mathrm{b}-\mathrm{c})\}\)

= \(-\frac{3(a-b)(b-c)(a-c)}{(a-b)(b-c)(c-a)}=\frac{3(a-b)(b-c)(c-a)}{(a-b)(b-c)(c-a)}=3\)

 

Example 15

Simplify: \(\frac{1}{x-1}+\frac{1}{x+1}+\frac{2 x}{x^2+1}+\frac{4 x^3}{x^4+1}\)

Solution:

Given

\(\frac{1}{x-1}+\frac{1}{x+1}+\frac{2 x}{x^2+1}+\frac{4 x^3}{x^4+1}\).

\(\frac{1}{x-1}+\frac{1}{x+1}+\frac{2 x}{x^2+1}+\frac{4 x^3}{x^4+1}=\frac{x+1+x-1}{(x-1)(x+1)}+\frac{2 x}{x^2+1}+\frac{4 x^3}{x^4+1}\)

= \(\frac{2 x}{x^2-1}+\frac{2 x}{x^2+1}+\frac{4 x^3}{x^4+1}=\frac{2 x^3+2 x+2 x^3-2 x}{\left(x^2-1\right)\left(x^2+1\right)}+\frac{4 x^3}{x^4+1}\)

= \(\frac{4 x^3}{x^4-1}+\frac{4 x^3}{x^4+1}=\frac{4 x^7+4 x^3+4 x^7-4 x^3}{\left(x^4-1\right)\left(x^4+1\right)}\)

= \(\frac{8 x^7}{\left(x^4\right)^2-(1)^2}=\frac{8 x^7}{x^8-1}\)

Examples of Simplifying Mixed Numbers

Example 16

Simplify: \(\frac{(b+c)\left(b^2+c^2-a^2\right)}{2 b c}+\frac{(c+a)\left(c^2+a^2-b^2\right)}{2 c a}+\frac{(a+b)\left(a^2+b^2-c^2\right)}{2 a b}\)

Solution:

Given

\(\frac{(b+c)\left(b^2+c^2-a^2\right)}{2 b c}+\frac{(c+a)\left(c^2+a^2-b^2\right)}{2 c a}+\frac{(a+b)\left(a^2+b^2-c^2\right)}{2 a b}\)

= \(\frac{1}{2}\left(\frac{\mathrm{b}+\mathrm{c}}{\mathrm{bc}}\right)\left(\mathrm{b}^2+\mathrm{c}^2-\mathrm{a}^2\right)+\frac{1}{2}\left(\frac{\mathrm{c}+\mathrm{a}}{\mathrm{ca}}\right)\left(\mathrm{c}^2+\mathrm{a}^2-\mathrm{b}^2\right)+\frac{1}{2}\left(\frac{\mathrm{a}+\mathrm{b}}{\mathrm{ab}}\right)\left(\mathrm{a}^2+\mathrm{b}^2-\mathrm{c}^2\right)\)

= \(\frac{1}{2}\left(\frac{1}{\mathrm{c}}+\frac{1}{\mathrm{~b}}\right)\left(\mathrm{b}^2+\mathrm{c}^2-\mathrm{a}^2\right)+\frac{1}{2}\left(\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{c}}\right)\left(\mathrm{c}^2+\mathrm{a}^2-\mathrm{b}^2\right)+\frac{1}{2}\left(\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{a}}\right)\left(\mathrm{a}^2+\mathrm{b}^2-\mathrm{c}^2\right)\)

= \(\frac{1}{2}\left[\begin{array}{c}
\frac{1}{c}\left(b^2+c^2-a^2+c^2+a^2-b^2\right)+\frac{1}{b}\left(b^2+c^2-a^2+a^2+b^2-c^2\right) \\
+\frac{1}{a}\left(c^2+a^2-b^2+a^2+b^2-c^2\right)
\end{array}\right]\)

= \(\frac{1}{2}\left[\frac{1}{c} 2 \mathrm{c}^2+\frac{1}{\mathrm{~b}} 2 \mathrm{~b}^2+\frac{1}{\mathrm{a}} 2 \mathrm{a}^2\right]=\frac{1}{2}[2 \mathrm{c}+2 \mathrm{~b}+2 \mathrm{a}]=\frac{2}{2}[\mathrm{c}+\mathrm{b}+\mathrm{a}]=\mathrm{a}+\mathrm{b}+\mathrm{c}\)

 

Leave a Comment