WBBSE Solutions For Class 7 Maths Algebra Chapter 6 Factorisation Exercise 6 Solved Example Problems

Algebra Chapter 6 Factorisation Exercise 6 Solved Example Problems

Factorisation Introduction

A very important topic in algebra is to resolve an expression into factors. The idea of factors in algebra is similar to that of in arithmetic.

You have already learned about the multiple and factor of a given number in arithmetic.

For example, 35 = 5×7. Hence, factors of 35 are 1, 5, 7, and 35.

In a similar way, the factors of ab are 1, a, b, and ab. Let us now define a factor.

Factorisation

Math Solution Of Class 7 Wbbse

Factor

Read and Learn More WBBSE Solutions For Class 7 Maths

If the product of two or more expressions is equal to another expression then those expressions are called the factors of the product.

Example: If p x q x r = x then the expressions p, q, and r are called the factors of x.

Therefore, by factorization of the expression x, three factors p, q, and r are obtained.

Math Solution Of Class 7 Wbbse Factorisation by a selection of common factors

If a polynomial contains one or more common factors in each of its terms then the common factor (or factors) are taken outside the bracket according to the distributive law and the remaining portion is kept inside the bracket.

Example:

⇒ \(a^2 b+a b+a b^2=a b(a+1+b)=a \times b \times(a+1+b)\)

⇒ \(x^3 y^2+x^2 y^3=x^2 y^2(x+y)=x \times x \times y x y x(x+y)\)

Factorization with the help of the formula of the square of a binomial

We know that, (a + b)2 = (a + b)(a + b) and (a -b)2 = (a-b) (a- b).

Some expressions can be factorised with the help of these two formulae.

Example: \(x^2+4 x y z+4 y^2 z^2\)

= \((x)^2+2 \cdot x \cdot 2 y z+(2 y z)^2=(x+2 y z)^2\)

Again, \(4 a^2-12 a b+9 b^2=(2 a)^2-2 \cdot 2 a \cdot 3 b+(3 b)^2\) 4a2 – 12ab + 9b2 = (2a)2 – 2.2a.3b + (3b)2

= \((2 a-3 b)^2=(2 a-3 b)(2 a-3 b)\)

Wbbse Class 7 Maths Solutions

Factorisation with the help of the formula of the difference of two squares

Applying the formula a2-b2 = (a + b) (a-b), some expressions can be factorised.

Example : \(25 x^2-81 y^2=(5 x)^2-(9 y)^2=(5 x+9 y)(5 x-9 y) .\)

Factorisation by the simultaneous application of the formulae of the square of a binomial and the difference of two squares

We know that, a2 + 2ab + b2 = (a + b)2 and a2 -b2 = (a + b) (a-b).

Some expressions may be factorised by applying these two formulae simultaneously.

Example: \(a^4+4\)

= \(\left(a^2\right)^2+(2)^2\)

= \(\left(a^2\right)^2+2 \cdot a^2 \cdot 2+(2)^2-4 a^2\)

= \(\left(a^2+2\right)^2-(2 a)^2=\left(a^2+2+2 a\right)\left(a^2+2-2 a\right)\)

= \(\left(a^2+2 a+2\right)\left(a^2-2 a+2\right)\)

 Algebra Chapter 6 Factorisation Exercise 6 Some Examples On Factorisation

Example 1. Factorise : 3x + 12.

Solution:

Given:

3x + 12

= 3.x + 3.4 = 3 (x + 4)

∴ 3 (x +4).

3x + 12 = 3 (x +4).

Example 2. Factorise : 25m – 35n.

Solution:

Given: 25m – 35n

25m – 35n = 5 x 5m – 5 x 7n

∴ 5 (5m- 7n)

25m – 35n = 5 (5m- 7n)

Math Solution Of Class 7 Wbbse

Example 3. Factorise : \(p^2 q r+p q^2 r+p q r^2\)

Solution:

Given: \(p^2 q r+p q^2 r+p q r^2\)

⇒ \(p^2 q r+p q^2 r+p q r^2\) = pqr (p + q + r)

∴pqr (p + q + r).

⇒ \(p^2 q r+p q^2 r+p q r^2\) = pqr (p + q + r).

Wbbse Class 7 Maths Solutions

Example 4. Factorise : \(4 a^4 b-6 a^3 b^2+12 a^2 b^3\)

Solution:

Given: \(4 a^4 b-6 a^3 b^2+12 a^2 b^3\)

⇒ \(4 a^4 b-6 a^3 b^2+12 a^2 b^3\)

∴ \(2 a^2 b\left(2 a^2-3 a b+6 b^2\right)\)

⇒ \(4 a^4 b-6 a^3 b^2+12 a^2 b^3\) = \(2 a^2 b\left(2 a^2-3 a b+6 b^2\right)\)

Example 5. Resolve into factors (ax + by) (p – q) – (ax + by) (q – r).

Solution:

Given:

(ax + by) (p-q)-(ax + by) (q – r)

= (ax +by) {(p-q)-(q- r)}

= (ax + by) (p-q-q + r)

= (ax + by) (p-2q + r)

∴ (ax +by) (p – 2q + r).

(ax + by) (p – q) – (ax + by) (q – r) = (ax +by) (p – 2q + r).

Example 6. Resolve into factors: \(x^2-(a+b) x+a b\)

Solution:

Given:

⇒ \(x^2-(a+b) x+a b\)

⇒ \(x^2-(a+b) x+a b=x^2-a x-b x+a b=x(x-a)-b(x-a)\)

∴ (x-a) (x- b)

⇒ \(x^2-(a+b) x+a b\) = (x-a) (x- b)

Example 7. Resolve into factors : (P + q) (a + b) + r(a + b) + c(p + q + r).

Solution:

Given:

(P + q) (a + b) + r(a + b) + c(p + q + r)

(P + q) (a + b) + r(a + b) + c{p + q + r)

= (a + b) (p + q + r) + c(p + q + r)

∴ (p + q + r) (a + b + c)

(P + q) (a + b) + r(a + b) + c(p + q + r) = (p + q + r) (a + b + c)

Example 8. Factorise : \(\text { 2ay }-x^2-y^2+z^2 \text {. }\)

Solution:

Given:

⇒ \(\text { 2ay }-x^2-y^2+z^2 \text {. }\)

= \((z)^2-(x-y)^2\)

= {z + (x – y)} {z – (x – y)}

= (z + x – y) (z – x + y)

∴ (z + x-y)(z-x + y).

\(\text { 2ay }-x^2-y^2+z^2 \text {. }\) = (z + x-y)(z-x + y).

Wbbse Class 7 Maths Solutions

Example 9. Resolve into factors \(9(x-y)^2-25(y-z)^2\)

Solution:

Given:

⇒ \(\left.9(x-y)^2-25(y-z)^2=\{3(x-y)\}^2-\{50-z)\right\}^2\)

= \((3 x-3 y)^2-(5 y-5 z)^2\)

= {(3x – 3y) + (5y – 5z)} {(3x – zy) – (5y – 5z)}

= (3x – 3y + 5y – 5z) (3x – 3y – 5y + 5z)

= (3x + 2y – 5z) (3x – 8y + 5z)

∴ (3x + 2y – 5z) (3x -8y+ 5z).

⇒ \(9(x-y)^2-25(y-z)^2\) = (3x + 2y – 5z) (3x -8y+ 5z).

Example 10. Resolve into factors: \(x^4+x^2 y^2+y^4\)

Solution:

Given:

⇒ \(x^4+x^2 y^2+y^4\)

= \(\left(x^2\right)^2+2 \cdot x^2 \cdot y^2+\left(y^2\right)^2-x^2 y^2\)

= \(\left(x^2+y^2\right)^2-(x y)^2\)

= \(\left(x^2+y^2+x y\right)\left(x^2+y^2-x y\right)\)

= \(\left(x^2+x y+y^2\right)\left(x^2-x y+y^2\right)\)

∴ \(\left(x^2+x y+y^2\right)\left(x^2-x y+y^2\right)\)

⇒ \(x^4+x^2 y^2+y^4\) = \(\left(x^2+x y+y^2\right)\left(x^2-x y+y^2\right)\)

Example 11. Resolve into factors : \(x^2-y^2-6 x a+2 y a+8 a^2\)

Solution:

Given:

⇒ \(x^2-y^2-6 x a+2 y a+8 a^2\)

= \(x^2-6 x a+9 a^2-y^2+2 y a-a^2\)

= \((x)^2-2 \cdot x \cdot 3 a+(3 a)^2-\left(y^2-2 y a+a^2\right)\)

= \((x-3 a)^2-(y-a)^2\)

= {(x – 3a) + (y – a)} {(x – 3a) – (y – a)}

= (x – 3a + y – a) (x – 3a – y + a)

= (x + y-4a) (x-y – 2a)

∴ (x + y- 4a) (x-y – 2a).

⇒ \(x^2-y^2-6 x a+2 y a+8 a^2\) = (x + y- 4a) (x-y – 2a).

Wbbse Class 7 Maths Solutions

Example 12. Factorise: \(4 a^2-1+9 b^2-25 c^2+12 a b-10 c\)

Solution:

Given:

⇒ \(4 a^2-1+9 b^2-25 c^2+12 a b-10 c\)

⇒ \(4 a^2-1+9 b^2-25 c^2+12 a b-10 c\)

= \(4 a^2+12 a b+9 b^2-25 c^2-10 c-1\)

= \(\left(4 a^2+12 a b+9 b^2\right)-\left(25 c^2+10 c+1\right)\)

= \(\left\{(2 a)^2+2.2 a \cdot 3 b+(3 b)^2\right\}-\left\{(5 c)^2+2.5 c \cdot 1+(1)^2\right\}\)

= \((2 a+3 b)^2-(5 c+1)^2=\{(2 a+3 b)+(5 c+1)\}\{(2 a+3 b)-(5 c+1)\}\)

= (2a + 3b +5c + 1) (2a + 3b – 5c – 1)

(2a + 3b + 5c + 1) (2a + 3b – 5c – 1).

⇒ \(4 a^2-1+9 b^2-25 c^2+12 a b-10 c\) = (2a + 3b + 5c + 1) (2a + 3b – 5c – 1).

Example 13. Factorise: \(9(5 c+6 d)^2-16(3 c-2 d)^2\)

Solution:

Given:

⇒ \(9(5 c+6 d)^2-16(3 c-2 d)^2\)

= \(\{3(5 c+6 d)\}^2-\{4(3 c-2 d)\}^2\)

= \((15 c+18 d)^2-(12 c-8 d)^2\)

= {(15c + 18d) + (12c – 8d)}{(15c + 18d) – (12c – 8d)}

= (15c+18d+12c-8d)(15c+18d-12c+ 8d)

∴ (27c + 10d)(3c + 26d)

⇒ \(9(5 c+6 d)^2-16(3 c-2 d)^2\) = (27c + 10d)(3c + 26d)

Wbbse Class 7 Maths Solutions

Example 14. Factorise : \(x^4+6 x^2 y^2+8 y^4\)

Solution:

Given:

⇒ \(x^4+6 x^2 y^2+8 y^4\)

= \(\left(x^2\right)^2+2 \cdot x^2 \cdot 3 y^2+\left(3 y^2\right)^2-y^4\)

= \(\left.\left(x^2+3 y^2\right)^2-y^2\right)^2\)

= \(\left(x^2+3 y^2+y^2\right)\left(x^2+3 y^2-y^2\right)\)

= \(\left(x^2+4 y^2\right)\left(x^2+2 y^2\right)\)

∴ \(\left(x^2+4 y^2\right)\left(x^2+2 y^2\right)\)

⇒ \(x^4+6 x^2 y^2+8 y^4\) = \(\left(x^2+4 y^2\right)\left(x^2+2 y^2\right)\)

Example 15. Factorise: \(3 x^2-y^2+z^2-2 x y-4 x z\)

Solution:

Given:

⇒ \(3 x^2-y^2+z^2-2 x y-4 x z\)

= \(4 x^2-4 x z+z^2-x^2-2 x y-y^2\)

= \((2 x)^2-2 \cdot 2 x \cdot z+(z)^2-\left(x^2+2 x y+y^2\right)\)

= \((2 x-z)^2-(x+y)^2\)

= {(2x – z) + (x + y)}{(2x – z) – (x + y)}

= (2x – z + x + y){2x – z – x- y)

= (3x + y – z)(x -y-z)

= (x-y- z)(3x + y-z)

∴ (x – y – z){3x + y – z).

⇒ \(3 x^2-y^2+z^2-2 x y-4 x z\) = (x – y – z){3x + y – z).

Example 16. Factorise : \(4 b^2 c^2-\left(b^2+c^2-a^2\right)^2\)

Solution:

Given:

⇒ \(4 b^2 c^2-\left(b^2+c^2-a^2\right)^2\)

⇒ \(4 b^2 c^2-\left(b^2+c^2-a^2\right)^2=(2 b c)^2-\left(b^2+c^2-a^2\right)^2\)

= \(\left\{(2 b c)+\left(b^2+c^2-a^2\right)\right\}\left\{(2 b c)-\left(b^2+c^2-a^2\right)\right\}\)

= \(\left(2 b c+b^2+c^2-a^2\right)\left(2 b c-b^2-c^2+a^2\right)\)

= \(\left\{(b+c)^2-(a)^2\right\}\left\{(a)^2-(b-c)^2\right\}\)

= (b+ c + a)(b + c – a)(a + b – c)(a – b + c)

∴ (a + b + c)(a + b – c)(b + c – a)(c + a – b)

⇒ \(4 b^2 c^2-\left(b^2+c^2-a^2\right)^2\) = (a + b + c)(a + b – c)(b + c – a)(c + a – b)

Class Vii Math Solution Wbbse

Example 17. Resolve \(4 a^2-12 a b+9 b^2\) into two linear factors and find their sum.

Solution:

Given:

⇒ \(4 a^2-12 a b+9 b^2\)

= \((2 a)^2-2 \cdot 2 a \cdot 3 b+(3 b)^2\)

= \((2 a-3 b)^2=(2 a-3 b)(2 a-3 b)\)

Now, sum of the linear factors = 2a – 3b + 2a – 3b

∴ 4a – 6b

⇒ \(4 a^2-12 a b+9 b^2\) = 4a – 6b

Example 18. Resolve \(\frac{p}{q}\) – \(\frac{q}{p}\) into factors.

Solution:

⇒ \(\frac{p}{q}\) – \(\frac{q}{p}\)

= \(\frac{p^2-q^2}{p q}=\frac{(p+q)(p-q)}{p q}\)

= \(\left(\frac{p+q}{p}\right)\left(\frac{p-q}{q}\right)=\left(1+\frac{q}{p}\right)\left(\frac{p}{q}-1\right)\)

⇒ \(\frac{p}{q}\) – \(\frac{q}{p}\) = \(\left(\frac{p+q}{p}\right)\left(\frac{p-q}{q}\right)=\left(1+\frac{q}{p}\right)\left(\frac{p}{q}-1\right)\)

Example 19. Express a – 6 as the difference of two squares and factories.

Math Solution Of Class 7 Wbbse

Solution:

a – b

= \(\left(a^{\frac{1}{2}}\right)^2-\left(b^{\frac{1}{2}}\right)^2=\left(a^{\frac{1}{2}}+b^{\frac{1}{2}}\right)\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)\)

Example 20. Three factors of an expression are a, a + \(\frac{1}{a}\) and a – \(\frac{1}{a}\) find the expression.

Solution:

The required express

= \(a\left(a+\frac{1}{a}\right)\left(a-\frac{1}{a}\right)=a\left(a^2-\frac{1}{a^2}\right)=a^3-\frac{1}{a}\)

Example  21. Factorise : \(x^4-3 x^2 y^2+9 y^4\)

Solution:

Given:

⇒ \(x^4-3 x^2 y^2+9 y^4\)

= \(\left(x^2\right)^2+2 \cdot x^2 \cdot 3 y^2+\left(3 y^2\right)^2-9 x^2 y^2\)

= \(\left(x^2+3 y^2\right)^2-(3 x y)^2=\left(x^2+3 y^2+3 x y\right)\left(x^2+3 y^2-3 x y\right)\)

∴ \(\left(x^2+3 y^2+3 x y\right)\left(x^2+3 y^2-3 x y\right)\)

⇒ \(x^4-3 x^2 y^2+9 y^4\) =  \(\left(x^2+3 y^2+3 x y\right)\left(x^2+3 y^2-3 x y\right)\)

Class Vii Math Solution Wbbse

Example 22.  Factorise: \(\left(a^2-b^2\right)\left(c^2-d^2\right)-4 a b c d\)

Solution:

Given:

⇒ \(\left(a^2-b^2\right)\left(c^2-d^2\right)-4 a b c d\)

= \(a^2 c^2-a^2 d^2-b^2 c^2+b^2 d^2-4 a b c d\)

= \(a^2 c^2+b^2 d^2-2 a b c d-a^2 d^2-b^2 c^2-2 a b c d\)

= \(\left(a^2 c^2+b^2 d^2-2 a b c d\right)-\left(a^2 d^2+b^2 c^2+2 a b c d\right)\)

= \((a c-b d)^2-(a d+b c)^2\)

= (ac -bd + ad + bc) (ac – bd – ad – bc)

∴ (ac-bd + ad + bc) (ac-bd-ad-bc)

∴ \(\left(a^2-b^2\right)\left(c^2-d^2\right)-4 a b c d\) = (ac-bd + ad + bc) (ac-bd-ad-bc)

Math Solution Of Class 7 Wbbse

Example 23. Resolve into factors \(3 x^2-y^2-z^2-2 x y-4 x z\)

Solution:

Given:

⇒ \(3 x^2-y^2-z^2-2 x y-4 x z\)

= \(4 x^2-x^2-y^2+z^2-2 x y-4 x z=4 x^2+z^2-4 x z-x^2-y^2-2 x y\)

= \((2 x-z)^2-(x+y)^2=(2 x-z+x+y)(2 x-z-x-y)\)

= (3x+y-z) (x-y-z)

∴ (3x + y-z) (x-y – z).

∴ \(3 x^2-y^2-z^2-2 x y-4 x z\)  = (3x + y-z) (x-y – z).

Example 24. Factorise : 6xy – 9y + 4x – 6

Solution:

Given:

6xy – 9y + 4x – 6

6xy – 9y + 4x – 6 = 3y (2x – 3) + 2 (2x – 3)

∴ (2x – 3) ( 3y + 2)

6xy – 9y + 4x – 6 = (2x – 3) ( 3y + 2)

Example 25. Factorise: \(3 x^4+2 x^2 y^2-y^4\)

Solution:

Given:

⇒ \(3 x^4+2 x^2 y^2-y^4\)

= \(3 x^4+3 x^2 y^2-x^2 y^2-y^4\)

= \(3 x^2\left(x^2+y^2\right)-y^2\left(x^2+y^2\right)\)

∴ \(\left(x^2+y^2\right)\left(3 x^2-y^2\right)\)

∴ \(3 x^4+2 x^2 y^2-y^4\) = \(\left(x^2+y^2\right)\left(3 x^2-y^2\right)\)

Leave a Comment