WBBSE Solutions For Class 10 Maths Trigonometry Chapter 3 Trigonometric Ratios Of Complementary Angles
What is complementary angles?
Complementary angles
If the sum of any two angles of a triangle be 90° or one right angle, then the angles are called complementary angles to each other.
For example, Let ABC be a right-angled triangle of which ∠ACB = θ.
Then, ∠BAC = 90°- θ.
So that ∠ACB + ∠BAC = θ + 90° – θ = 90°.
Hence ∠ACB and ∠BAC are complementary angles to each other.
WBBSE Solutions for Class 10 Maths
Determination of trigonometrical ratios of complementary
Trigonometric ratios of (90° – θ)
Let straight lines XOX’ and YOY’ intersect each other at right angles at O and ∠XOP = 90°-0. So, ∠POY = θ.
Let us draw PN ⊥ OX and PM ⊥ OY.
∴ PN = OM and PM = ON,
Now, sin (90° – θ) = \(\frac{\mathrm{PN}}{\dot{\mathrm{OP}}}\) [by the definition of sin θ]
= \(\frac{\mathrm{OM}}{\mathrm{OP}}=\frac{\text { base } .}{\text { hypotenuse }}=\cos \theta\)
Similarly, cos (90°-θ) = \(\frac{\mathrm{ON}}{\mathrm{OP}}\) [by definition] = \(\frac{\mathrm{PM}}{\mathrm{OP}}\)
= \(\frac{\text { perpendicular }}{\text { hypotenuse }}=\sin \theta\)
tan (90°- 0) = \(\frac{\mathrm{PN}}{\mathrm{ON}}\) [ by definition ]
= \(\frac{\mathrm{OM}}{\mathrm{PM}}=\frac{\text { base }}{\text { perpendicular }}=\cot \theta\)
Also, \(\tan \left(90^{\circ}-\theta\right)=\frac{\sin \left(90^{\circ}-\theta\right)}{\cos \left(90^{\circ}-\theta\right)}=\frac{\cos \theta}{\sin \theta}=\cot \theta\)
\({cosec}\left(90^{\circ}-\theta\right)=\frac{\mathrm{OP}}{\mathrm{PN}}\) [by definition]= \(\frac{\mathrm{OP}}{\mathrm{OM}}\)
= \(\frac{\text { hypotenuse }}{\text { base }}=\sec \theta\)
Also, \({cosec}\left(90^{\circ}-\theta\right)=\frac{1}{\sin \left(90^{\circ}-\theta\right)}=\frac{1}{\cos \theta}=\sec \theta\)
\(\sec \left(90^{\circ}-\theta\right)=\frac{\mathrm{OP}}{\mathrm{ON}}\) [by definition]
= \(\frac{\mathrm{OP}}{\mathrm{PM}}=\frac{\text { hypotenuse }}{\text { perpendicular }}= {cosec} \theta\)
Also, \(\sec \left(90^{\circ}-\theta\right)=\frac{1}{\cos \left(90^{\circ}-\theta\right)}=\frac{1}{\sin \theta}={cosec} \theta\)
Again, \(\cot\left(90^{\circ}-\theta\right)=\frac{\mathrm{ON}}{\mathrm{PN}}\) [by definition]
= \(\frac{\mathrm{PM}}{\mathrm{OM}}=\frac{\text { perpendicular }}{\text { base }}=\tan \theta\)
Also, \(\cot \left(90^{\circ}-\theta\right)=\frac{\cos \left(90^{\circ}-\theta\right)}{\sin \left(90^{\circ}-\theta\right)}=\frac{\sin \theta}{\cos \theta}=\tan \theta\)
Hence We get,
- sin (90° – θ) = cos θ
- cos (90° – θ) = sinθ
- tan (90° – θ) = cot θ
- cosec (90° – θ) – sec θ
- sec (90° – θ) = cosec θ
- cot (90° – θ) = tan θ
From the above feature we see that, the trigonometric ratios of complementary angles change as per the following rules:
sin ⇔ cos
cosec ⇔ sec
tan ⇔ cot
Trigonometry Chapter 3 Trigonometric Ratios Of Complementary Angles Multiple Choice Questions
Example 1. The value of (sin 43° cos 47° + cos 43° sin 47°) is
- 1
- sin 4°
- cos 4°
- none of these
Solution: sin 43° cos 47° + cos 43° sin 47°
= sin 43° cos (90° – 43°) + cos 43° sin (90° – 43°)
= sin 43° sin 43° + cos 43° cos 43°
= sin2 43° + cos2 43° =1.
The value of (sin 43° cos 47° + cos 43° sin 47°) is 1.
∴ 1. 1 is correct.
Example 2. The value of \(\left(\frac{\tan 35^{\circ}}{\cot 55^{\circ}}+\frac{\cot 78^{\circ}}{\tan 12^{\circ}}\right)\) is
- 0
- 1
- 2
- 3
Solution: \(\left(\frac{\tan 35^{\circ}}{\cot 55^{\circ}}+\frac{\cot 78^{\circ}}{\tan 12^{\circ}}\right)\)
= \(\frac{\tan 35^{\circ}}{\cot \left(90^{\circ}-35^{\circ}\right)}+\frac{\cot 78^{\circ}}{\tan \left(90^{\circ}-78^{\circ}\right)}=\frac{\tan 35^{\circ}}{\tan 35^{\circ}}+\frac{\cot 78^{\circ}}{\cot 78^{\circ}}\)
= 1 + 1 = 2
The value of \(\left(\frac{\tan 35^{\circ}}{\cot 55^{\circ}}+\frac{\cot 78^{\circ}}{\tan 12^{\circ}}\right)\) is 2
∴ 3. 2 is correct.
Example 3. The value of { cos (40° + θ) – sin (50° – θ) } is
- 2 cos θ
- 7 sin θ
- 0
- none of these
Solution: cos (40° + θ) – sin (50° – θ)
= cos (40° + θ) – sin { 90° – (40° + θ)}
= cos (40° + θ) – cos (40° + θ) = 0
The value of { cos (40° + θ) – sin (50° – θ) } is 0
∴ 2. 0 is correct
Example 4. ABC is a triangle, sin\(\left(\frac{B+C}{2}\right)\)
- sin\(\frac{\mathbf{A}}{2}\)
- cos\(\frac{\mathbf{A}}{2}\)
- sin A
- cos A
Solution: Since ABC is a triangle,
∴ ∠A + ∠B + ∠C = 180° or, ∠B + ∠C = 180° – ∠A
or, \(\frac{\angle \mathrm{B}+\angle \mathrm{C}}{2}=90^{\circ}-\frac{\angle \mathrm{A}}{2}\)
∴ \(\sin \left(\frac{\mathrm{B}+\mathrm{C}}{2}\right)=\sin \left(90^{\circ}-\frac{\mathrm{A}}{2}\right)=\cos \frac{\mathrm{A}}{2}\)
∴ 2. cos\(\frac{\mathbf{A}}{2}\) is correct.
Example 5. If A + B = 90° and tan A = \(\frac{3}{4}\), then the value of cot B is
- \(\frac{3}{4}\)
- \(\frac{4}{3}\)
- 3
- 4
Solution: Given that A + B = 90° or, A = 90° – B
∴ tan A = \(\frac{3}{4}\) ⇒ tan (90°-B) = \(\frac{3}{4}\) ⇒ cot B = \(\frac{3}{4}\)
The value of cot B is \(\frac{3}{4}\)
∴ 1. \(\frac{3}{4}\) is correct.
Example 6. If sin 5θ = cos 4θ, then the value of θ is
- 1°
- 10°
- 30°
- 45°
Solution: sin 5θ = cos 4θ
or, sin5θ = sin (90° – 4θ)
∴ 5θ = 90° – 4θ
or, 5θ + 4θ = 90°
or, 9θ = 90°
or, θ = \(\frac{90^{\circ}}{9}\) =10°
The value of θ is 10°
∴ 2. 10° is correct.
Example 7. If tan 2θ = cot (θ + 15°), then the value of θ is
- 5°
- 10°
- 20°
- 25°
Solution: tan 2θ = cot (θ + 15°)
or, cot (90° – 2θ) = cot (θ + 15°)
∴ 90° – 2θ = θ + 15°
or, – 2θ – θ = 15° – 90°
or, -3θ = – 75°
or,θ = \(\frac{-75^{\circ}}{-3}\) = 25°
The value of θ is 25°
∴ 4. 25° is correct
Example 8. If A + B = 90°, then the value of sin2A + sin2B =
- -1
- 0
- 1
- \(\frac{1}{\sqrt{2}}\)
Solution: A + B = 90° ⇒ B = 90°- A.
Now, sin2A + sin2B
= sin2A + sin2 (90° – A)
= sin2A + cos2A = 1
The value of sin2A + sin2B =1
∴ 3. 1 is correct.
Example 9. \(\frac{\sin 30^{\circ} 17^{\prime}}{\cos 59^{\circ} 43^{\prime}}\) =
- -1
- \(\frac{1}{2}\)
- \(\frac{1}{\sqrt{2}}\)
- 1
Solution: \(\frac{\sin 30^{\circ} 17^{\prime}}{\cos 59^{\circ} 43^{\prime}}=\frac{\sin 30^{\circ} 17^{\prime}}{\cos \left(90^{\circ}-30^{\circ} 17^{\prime}\right)}\)
= \(\frac{\sin 30^{\circ} 17^{\prime}}{\sin 30^{\circ} 17^{\prime}}=1\)
∴ 4. 1 is correct
Example 10. tan 1° tan 2° tan 3° ………. tan 89° =
- 0
- 1
- √3
- undefined
Solution: tan 1° tan 2° tan 3° ………. tan 89°
= tan (90° – 89°) tan (90° – 88°) tan (90° – 87°)………..tan 87° tan 88° tan 89°.
= (cot 89° tan 89°) (cot 88° tan 88°) (cot 87° tan 87°)……… (cot 44° tan 44°) tan 45°
= \(\begin{aligned}
&\left(\cot 89^{\circ} \cdot \frac{1}{\cot 89^{\circ}}\right)\left(\cot 88^{\circ} \cdot \frac{1}{\cot 88^{\circ}}\right)\left(\cot 87^{\circ} \cdot \frac{1}{\cot 87^{\circ}}\right) \\
& \cdots \cdots\left(\cot 44^{\circ} \cdot \frac{1}{\cot 44^{\circ}}\right) \tan 45^{\circ}
\end{aligned}\)
= 1. 1..1. 1. ………1 = 1
∴ 2. 1 is correct.
Trigonometry Chapter 3 Trigonometric Ratios Of Complementary Angles True Or False
Example 1. If the sum of two angles is 90°, then they are called complementary angles to each other.
Solution: True
Example 2. The value of cos 54° and sin 36° are equal.
Solution: True
since cos 54° = cos (90° – 36°) = sin 36°.
Example 3. The simplified value of (sin 12° – cos 78°) is 1.
Solution: False
since (sin 12° – cos 78°) = Sin 12° – cos (90° – 12°) = sin 12° – sin 12° = 0.
Example 4. The values of sin 72° and cos 108° are equal.
Solution: False
since sin- 72° = sin (180° – 108°) = sin 108°.
Trigonometry Chapter 3 Trigonometric Ratios Of Complementary Angles Fill In The Blanks
Example 1. The value of (tan 15° x tan 45° x tan 60° x tan 75°) is ______
Solution: √3
since, We have, tan 15° x tan 45° x tan 60° x tan 75°
= (tan 15° x tan 75°) x tan 45° x tan 60°.
= tan 15° x cot 15° x 1 x √3 [∵ tan 75° = tan (90° – 15°) = cot 15°]
= tan 15° x \(\frac{1}{\tan 15^{\circ}}\) x √3 = 1 x √3 = √3.
The value of (tan 15° x tan 45° x tan 60° x tan 75°) =√3.
Example 2. The value of (sin 12° x cos 18° x sec 78° x cosec 72°) is_______
Solution: 1
since, We have, sin 12° x cos 18° x sec 78° x cosec 12°
= sin 12° x cos 18° x sec (90° – 12°) x cosec (90° – 18°)
= sin 12° x cos 18° x cosec 12° x sec 18°
= sin 12° x cos 18° x \(\frac{1}{\sin 12^{\circ}} \times \frac{1}{\cos 18^{\circ}}\) = 1 x 1 = 1.
The value of (sin 12° x cos 18° x sec 78° x cosec 72°)= 1.
Example 3. If A and B are complementary to each other, then sin A = _______
Solution: cos B
since A and B are complementary, then A + B = 90° or, A = 90° – B
⇒ sin A = sin (90°-B) = cos B.
sin A = cos B.
Example 4. cos 72° – sin 18° = ______
Solution: 0
since cos 72° – sin 18° = cos 72° – sin (90° – 12°) = cos 12° – cos 72° = 0.
cos 72° – sin 18° = 0.
Trigonometry Chapter 3 Trigonometric Ratios Of Complementary Angles Short Answer Type Questions
Example 1. If tan 4θ x tan 6θ = 1 and 6θ is a positive acute angle, then find the value of θ.
Solution: Given that tan 4θ x tan 6θ = 1.
⇒ tan 4θ = \(\frac{1}{\tan 6 \theta}\) ⇒ tan 4θ = cot 6θ
⇒ tan 4θ ⇒ tan (90°-6θ)
⇒ 4θ = 90°-6θ ⇒ 4θ + 6θ = 90°
⇒ 10θ = 90°
⇒ θ = \(\frac{90^{\circ}}{10}\) ⇒ θ = 9°
Hence the value of θ is 9°
Example 2. If sec 5A = cosec (A + 36°) and 5A is a positive acute angle, then find the value of A.
Solution: Given that sec 5A = cosec (A + 36°)
or, cosec (90° – 5A) = cosec (A + 36°)
⇒ 90°- 5A = A + 36°
⇒ – 5A – A = 36°- 90°
⇒ -6A = -54°
⇒ A = \(\frac{-54^{\circ}}{-6}\)
⇒ A = 9°.
Hence the required value of A is 9°.
Example 3. Find the value of \(\frac{2 \sin ^2 63^{\circ}+1+2 \sin ^2 27^{\circ}}{3 \cos ^2 17^{\circ}-2+3 \cos ^2 73^{\circ}}\)
Solution: \(\frac{2 \sin ^2 63^{\circ}+1+2 \sin ^2 27^{\circ}}{3 \cos ^2 17^{\circ}-2+3 \cos ^2 73^{\circ}}\)
= \(\frac{2 \sin ^2 63^{\circ}+2 \sin ^2\left(90^{\circ}-63^{\circ}\right)+1}{3 \cos ^2 17^{\circ}-2+3 \cos ^2\left(90^{\circ}-17^{\circ}\right)}=\frac{2 \sin ^2 63^{\circ}+2 \cos ^2 63^{\circ}+1}{3 \cos ^2 17^{\circ}-2+3 \sin ^2 17^{\circ}}\)
= \(\frac{2\left(\sin ^2 63^{\circ}+\cos ^2 63^{\circ}\right)+1}{3\left(\cos ^2 17^{\circ}+\sin ^2 17^{\circ}\right)-2}=\frac{2 \times 1+1}{3 \times 1-2}\)
= \(\frac{2+1}{3-2}=\frac{3}{1}=3\)
Hence the required value is 3.
Example 4. Find the value of tan 1° x tan 2° x tan 3° x……..tan 89°
Solution: tan 1° x tan 2° x tan 3° x………x tan 89°
= tan 1° x tan 2° x tan 3° x…………x tan 87° x tan 88° x tan 89°.
= tan 1° x tan 2° x tan 3° x…….x tan (90° – 3°) x tan (90° – 2°)x tan (90° – 1°)
= tan 1° x’ tan 2° x tan 3° x………..x cot 3° x cot 2° x cot 1°
= (tan 1° x cot 1°) x (tan 2° x cot 2°) x (tan 3° x cot 3°) x……….x (tan 44° x cot 44°) x tan 45°x (tan 44° x cot 44°) x tan 45°
= 1 X 1 X 1 X……….x 1 x tan 45° = 1 x 1 = 1.
Hence the required value is 1.
Example 5. Find the value of cot 17° \(\left(\cot 73^{\circ} \cos ^2 22^{\circ}+\frac{1}{\tan 73^{\circ} \sec ^2 68^{\circ}}\right)\)
Solution: cot 17° \(\left(\cot 73^{\circ} \cos ^2 22^{\circ}+\frac{1}{\tan 73^{\circ} \sec ^2 68^{\circ}}\right)\)
= cot 17° (cot 73° cos2 22° + cot 73° cos2 68°)
= cot (90° – 73°) { cot 73° cos2 22° + cot 73° cos2 (90° – 22°)}
= tan 73°. cot 73° (cos2 22° + sin2 22°)
= tan 73°. \(\frac{1}{\tan 73^{\circ}}\) x 1 = 1×1 = 1.
Hence the required value = 1.
Example 6. If sin 10θ = cos 8θ and 10θ is a positive acute angle, then find the value of tan 9θ.
Solution: Given that sin 10θ = cos 8θ and 10θ is acute.
∴ sin 10θ = sin (90° – 8θ)
⇒ 10θ = 90°-8θ
⇒10θ + 8θ = 90°
⇒ 18 θ = 90°
⇒ θ = \(\frac{90^{\circ}}{18}\)
⇒ θ = 5°
⇒ 9θ = 9×5° = 45°
⇒ tan 9θ = tan 45°
⇒ tan 9θ = 1.
Hence the value of tan 9θ = 1.
Example 7. If α + β = \(\frac{\pi}{2}\) then prove that \(\cos \alpha=\sqrt{\frac{\sin \alpha}{\cos \beta}-\sin \alpha \cos \beta}\)
Solution: LHS = cos α
RHS = \(\cos \alpha=\sqrt{\frac{\sin \alpha}{\cos \beta}-\sin \alpha \cos \beta}\)
= \(\sqrt{\frac{\sin \alpha}{\cos \left(90^{\circ}-\alpha\right)}-\sin \alpha \cos \left(90^{\circ}-\alpha\right)}\)
[∵ α + β = 90° ⇒ β = 90°-α]
= \(\sqrt{\frac{\sin \alpha}{\sin \alpha}-\sin \alpha \cdot \sin \alpha}\)
= \(\sqrt{1-\sin ^2 \alpha}=\sqrt{\cos ^2 \alpha}=\cos \alpha\)
∴ LHS = RHS. [Proved]
Example 8. If sin 17° = \(\frac{x}{y}\), then prove that sec 17°- sin 73° = \(=\frac{x^2}{y \sqrt{y^2-x^2}}\)
Solution: LHS = sec 17° – sin 73°
= \(\frac{1}{\cos 17^{\circ}}\) -sin (90° -17°)
= \(\frac{1}{\cos 17^{\circ}}\) -cos 17° = \(\frac{1-\cos ^2 17^{\circ}}{\cos 17^{\circ}}\)
= \(\frac{\sin ^2 17^{\circ}}{\sqrt{1-\sin ^2 17^{\circ}}}=\frac{\left(\frac{x}{y}\right)^2}{\sqrt{1-\left(\frac{x}{y}\right)^2}}\)
= \(\frac{\frac{x^2}{y^2}}{\sqrt{1-\frac{x^2}{y^2}}}\)
= \(\frac{\frac{x^2}{y^2}}{\sqrt{\frac{y^2-x^2}{y^2}}}\)
= \(\frac{\frac{x^2}{y^2}}{\frac{\sqrt{y^2-x^2}}{y}}\)
= \(\frac{x^2}{y^2} \times \frac{y}{\sqrt{y^2-x^2}}=\frac{x^2}{y \sqrt{y^2-x^2}}\)
Hence sec 17° – sin 73° = \(\frac{x^2}{y \sqrt{y^2-x^2}}\) [proved]
Example 9. If sin 51° = \(\frac{a}{\sqrt{a^2+b^2}}\), then find the value of tan 39°.
Solution: sin 51° = \(\frac{a}{\sqrt{a^2+b^2}}\)
or, \(\sin ^2 51^{\circ}=\frac{a^2}{a^2+b^2}\) [squaring]
or, \(\sin ^2\left(90^{\circ}-39^{\circ}\right)=\frac{a^2}{a^2+b^2}\)
or, \(\cos ^2 39^{\circ}=\frac{a^2}{a^2+b^2}\)
or, \(\sec ^2 39^{\circ}=\frac{a^2+b^2}{a^2}\)
or, \(1+\tan ^2 39^{\circ}=\frac{a^2+b^2}{a^2}\)
or, \(\tan ^2 39^{\circ}=\frac{a^2+b^2}{a^2}-1\)
or, \(\tan ^2 39^{\circ}=\frac{a^2+b^2-a^2}{a^2}\)
or, \(\tan ^2 39^{\circ}=\frac{b^2}{a^2}\)
or, \(\tan 39^{\circ}=\frac{b}{a}\)
Hence \(\tan 39^{\circ}=\frac{b}{a}\)
Example 10. If √2 sin (α-β) =1 and α, β are complementary, then find the value of α and β.
Solution: Given that √2 sin (α- β) = 1
or, sin (α- β) = \(\frac{1}{\sqrt{2}}\) = sin 45°
⇒ α – β = 45° …………(1)
Also, α + β = 90° …………(2) [∵ α, β are complementary. ]
Now, adding (1) and (2) we get,
2α = 135° or, α = \(\frac{135^{\circ}}{2}\) = 67.5°.
From (2) we get, β = 90° – α = 90° – 67.5° = 22.5°
Hence α = 67.5° and β = 22.5°.
Trigonometry Chapter 3 Trigonometric Ratios Of Complementary Angles Long Answer Type Questions
Example 1. Prove that if two angles α and β are complementary angles, then
- sin2α + sin2β = 1
- cotβ + cosβ = \(\frac{\cos \beta}{\cos \alpha}\) (1 +sinβ).
- \(\frac{\sec \alpha}{\cos \alpha}\) – cot2β = 1
Solution:
1. LHS = sin2α + sin2β
= sin2α + sin2(90° – α) [∵ α +β = 90° ]
= sin2α + cos2α = 1.
Hence sin2α + cos2α = 1. [Proved]
2. LHS = cotβ + cosβ = \(\frac{\cos \beta}{\cos \beta}\) + cos β = \(\frac{\cos \beta}{\sin \left(90^{\circ}-\alpha\right)}\) + cos β
= \(\frac{\cos \beta}{\cos \alpha}+\cos \beta=\frac{\cos \beta}{\cos \alpha}(1+\cos \alpha)\)
= \(\frac{\cos \beta}{\cos \alpha}\left\{1+\cos \left(90^{\circ}-\beta\right)\right\}=\frac{\cos \beta}{\cos \alpha}(1+\sin \beta)\)
Hence cot β + cos β = \(\frac{\cos \beta}{\cos \alpha}(1+\sin \beta)\) [proved]
3. LHS = \(\frac{\sec \alpha}{\cos \alpha}\) – cot2β
= sec. \(\frac{1}{\cos \alpha}\) – cot2(90°-α) [∵ α + β = 90° ]
= sec α.sec α- tan2α = sec2α- tan2α = 1.
Example 2. Prove that sec212°- \(\frac{1}{\tan ^2 78^{\circ}}\) = 1.
Solution: sec212° – \(\frac{1}{\tan ^2 78^{\circ}}\)
= sec212° – cot278° = sec212° – cot2 (90° – 12°)
= sec212° – tan212° = 1.
Hence sec212° – \(\frac{1}{\tan ^2 78^{\circ}}\) = 1. [Proved]
Example 3. If A + B = 90°, then prove that 1 + \(\frac{\tan A}{\tan B}\)= sec2A.
Solution: A + B = 90° ⇒ B = 90°- A
∴ \(1+\frac{\tan \mathrm{A}}{\tan \mathrm{B}}=1+\frac{\tan \mathrm{A}}{\tan \left(90^{\circ}-\mathrm{A}\right)}\)
= \(1+\frac{\tan \mathrm{A}}{\cot \mathrm{A}}=1+\tan \mathrm{A} \cdot \tan \mathrm{A}\)
= 1 + tan2A = sec2A
Hence \(1+\frac{\tan \mathrm{A}}{\tan \mathrm{B}}\) = sec2A. ( Proved )
Example 4. Prove that
- cosec248° – tan242° = 1
- sec 70° sin 20° + cos 20° cosec 70° = 2.
Solution:
1. cosec248° – tan242°
= cosec2(90° – 42°) – tan242
= sec242° – tan242° =1.
Hence cosec248° – tan242° = 1 . [ Proved ]
2. sec 70° sin 20° + cos 20° cosec 70°
= sec 70° sin (90° – 70°) + cos 20° cosec (90° – 20°)
= sec 70° cos 70° + cos 20° sec 20°
= \(\frac{1}{\cos 70^{\circ}}\). cos 70° + cos 20°. \(\frac{1}{\cos 20^{\circ}}\)
= 1 + 1=2.
Hence sec 70° sin 20° + cos 20° cosec 70° = 2. [ Proved ]
Example 5. Prove that cosec222° cot268° = sin222° + sin268° + cot268°.
Solution: cosec222° cot268° = cosec2(90° – 68°) cot268°
= sec268° cot268° = (1 + tan268°) cot268°
= cot268° + tan268° cot268°
= cot268° + tan268°. \(\frac{1}{\tan ^2 68^{\circ}}\)
= cot268° + 1
= cot268° + sin222° + cos222°
= cot268° + sin222° + cos2(90° – 68°)
= cot268° + sin222° + sin268°
= sin222° + sin268° + cot268°.
Hence cosec222° cot268° = sin222° + sin268° + cot268°. [Proved]
Example 6. Prove that cot 12° cot 38° cot 52° cot 78° cot 60°= \(\frac{1}{\sqrt{3}}\)
Solution: cot 12° cot 38° cot 52° cot 78° cot 60°
= (cot 12° cot 78°) (cot 38° cot 52°) cot 60°
= {cot 12° cot (90° – 12°)} [cot 38° cot (90° – 38°)} cot 60°.
= (cot 12° tan 12°) (cot 38° tan 38°) cot 60°.
= 1 x 1 x \(\frac{1}{\sqrt{3}}\) = \(\frac{1}{\sqrt{3}}\)
Hence cot 12 cot 38° cot 52° cot 78° cot 60° = \(\frac{1}{\sqrt{3}}\) [proved]
Example 7. ABCD Is a rectangular figure, joining A, C to prove that
- tan ∠ACD = cot ∠ACB
- tan2 ∠CAD + 1 = \(\frac{1}{\sin ^2 \angle B A C}\)
Solution:
1. tan ∠ACD
= tan (90° – ∠ACB) [∵ ∠ACD + ∠ACB = 90°]
= cot ∠ACB.
Hence tan ∠ACD = cot ∠ACB. [Proved].
2. tan2 ∠CAD + 1
= sec2 ∠CAD
= \(\frac{1}{\cos ^2 \angle \mathrm{CAD}}\)
= \(\frac{1}{\cos ^2\left(90^{\circ}-\angle \mathrm{BAC}\right)}\)
[∵ ∠CAD + ∠BAC = 90°]
= \(\frac{1}{\sin ^2 \angle \mathrm{CAD}}\)
Hence tan2 ∠CAD + 1 = \(\frac{1}{\sin ^2 \angle \mathrm{CAD}}\) [proved]
Example 8. Find the value of sin2 5° + sin2 10° + sin2 15° +…….+ sin2 90°.
Solution: sin2 5° + sin2 10° + sin2 15° + ………+ sin2 85° + sin2 90°.
= (sin2 5° + sin2 85°) + (sin2 10° + sin2 80°) + (sin2 15° + sin2 75°) + (sin2 20° + sin2 70°) + (sin2 25° + sin2 65°) + (sin2 30° + sin2 60°) + (sin2 35° + sin2 55°) + (sin2 40° + sin2 50°) + sin2 45° + sin2 90°
= {sin2 5° + sin2 (90° – 5°)} + {sin2 10° + sin2 (90° – 10°)} + {sin2 15° + sin2 (90°-15°)} + ……… + sin2 45° + sin2 90°.
= (sin2 5° + cos2 5°) + (sin2 10° + cos2 10°) + (sin2 15° + cos2 15°) ……………..+ sin2 45° + sin2 90°.
= 1 + 1 + 1 + (upto 8 terms) + \(\left(\frac{1}{\sqrt{2}}\right)^2\) + 1
= 8 + \(\frac{1}{2}\) + 1 =9 \(\frac{1}{2}\)
Hence the required value = 9 \(\frac{1}{2}\)
Example 9. AOB is a diameter of a circle with center O and C is any point on the circle, joining A, C; B, C; and O, C, prove that
- tan ∠ABC = cot ∠ACO
- sin2 ∠BCO + sin2 ∠ACO = 1.
- cosec2 ∠CAB – 1 = tan2 ∠ABC.
Solution:
since AOB is a diameter and C is any point on the circle,
∴ ∠ACB is a semicircular angle.
∴ ∠ACB = 90°
∴ AB is a hypotenuse of the right-angled triangle ABC.
Again, since ∠ACB = 90°, ∴ ∠BAC + ∠CBA = 90°.
Now, 1. tan ∠ABC = tan (90° – ∠CAB)
= cot ∠CAB……….(1)
Again, in ΔAOC, OA = OC [∵ radii of same circle]
⇒ ∠OAC = ∠ACO
⇒ ∠CAB = ∠ACO
∴ from (1) we get, tan ∠ABC = cot ∠ACO. [ Proved ]
2. sin2 ∠BCO + sin2 ∠ACO.
= sin2 ∠BCO + sin2 ∠OAC [OC = OA, ∴ ∠ACO = ∠OAC. ]
= sin2 ∠BCO + sin2 ∠CAB
= sin2 ∠BCO + sin2 (90° – ∠ABC)
= sin2 ∠BCO + cos2 ∠ABC
= sin2∠BCO + cos2 ∠OBC
= sin2 ∠BCO + cos2 ∠BCO [OB = OC, ∠OBC =∠BCO ]
= 1.
Hence sin2 ∠BCO + sin2∠ACO = 1 [Proved]
3. cosec2 ∠CAB – 1
= cot2 ∠CAB
= cot2 (90° – ∠ABC)
= tan2 ∠ABC.
Hence cosec2 ∠CAB – 1 = tan2 ∠ABC. [ Proved ]
Example 10. If sin α – cos α = 0 find the value of \(\sec \left(\frac{\pi}{2}-\alpha\right)+ {cosec}\left(\frac{\pi}{2}-\alpha\right)\)
Solution: \(\sec \left(\frac{\pi}{2}-\alpha\right)+ {cosec}\left(\frac{\pi}{2}-\alpha\right)\)
= cosec α + sec α = \(=\frac{1}{\sin \alpha}+\frac{1}{\cos \alpha}=\frac{\cos \alpha+\sin \alpha}{\sin \alpha \cos \alpha}\)
= \(\frac{\sin \alpha+\sin \alpha}{\sin \alpha \sin \alpha}\) [∵ sinα – cosα= 0 ⇒ sin α= cos α]
Again, sin α = cos α = sin (90° – α)
⇒ α = 90°- α or, 2α= 90° or, α = \(\frac{90^{\circ}}{2}\) = 45°.
∴ \(\frac{\sin \alpha+\sin \alpha}{\sin \alpha \cdot \sin \alpha}\)
= \(\frac{2 \sin \alpha}{\sin ^2 \alpha}=\frac{2}{\sin \alpha}\)
= \(\frac{2}{\sin 45^{\circ}}=\frac{2}{\frac{1}{\sqrt{2}}}=2 \sqrt{2}\)
Hence \(\sec \left(\frac{\pi}{2}-\alpha\right)+ {cosec}\left(\frac{\pi}{2}-\alpha\right)\)= 2√2.
Example 11. Prove that tan 20° + tan 70° = \(\frac{\sec ^2 20^{\circ}}{\sqrt{\sec ^2 20^{\circ}-1}}\)
Solution: tan 20° + tan 70°
= tan 20° + tan (90° – 20°)
= tan 20° + cot 20°
= tan 20° + \(\frac{1}{\tan 20^{\circ}}=\frac{\tan ^2 20^{\circ}+1}{\tan 20^{\circ}}\)
= \(\frac{\sec ^2 20^{\circ}}{\sqrt{\tan ^2 20^{\circ}}}=\frac{\sec ^2 20^{\circ}}{\sqrt{\sec ^2 20^{\circ}-1}}\)
Hence tan 20° + tan 70° = \(\frac{\sec ^2 20^{\circ}}{\sqrt{\sec ^2 20^{\circ}-1}}\) [Proved]