WBBSE Solutions For Class 10 Maths Trigonometry Chapter 3 Trigonometric Ratios Of Complementary Angles

WBBSE Solutions For Class 10 Maths Trigonometry Chapter 3 Trigonometric Ratios Of Complementary Angles

WBBSE Class 10 Trigonometric Ratios of Complementary Angles Overview

What is complementary angles? 

Complementary angles

If the sum of any two angles of a triangle be 90° or one right angle, then the angles are called complementary angles to each other.

For example, Let ABC be a right-angled triangle of which ∠ACB = θ.

WBBSE Solutions For Class 10 Maths Trigonometry Chapter 3 Trigonometric Ratios Of Complementary Angles Complementary Angles

Then, ∠BAC = 90°- θ.

So that ∠ACB + ∠BAC = θ + 90° – θ = 90°.

Hence ∠ACB and ∠BAC are complementary angles to each other.

WBBSE Solutions for Class 10 Maths

Determination of trigonometrical ratios of complementary

Trigonometric ratios of (90° – θ)

WBBSE Solutions For Class 10 Maths Trigonometry Chapter 3 Trigonometric Ratios Of Complementary Angles Determination Of Trigometrical Ratios Of Complementary Angles

Let straight lines XOX’ and YOY’ intersect each other at right angles at O and ∠XOP = 90°-0. So, ∠POY = θ.

Let us draw PN ⊥ OX and PM ⊥ OY.

∴ PN = OM and PM = ON,

Now, sin (90° – θ) = \(\frac{\mathrm{PN}}{\dot{\mathrm{OP}}}\) [by the definition of sin θ]

= \(\frac{\mathrm{OM}}{\mathrm{OP}}=\frac{\text { base } .}{\text { hypotenuse }}=\cos \theta\)

Similarly, cos (90°-θ) = \(\frac{\mathrm{ON}}{\mathrm{OP}}\) [by definition] = \(\frac{\mathrm{PM}}{\mathrm{OP}}\)

= \(\frac{\text { perpendicular }}{\text { hypotenuse }}=\sin \theta\)

tan (90°- 0) = \(\frac{\mathrm{PN}}{\mathrm{ON}}\) [ by definition ]

= \(\frac{\mathrm{OM}}{\mathrm{PM}}=\frac{\text { base }}{\text { perpendicular }}=\cot \theta\)

Also, \(\tan \left(90^{\circ}-\theta\right)=\frac{\sin \left(90^{\circ}-\theta\right)}{\cos \left(90^{\circ}-\theta\right)}=\frac{\cos \theta}{\sin \theta}=\cot \theta\)

\({cosec}\left(90^{\circ}-\theta\right)=\frac{\mathrm{OP}}{\mathrm{PN}}\) [by definition]= \(\frac{\mathrm{OP}}{\mathrm{OM}}\)

= \(\frac{\text { hypotenuse }}{\text { base }}=\sec \theta\)

Also, \({cosec}\left(90^{\circ}-\theta\right)=\frac{1}{\sin \left(90^{\circ}-\theta\right)}=\frac{1}{\cos \theta}=\sec \theta\)

\(\sec \left(90^{\circ}-\theta\right)=\frac{\mathrm{OP}}{\mathrm{ON}}\) [by definition]

= \(\frac{\mathrm{OP}}{\mathrm{PM}}=\frac{\text { hypotenuse }}{\text { perpendicular }}= {cosec} \theta\)

Also, \(\sec \left(90^{\circ}-\theta\right)=\frac{1}{\cos \left(90^{\circ}-\theta\right)}=\frac{1}{\sin \theta}={cosec} \theta\)

Again, \(\cot\left(90^{\circ}-\theta\right)=\frac{\mathrm{ON}}{\mathrm{PN}}\) [by definition]

= \(\frac{\mathrm{PM}}{\mathrm{OM}}=\frac{\text { perpendicular }}{\text { base }}=\tan \theta\)

Also, \(\cot \left(90^{\circ}-\theta\right)=\frac{\cos \left(90^{\circ}-\theta\right)}{\sin \left(90^{\circ}-\theta\right)}=\frac{\sin \theta}{\cos \theta}=\tan \theta\)

WBBSE Solutions For Class 10 Maths Trigonometry Chapter 3 Trigonometric Ratios Of Complementary Angles

Hence We get,

  1. sin (90° – θ) = cos θ
  2. cos (90° – θ) = sinθ
  3. tan (90° – θ) = cot θ
  4. cosec (90° – θ) – sec θ
  5. sec (90° – θ) = cosec θ
  6. cot (90° – θ) = tan θ

From the above feature we see that, the trigonometric ratios of complementary angles change as per the following rules:

sin ⇔ cos
cosec ⇔ sec
tan ⇔ cot

WBBSE Solutions for Class 10 History WBBSE Solutions for Class 10 Geography and Environment
WBBSE Class 10 History Long Answer Questions WBBSE Solutions for Class 10 Life Science And Environment
WBBSE Class 10 History Short Answer Questions WBBSE Solutions for Class 10 Maths
WBBSE Class 10 History Very Short Answer Questions WBBSE Solutions for Class 10 Physical Science and Environment
WBBSE Class 10 History Multiple Choice Questions

Trigonometry Chapter 3 Trigonometric Ratios Of Complementary Angles Multiple Choice Questions

Understanding Complementary Angles in Trigonometry

Example 1. The value of (sin 43° cos 47° + cos 43° sin 47°) is

  1. 1
  2. sin 4°
  3. cos 4°
  4. none of these

Solution: sin 43° cos 47° + cos 43° sin 47°

= sin 43° cos (90° – 43°) + cos 43° sin (90° – 43°)

= sin 43° sin 43° + cos 43° cos 43°

= sin2 43° + cos2 43° =1.

The value of (sin 43° cos 47° + cos 43° sin 47°) is 1.

∴ 1. 1 is correct.

Example 2. The value of \(\left(\frac{\tan 35^{\circ}}{\cot 55^{\circ}}+\frac{\cot 78^{\circ}}{\tan 12^{\circ}}\right)\) is

  1. 0
  2. 1
  3. 2
  4. 3

Solution: \(\left(\frac{\tan 35^{\circ}}{\cot 55^{\circ}}+\frac{\cot 78^{\circ}}{\tan 12^{\circ}}\right)\)

= \(\frac{\tan 35^{\circ}}{\cot \left(90^{\circ}-35^{\circ}\right)}+\frac{\cot 78^{\circ}}{\tan \left(90^{\circ}-78^{\circ}\right)}=\frac{\tan 35^{\circ}}{\tan 35^{\circ}}+\frac{\cot 78^{\circ}}{\cot 78^{\circ}}\)

= 1 + 1 = 2

The value of \(\left(\frac{\tan 35^{\circ}}{\cot 55^{\circ}}+\frac{\cot 78^{\circ}}{\tan 12^{\circ}}\right)\) is 2

∴ 3. 2 is correct.

Example 3. The value of { cos (40° + θ) – sin (50° – θ) } is

  1. 2 cos θ
  2. 7 sin θ
  3. 0
  4. none of these

Solution: cos (40° + θ) – sin (50° – θ)

= cos (40° + θ) – sin { 90° – (40° + θ)}

= cos (40° + θ) – cos (40° + θ) = 0

The value of { cos (40° + θ) – sin (50° – θ) } is 0

∴ 2. 0 is correct

Example 4. ABC is a triangle, sin\(\left(\frac{B+C}{2}\right)\)

  1. sin\(\frac{\mathbf{A}}{2}\)
  2. cos\(\frac{\mathbf{A}}{2}\)
  3. sin A
  4. cos A

Solution: Since ABC is a triangle,

∴ ∠A + ∠B + ∠C = 180° or, ∠B + ∠C = 180° – ∠A

or, \(\frac{\angle \mathrm{B}+\angle \mathrm{C}}{2}=90^{\circ}-\frac{\angle \mathrm{A}}{2}\)

∴ \(\sin \left(\frac{\mathrm{B}+\mathrm{C}}{2}\right)=\sin \left(90^{\circ}-\frac{\mathrm{A}}{2}\right)=\cos \frac{\mathrm{A}}{2}\)

∴ 2. cos\(\frac{\mathbf{A}}{2}\) is correct.

Example 5. If A + B = 90° and tan A = \(\frac{3}{4}\), then the value of cot B is

  1. \(\frac{3}{4}\)
  2. \(\frac{4}{3}\)
  3. 3
  4. 4

Solution: Given that A + B = 90° or, A = 90° – B

∴ tan A = \(\frac{3}{4}\) ⇒ tan (90°-B) = \(\frac{3}{4}\) ⇒ cot B = \(\frac{3}{4}\)

The value of cot B is \(\frac{3}{4}\)

∴ 1. \(\frac{3}{4}\) is correct.

Trigonometric Ratios for Complementary Angles

Example 6. If sin 5θ = cos 4θ, then the value of θ is

  1. 10°
  2. 30°
  3. 45°

Solution: sin 5θ = cos 4θ

or, sin5θ = sin (90° – 4θ)

∴ 5θ = 90° – 4θ

or, 5θ + 4θ = 90°

or, 9θ = 90°

or, θ = \(\frac{90^{\circ}}{9}\) =10°

The value of θ is 10°

∴ 2. 10° is correct.

Example 7. If tan 2θ = cot (θ + 15°), then the value of θ is

  1. 10°
  2. 20°
  3. 25°

Solution: tan 2θ = cot (θ + 15°)

or, cot (90° – 2θ) = cot (θ + 15°)

∴ 90° – 2θ = θ + 15°

or, – 2θ – θ = 15° – 90°

or, -3θ = – 75°

or,θ =  \(\frac{-75^{\circ}}{-3}\) = 25°

The value of θ is 25°

∴ 4. 25° is correct

Example 8. If A + B = 90°, then the value of sin2A + sin2B =

  1. -1
  2. 0
  3. 1
  4. \(\frac{1}{\sqrt{2}}\)

Solution: A + B = 90° ⇒ B = 90°- A.

Now, sin2A + sin2B

= sin2A + sin2 (90° – A)

= sin2A + cos2A = 1

The value of sin2A + sin2B =1

∴ 3. 1 is correct.

Example 9. \(\frac{\sin 30^{\circ} 17^{\prime}}{\cos 59^{\circ} 43^{\prime}}\) =

  1. -1
  2. \(\frac{1}{2}\)
  3. \(\frac{1}{\sqrt{2}}\)
  4. 1

Solution: \(\frac{\sin 30^{\circ} 17^{\prime}}{\cos 59^{\circ} 43^{\prime}}=\frac{\sin 30^{\circ} 17^{\prime}}{\cos \left(90^{\circ}-30^{\circ} 17^{\prime}\right)}\)

= \(\frac{\sin 30^{\circ} 17^{\prime}}{\sin 30^{\circ} 17^{\prime}}=1\)

∴ 4. 1 is correct

Example 10. tan 1° tan 2° tan 3° ………. tan 89° =

  1. 0
  2. 1
  3. √3
  4. undefined

Solution: tan 1° tan 2° tan 3° ………. tan 89°

= tan (90° – 89°) tan (90° – 88°) tan (90° – 87°)………..tan 87° tan 88° tan 89°.

= (cot 89° tan 89°) (cot 88° tan 88°) (cot 87° tan 87°)……… (cot 44° tan 44°) tan 45°

= \(\begin{aligned}
&\left(\cot 89^{\circ} \cdot \frac{1}{\cot 89^{\circ}}\right)\left(\cot 88^{\circ} \cdot \frac{1}{\cot 88^{\circ}}\right)\left(\cot 87^{\circ} \cdot \frac{1}{\cot 87^{\circ}}\right) \\
& \cdots \cdots\left(\cot 44^{\circ} \cdot \frac{1}{\cot 44^{\circ}}\right) \tan 45^{\circ}
\end{aligned}\)

= 1. 1..1. 1. ………1 = 1

∴ 2. 1 is correct.

Trigonometry Chapter 3 Trigonometric Ratios Of Complementary Angles True Or False

Examples of Trigonometric Ratios for Complementary Angles

Example 1. If the sum of two angles is 90°, then they are called complementary angles to each other.

Solution: True

Example 2. The value of cos 54° and sin 36° are equal.

Solution: True

since cos 54° = cos (90° – 36°) = sin 36°.

Example 3. The simplified value of (sin 12° – cos 78°) is 1.

Solution: False

since (sin 12° – cos 78°) = Sin 12° – cos (90° – 12°) = sin 12° – sin 12° = 0.

Example 4. The values of sin 72° and cos 108° are equal.

Solution: False

since sin- 72° = sin (180° – 108°) = sin 108°.

Trigonometry Chapter 3 Trigonometric Ratios Of Complementary Angles Fill In The Blanks

Example 1. The value of (tan 15° x tan 45° x tan 60° x tan 75°) is ______

Solution: √3

since, We have, tan 15° x tan 45° x tan 60° x tan 75°

= (tan 15° x tan 75°) x tan 45° x tan 60°.

= tan 15° x cot 15° x 1 x √3 [∵ tan 75° = tan (90° – 15°) = cot 15°]

= tan 15° x \(\frac{1}{\tan 15^{\circ}}\) x √3 = 1 x √3 = √3.

The value of (tan 15° x tan 45° x tan 60° x tan 75°)  =√3.

Example 2. The value of (sin 12° x cos 18° x sec 78° x cosec 72°) is_______

Solution: 1

since, We have, sin 12° x cos 18° x sec 78° x cosec 12°

= sin 12° x cos 18° x sec (90°  – 12°) x cosec (90° – 18°)

= sin 12° x cos 18° x cosec 12° x sec 18°

= sin 12° x cos 18° x \(\frac{1}{\sin 12^{\circ}} \times \frac{1}{\cos 18^{\circ}}\) = 1 x 1 = 1.

The value of (sin 12° x cos 18° x sec 78° x cosec 72°)= 1.

Example 3. If A and B are complementary to each other, then sin A = _______

Solution: cos B

since A and B are complementary, then A + B = 90° or, A = 90° – B

⇒ sin A = sin (90°-B) = cos B.

sin A = cos B.

Example 4. cos 72° – sin 18° = ______

Solution: 0

since cos 72° – sin 18° = cos 72° – sin (90° – 12°) = cos 12° – cos 72° = 0.

cos 72° – sin 18° = 0.

Trigonometry Chapter 3 Trigonometric Ratios Of Complementary Angles Short Answer Type Questions

WBBSE Class 10 Revision Notes on Complementary Angles

Example 1. If tan 4θ x tan 6θ = 1 and 6θ is a positive acute angle, then find the value of θ.

Solution: Given that tan 4θ x tan 6θ = 1.

⇒ tan 4θ = \(\frac{1}{\tan 6 \theta}\) ⇒ tan 4θ = cot 6θ

⇒ tan 4θ ⇒ tan (90°-6θ)

⇒ 4θ = 90°-6θ ⇒ 4θ + 6θ = 90°

⇒ 10θ = 90°

⇒ θ = \(\frac{90^{\circ}}{10}\) ⇒ θ = 9°

Hence the value of θ is 9°

Example 2. If sec 5A = cosec (A + 36°) and 5A is a positive acute angle, then find the value of A.

Solution: Given that sec 5A = cosec (A + 36°)

or, cosec (90° – 5A) = cosec (A + 36°)

⇒ 90°- 5A = A + 36°

⇒ – 5A – A = 36°- 90°

⇒ -6A = -54°

⇒ A = \(\frac{-54^{\circ}}{-6}\)

⇒ A = 9°.

Hence the required value of A is 9°.

Example 3. Find the value of \(\frac{2 \sin ^2 63^{\circ}+1+2 \sin ^2 27^{\circ}}{3 \cos ^2 17^{\circ}-2+3 \cos ^2 73^{\circ}}\)

Solution: \(\frac{2 \sin ^2 63^{\circ}+1+2 \sin ^2 27^{\circ}}{3 \cos ^2 17^{\circ}-2+3 \cos ^2 73^{\circ}}\)

= \(\frac{2 \sin ^2 63^{\circ}+2 \sin ^2\left(90^{\circ}-63^{\circ}\right)+1}{3 \cos ^2 17^{\circ}-2+3 \cos ^2\left(90^{\circ}-17^{\circ}\right)}=\frac{2 \sin ^2 63^{\circ}+2 \cos ^2 63^{\circ}+1}{3 \cos ^2 17^{\circ}-2+3 \sin ^2 17^{\circ}}\)

= \(\frac{2\left(\sin ^2 63^{\circ}+\cos ^2 63^{\circ}\right)+1}{3\left(\cos ^2 17^{\circ}+\sin ^2 17^{\circ}\right)-2}=\frac{2 \times 1+1}{3 \times 1-2}\)

= \(\frac{2+1}{3-2}=\frac{3}{1}=3\)

Hence the required value is 3.

Example 4. Find the value of tan 1° x tan 2° x tan 3° x……..tan 89°

Solution: tan 1° x tan 2° x tan 3° x………x tan 89°

= tan 1° x tan 2° x tan 3° x…………x tan 87° x tan 88° x tan 89°.

= tan 1° x tan 2° x tan 3° x…….x tan (90° – 3°) x tan (90° – 2°)x tan (90° – 1°)

= tan 1° x’ tan 2° x tan 3° x………..x cot 3° x cot 2° x cot 1°

= (tan 1° x cot 1°) x (tan 2° x cot 2°) x (tan 3° x cot 3°) x……….x (tan 44° x cot 44°) x tan 45°x (tan 44° x cot 44°) x tan 45°

= 1 X 1 X 1 X……….x 1 x tan 45° =  1 x 1 = 1.

Hence the required value is 1.

Example 5. Find the value of cot 17° \(\left(\cot 73^{\circ} \cos ^2 22^{\circ}+\frac{1}{\tan 73^{\circ} \sec ^2 68^{\circ}}\right)\)

Solution: cot 17° \(\left(\cot 73^{\circ} \cos ^2 22^{\circ}+\frac{1}{\tan 73^{\circ} \sec ^2 68^{\circ}}\right)\)

= cot 17° (cot 73° cos2 22° + cot 73° cos2 68°)

= cot (90° – 73°) { cot 73° cos2 22° + cot 73° cos2 (90° – 22°)}

= tan 73°. cot 73° (cos2 22° + sin2 22°)

= tan 73°. \(\frac{1}{\tan 73^{\circ}}\) x 1 = 1×1 = 1.

Hence the required value = 1.

Example 6. If sin 10θ = cos 8θ and 10θ is a positive acute angle, then find the value of tan 9θ.

Solution: Given that sin 10θ = cos 8θ and 10θ is acute.

∴ sin 10θ = sin (90° – 8θ)

⇒ 10θ = 90°-8θ

⇒10θ + 8θ = 90°

⇒ 18 θ = 90°

⇒ θ = \(\frac{90^{\circ}}{18}\)

⇒ θ = 5°

⇒ 9θ = 9×5° = 45°

⇒ tan 9θ = tan 45°

⇒ tan 9θ = 1.

Hence the value of tan 9θ = 1.

Applications of Complementary Angles in Real Life

Example 7. If α + β = \(\frac{\pi}{2}\) then prove that \(\cos \alpha=\sqrt{\frac{\sin \alpha}{\cos \beta}-\sin \alpha \cos \beta}\)

Solution: LHS = cos α

RHS = \(\cos \alpha=\sqrt{\frac{\sin \alpha}{\cos \beta}-\sin \alpha \cos \beta}\)

= \(\sqrt{\frac{\sin \alpha}{\cos \left(90^{\circ}-\alpha\right)}-\sin \alpha \cos \left(90^{\circ}-\alpha\right)}\)

[∵ α + β = 90° ⇒ β = 90°-α]

= \(\sqrt{\frac{\sin \alpha}{\sin \alpha}-\sin \alpha \cdot \sin \alpha}\)

= \(\sqrt{1-\sin ^2 \alpha}=\sqrt{\cos ^2 \alpha}=\cos \alpha\)

∴ LHS = RHS. [Proved]

Example 8. If sin 17° = \(\frac{x}{y}\), then prove that sec 17°- sin 73° = \(=\frac{x^2}{y \sqrt{y^2-x^2}}\)

Solution: LHS = sec 17° – sin 73°

= \(\frac{1}{\cos 17^{\circ}}\) -sin (90° -17°)

= \(\frac{1}{\cos 17^{\circ}}\) -cos 17° = \(\frac{1-\cos ^2 17^{\circ}}{\cos 17^{\circ}}\)

= \(\frac{\sin ^2 17^{\circ}}{\sqrt{1-\sin ^2 17^{\circ}}}=\frac{\left(\frac{x}{y}\right)^2}{\sqrt{1-\left(\frac{x}{y}\right)^2}}\)

= \(\frac{\frac{x^2}{y^2}}{\sqrt{1-\frac{x^2}{y^2}}}\)

= \(\frac{\frac{x^2}{y^2}}{\sqrt{\frac{y^2-x^2}{y^2}}}\)

= \(\frac{\frac{x^2}{y^2}}{\frac{\sqrt{y^2-x^2}}{y}}\)

= \(\frac{x^2}{y^2} \times \frac{y}{\sqrt{y^2-x^2}}=\frac{x^2}{y \sqrt{y^2-x^2}}\)

Hence sec 17° – sin 73° = \(\frac{x^2}{y \sqrt{y^2-x^2}}\) [proved]

Example 9. If sin 51° = \(\frac{a}{\sqrt{a^2+b^2}}\), then find the value of tan 39°.

Solution: sin 51° = \(\frac{a}{\sqrt{a^2+b^2}}\)

or, \(\sin ^2 51^{\circ}=\frac{a^2}{a^2+b^2}\) [squaring]

or, \(\sin ^2\left(90^{\circ}-39^{\circ}\right)=\frac{a^2}{a^2+b^2}\)

or, \(\cos ^2 39^{\circ}=\frac{a^2}{a^2+b^2}\)

or, \(\sec ^2 39^{\circ}=\frac{a^2+b^2}{a^2}\)

or, \(1+\tan ^2 39^{\circ}=\frac{a^2+b^2}{a^2}\)

or, \(\tan ^2 39^{\circ}=\frac{a^2+b^2}{a^2}-1\)

or, \(\tan ^2 39^{\circ}=\frac{a^2+b^2-a^2}{a^2}\)

or, \(\tan ^2 39^{\circ}=\frac{b^2}{a^2}\)

or, \(\tan 39^{\circ}=\frac{b}{a}\)

Hence \(\tan 39^{\circ}=\frac{b}{a}\)

Example 10. If √2 sin (α-β) =1 and α, β are complementary, then find the value of α and β.

Solution: Given that √2 sin (α- β) = 1

or, sin (α- β) = \(\frac{1}{\sqrt{2}}\) = sin 45°

⇒ α – β = 45° …………(1)

Also, α + β = 90° …………(2) [∵ α, β are complementary. ]

Now, adding (1) and (2) we get,

2α = 135° or, α = \(\frac{135^{\circ}}{2}\) = 67.5°.

From (2) we get, β = 90° – α = 90° – 67.5° = 22.5°

Hence α = 67.5° and β = 22.5°.

Trigonometry Chapter 3 Trigonometric Ratios Of Complementary Angles Long Answer Type Questions

Word Problems Involving Complementary Angles

Example 1. Prove that if two angles α and β are complementary angles, then

  1. sin2α + sin2β = 1
  2. cotβ + cosβ = \(\frac{\cos \beta}{\cos \alpha}\) (1 +sinβ).
  3. \(\frac{\sec \alpha}{\cos \alpha}\) – cot2β = 1

Solution:

1. LHS = sin2α + sin2β

= sin2α + sin2(90° – α) [∵ α +β = 90° ]

= sin2α + cos2α = 1.

Hence sin2α + cos2α = 1. [Proved]

2. LHS = cotβ + cosβ = \(\frac{\cos \beta}{\cos \beta}\) + cos β = \(\frac{\cos \beta}{\sin \left(90^{\circ}-\alpha\right)}\) + cos β

= \(\frac{\cos \beta}{\cos \alpha}+\cos \beta=\frac{\cos \beta}{\cos \alpha}(1+\cos \alpha)\)

= \(\frac{\cos \beta}{\cos \alpha}\left\{1+\cos \left(90^{\circ}-\beta\right)\right\}=\frac{\cos \beta}{\cos \alpha}(1+\sin \beta)\)

Hence cot β + cos β = \(\frac{\cos \beta}{\cos \alpha}(1+\sin \beta)\) [proved]

3. LHS = \(\frac{\sec \alpha}{\cos \alpha}\) – cot2β

= sec. \(\frac{1}{\cos \alpha}\) – cot2(90°-α) [∵ α + β = 90° ]

= sec α.sec α- tan2α = sec2α- tan2α = 1.

Example 2. Prove that sec212°- \(\frac{1}{\tan ^2 78^{\circ}}\) = 1.

Solution: sec212° – \(\frac{1}{\tan ^2 78^{\circ}}\)

= sec212° – cot278° = sec212° – cot2 (90° – 12°)

= sec212° – tan212° = 1.

Hence sec212° – \(\frac{1}{\tan ^2 78^{\circ}}\) = 1. [Proved]

Example 3. If A + B = 90°, then prove that 1 + \(\frac{\tan A}{\tan B}\)= sec2A.

Solution: A + B = 90° ⇒ B = 90°- A

∴ \(1+\frac{\tan \mathrm{A}}{\tan \mathrm{B}}=1+\frac{\tan \mathrm{A}}{\tan \left(90^{\circ}-\mathrm{A}\right)}\)

= \(1+\frac{\tan \mathrm{A}}{\cot \mathrm{A}}=1+\tan \mathrm{A} \cdot \tan \mathrm{A}\)

= 1 + tan2A = sec2A

Hence \(1+\frac{\tan \mathrm{A}}{\tan \mathrm{B}}\) = sec2A. ( Proved )

Example 4. Prove that

  1. cosec248° – tan242° = 1
  2. sec 70° sin 20° + cos 20° cosec 70° = 2.

Solution:

1. cosec248° – tan242°

= cosec2(90° – 42°) – tan242

= sec242° – tan242° =1.

Hence cosec248° – tan242° = 1 . [ Proved ]

2. sec 70° sin 20° + cos 20° cosec 70°

= sec 70° sin (90° – 70°) + cos 20° cosec (90° – 20°)

= sec 70° cos 70° + cos 20° sec 20°

= \(\frac{1}{\cos 70^{\circ}}\). cos 70° + cos 20°. \(\frac{1}{\cos 20^{\circ}}\)

= 1 + 1=2.

Hence sec 70° sin 20° + cos 20° cosec 70° = 2. [ Proved ]

Example 5. Prove that cosec222° cot268° = sin222° + sin268° + cot268°.

Solution: cosec222° cot268° = cosec2(90° – 68°) cot268°

= sec268° cot268° = (1 + tan268°) cot268°

= cot268° + tan268° cot268°

= cot268° + tan268°. \(\frac{1}{\tan ^2 68^{\circ}}\)

= cot268° + 1

= cot268° + sin222° + cos222°

= cot268° + sin222° + cos2(90° – 68°)

= cot268° + sin222° + sin268°

= sin222° + sin268° + cot268°.

Hence cosec222° cot268° = sin222° + sin268° + cot268°. [Proved]

Example 6. Prove that cot 12° cot 38° cot 52° cot 78° cot 60°= \(\frac{1}{\sqrt{3}}\)

Solution: cot 12° cot 38° cot 52° cot 78° cot 60°

= (cot 12° cot 78°) (cot 38° cot 52°) cot 60°

= {cot 12° cot (90° – 12°)} [cot 38° cot (90° – 38°)} cot 60°.

= (cot 12° tan 12°) (cot 38° tan 38°) cot 60°.

= 1 x 1 x \(\frac{1}{\sqrt{3}}\) = \(\frac{1}{\sqrt{3}}\)

Hence cot 12 cot 38° cot 52° cot 78° cot 60° = \(\frac{1}{\sqrt{3}}\) [proved]

Example 7. ABCD Is a rectangular figure, joining A, C to prove that

  1. tan ∠ACD = cot ∠ACB
  2.  tan2 ∠CAD + 1 = \(\frac{1}{\sin ^2 \angle B A C}\)

Solution:

WBBSE Solutions For Class 10 Maths Trigonometry Chapter 3 Trigonometric Ratios Of Complementary Angles Long Answer Question Example 7

 

1. tan ∠ACD

= tan (90° – ∠ACB) [∵ ∠ACD + ∠ACB = 90°]

= cot ∠ACB.

Hence tan ∠ACD = cot ∠ACB. [Proved].

2. tan2 ∠CAD + 1

= sec2 ∠CAD

= \(\frac{1}{\cos ^2 \angle \mathrm{CAD}}\)

= \(\frac{1}{\cos ^2\left(90^{\circ}-\angle \mathrm{BAC}\right)}\)

[∵ ∠CAD + ∠BAC = 90°]

= \(\frac{1}{\sin ^2 \angle \mathrm{CAD}}\)

Hence tan2 ∠CAD + 1 = \(\frac{1}{\sin ^2 \angle \mathrm{CAD}}\) [proved]

Example 8. Find the value of sin2 5° + sin2 10° + sin2 15° +…….+ sin2 90°.

Solution: sin2 5° + sin2 10° + sin2 15° + ………+ sin2 85° + sin2 90°.

= (sin2 5° + sin2 85°) + (sin2 10° + sin2 80°) + (sin2 15° + sin2 75°) + (sin2 20° + sin2 70°) + (sin2 25° + sin2 65°) + (sin2 30° + sin2 60°) + (sin2 35° + sin2 55°) + (sin2 40° + sin2 50°) + sin2 45° + sin2 90°

= {sin2 5° + sin2 (90° – 5°)} + {sin2 10° + sin2 (90° – 10°)} + {sin2 15° + sin2 (90°-15°)} + ……… + sin2 45° + sin2 90°.

= (sin2 5° + cos2 5°) + (sin2 10° + cos2 10°) + (sin2 15° + cos2 15°) ……………..+ sin2 45° + sin2 90°.

= 1 + 1 + 1 + (upto 8 terms) + \(\left(\frac{1}{\sqrt{2}}\right)^2\) + 1

= 8 + \(\frac{1}{2}\) + 1 =9 \(\frac{1}{2}\)

Hence the required value = 9 \(\frac{1}{2}\)

Visual Representation of Complementary Angles and Their Ratios

Example 9. AOB is a diameter of a circle with center O and C is any point on the circle, joining A, C; B, C; and O, C, prove that

  1. tan ∠ABC = cot ∠ACO
  2. sin2 ∠BCO + sin2 ∠ACO = 1.
  3. cosec2 ∠CAB – 1 = tan2 ∠ABC.

Solution:

WBBSE Solutions For Class 10 Maths Trigonometry Chapter 3 Trigonometric Ratios Of Complementary Angles Long Answer Question Example 9

since AOB is a diameter and C is any point on the circle,

∴ ∠ACB is a semicircular angle.

∴ ∠ACB = 90°

∴ AB is a hypotenuse of the right-angled triangle ABC.

Again, since ∠ACB = 90°, ∴ ∠BAC + ∠CBA = 90°.

Now, 1. tan ∠ABC = tan (90° – ∠CAB)

= cot ∠CAB……….(1)

Again, in ΔAOC, OA = OC [∵ radii of same circle]

⇒ ∠OAC = ∠ACO

⇒ ∠CAB = ∠ACO

∴ from (1) we get, tan ∠ABC = cot ∠ACO. [ Proved ]

2. sin2 ∠BCO + sin2 ∠ACO.

= sin2 ∠BCO + sin2 ∠OAC [OC = OA, ∴ ∠ACO = ∠OAC. ]

= sin2 ∠BCO + sin2 ∠CAB

= sin2 ∠BCO + sin2 (90° – ∠ABC)

= sin2 ∠BCO + cos2 ∠ABC

= sin2∠BCO + cos2 ∠OBC

= sin2 ∠BCO + cos2 ∠BCO [OB = OC, ∠OBC =∠BCO ]

= 1.

Hence sin2 ∠BCO + sin2∠ACO = 1 [Proved]

3. cosec2 ∠CAB – 1

= cot2 ∠CAB

= cot2 (90° – ∠ABC)

= tan2 ∠ABC.

Hence cosec2 ∠CAB – 1 = tan2 ∠ABC. [ Proved ]

Example 10. If sin α – cos α = 0 find the value of \(\sec \left(\frac{\pi}{2}-\alpha\right)+ {cosec}\left(\frac{\pi}{2}-\alpha\right)\)

Solution: \(\sec \left(\frac{\pi}{2}-\alpha\right)+ {cosec}\left(\frac{\pi}{2}-\alpha\right)\)

= cosec α + sec α = \(=\frac{1}{\sin \alpha}+\frac{1}{\cos \alpha}=\frac{\cos \alpha+\sin \alpha}{\sin \alpha \cos \alpha}\)

= \(\frac{\sin \alpha+\sin \alpha}{\sin \alpha \sin \alpha}\) [∵ sinα – cosα= 0 ⇒  sin α= cos α]

Again, sin α = cos α = sin (90° – α)

⇒ α = 90°- α or, 2α= 90° or, α = \(\frac{90^{\circ}}{2}\) = 45°.

∴ \(\frac{\sin \alpha+\sin \alpha}{\sin \alpha \cdot \sin \alpha}\)

= \(\frac{2 \sin \alpha}{\sin ^2 \alpha}=\frac{2}{\sin \alpha}\)

= \(\frac{2}{\sin 45^{\circ}}=\frac{2}{\frac{1}{\sqrt{2}}}=2 \sqrt{2}\)

Hence \(\sec \left(\frac{\pi}{2}-\alpha\right)+ {cosec}\left(\frac{\pi}{2}-\alpha\right)\)= 2√2.

Example 11. Prove that tan 20° + tan 70° = \(\frac{\sec ^2 20^{\circ}}{\sqrt{\sec ^2 20^{\circ}-1}}\)

Solution: tan 20° + tan 70°

= tan 20° + tan (90° – 20°)

= tan 20° + cot 20°

= tan 20° + \(\frac{1}{\tan 20^{\circ}}=\frac{\tan ^2 20^{\circ}+1}{\tan 20^{\circ}}\)

= \(\frac{\sec ^2 20^{\circ}}{\sqrt{\tan ^2 20^{\circ}}}=\frac{\sec ^2 20^{\circ}}{\sqrt{\sec ^2 20^{\circ}-1}}\)

Hence tan 20° + tan 70° = \(\frac{\sec ^2 20^{\circ}}{\sqrt{\sec ^2 20^{\circ}-1}}\) [Proved]

Leave a Comment