Algebra Chapter 2 Ratio And Proportion Different Types Of Ratio
Ratio of equality
If the terms of a ratio are equal, then it is called a ratio of equality.
For example, 2: 2; a: a; b: b are all ratios of equality.
Ratio of inequality
If the terms of a ratio are unequal, then it is called a ratio of inequality.
For example, 3:5; 6:7; a: b; c : d are all ratios of inequality.
Ratio of greater inequality
If the antecedent of a ratio is greater than its consequent, then the ratio is called a ratio of greater inequality.
For example, 6: 5 (6 >5), 11: 10 (11 > 10), etc.
Class 10 Maths Solutions Wbbse
WBBSE Solutions for Class 10 Maths
Ratio of less inequality
If the antecedent of a ratio is less than its consequent, then the ratio is called a ratio of less inequality.
For example, 3: 4 (3 < 4), 6: 7 (6 < 7), etc.
Inverse ratio
If in two ratios, the antecedent of one is consequent of the other and the consequent of one is the antecedent of the other, then the ratios are called inverse ratios of each other.
For example, 4 : 3 is the inverse ratio of 3: 4. b: a is the inverse ratio of a: b and vice versa. Any one of two inverse ratios is called the reciprocal of the other ratio.
[The product of a ratio with its inverse ratio is always 1.]
Simple and Compound or mixed ratios
Simple ratios
The ratios of the type ₹ 4 : ₹5; c : d; x: y are called simple ratios.
Mixed or Compound ratios
Class 10 Maths Solutions Wbbse
The ratio that is generated by taking the products of the antecedents of all the ratios as the antecedent and the product of all the consequents as the consequent, is called the mixed or compound ratio of that ratio.
For example, the mixed or compound ratio of the ratios a: b and c : d is ac: bd.
In general, the mixed or compound ratio of the ratios a1:b1;a2:b2;a3:b3;…..;an: bn is (a1a2a3…….an)(b1b2b3……bn) is
Duplicate ratio
The ratio which is made by taking the square of the antecedent of a given ratio as the antecedent and the square of the consequent of the given ratio as the consequent is called the duplicate ratio of the given ratio.
For example, the duplicate ratio of a given ratio a: b is a2:b2
In other words, if two ratios be the same, then the mixed or compound ratio of them is called the duplicate ratio of that ratios.
Sub-duplicate ratio
Class 10 Maths Solutions Wbbse
The ratio which is made by taking the square root of the antecedent of a given ratio as the antecedent and the square root of the consequent of the given ratio as the consequent is called the subduplicate ratio of the given ratio.
For example, the sub-duplicate ratio of the ratio (a: b) is the ratio (√a: √b)
Triplicate ratio
The ratio which is made by taking the cube of the antecedent of a given ratio as the antecedent and the cube of the consequent of the given ratio as the consequent is called the triplicate ratio of the given ratio.
For example, the triplicate ratio of the given ratio a: b is a: b
In other words, the mixed or compound ratio of three same given ratios is called the triplicate ratio of the ratios.
For example, a: b; a: b; a: b are three same ratios. The mixed or compound ratio is
a x a x a :b x b x b = a3: b3
∴ triplicate ratio of a: b is a3: b3
Sub-triplicate ratio
The ratio which is made by taking the cube-root of the antecedent of a given .ratio as the antecedent and the cube-root of the consequent of the given ratio as the consequent is called the sub-triplicate ratio of the ratios.
For example, the sub-triplicate ratio of 1: 8 is \(\sqrt[3]{1}: \sqrt[3]{8}\) = 1:2
Similarly, the sub-triplicate ratio of a: b is \(\sqrt[3]{a}: \sqrt[3]{b}\)
Class 10 Maths Solutions Wbbse
Algebra Chapter 2 Ratio And Proportion Examples
Example 1. Calculate what ratio and x2: yz will form the mixed ratio xy: z2.
Solution: Let a : b and x2 : yz will form the mixed ratio xy : z2.
∴ a x x2 : b x yz = xy : z2
or, \(\frac{a x^2}{b y z}=\frac{x y}{z^2}\)
or, \(\frac{a}{b}=\frac{x y \times y z}{x^2 \times z^2}=\frac{y^2}{x z}\)
∴ a:b =y2 :xz
Hence the required ratio is y2 :xz
Example 2. Find the compound ratio of the inverse ratios of the ratios \(x^2: \frac{y z}{x}, y^2: \frac{z x}{y} \text { and } z^2: \frac{x y}{z}\)
Solution: The inverse ratios of the ratios \(x^2: \frac{y z}{x}, y^2: \frac{z x}{y} \text { and } z^2: \frac{x y}{z}\) respectively.
∴ their compound ration
= \(\left(\frac{y z}{x} \times \frac{z x}{y} \times \frac{x y}{z}\right):\left(x^2 \times y^2 \times z^2\right)\)
=x y z:\(x^2 y^2 z^2\)
= \(\frac{x y z}{x^2 y^2 z^2}=1: x y z\)
Hence the required compound ration = 1:xyz
Example 3. Find the compound ratio of the ratios (x + y) : (x – y), (x2 + y2) : (x + y)2 and (x2 – y2)2 : (x4 – y4).
Solution: The compound ratio of the ratios (x + y):(x-y),(x2+y2):(x + y)2 and (x2-y2) :(x4-y4).
= \((x+y)\left(x^2+y^2\right)\left(x^2-y^2\right)^2:(x-y)(x+y)^2\left(x^4-y^4\right)\)
= \(\frac{(x+y)\left(x^2+y^2\right)\left(x^2-y^2\right)^2}{(x-y)(x+y)^2\left(x^4-y^4\right)}\)
= \(\frac{(x+y)\left(x^2+y^2\right)\{(x+y)(x-y)\}^2}{(x-y)(x+y)^2\left(x^2+y^2\right)\left(x^2-y^2\right)}\)
= \(\frac{(x+y)^2(x-y)^2}{(x-y)(x+y)\left(x^2-y^2\right)}=\frac{(x+y)(x-y)}{x^2-y^2}\)
= \(\frac{x^2-y^2}{x^2-y^2}=\frac{1}{1}=1: 1\)
Hence the required compound ratio = 1:1
Example 4. If A: B = 2 : 3, B: C = 4: 5, and C : D = 6: 7, then find A : D.
Solution: We have, A:B = 2:3
⇒ \(\frac{A}{B}\) = \(\frac{2}{3}\) ….(1)
B: C = 4: 5
⇒ \(\frac{B}{C}\) = \(\frac{4}{5}\) ….(2)
C: D = 6: 7
⇒ \(\frac{C}{D}\) = \(\frac{6}{7}\) ….(3)
Now applying (1) x (2) x (3) we get
\(\frac{A}{B} \times \frac{B}{C} \times \frac{C}{D}\)
= \(\frac{2}{3} \times \frac{4}{5} \times \frac{6}{7}\)
⇒ \(\frac{A}{D}=\frac{16}{35}\)
⇒ A: D = 16: 35
∴ A: D = 16: 35
Example 5. If a: b = 2 : 3, b: c = 4:7, then find a: b: c.
Solution: We have, a : b =(2 : 3) x 4 = 8 : 12 ….(1)
b : c = (4 : 7) x 3 = 12 : 21 …(2)
[Here b has been made equal.]
∴ a:b:c = 8 : 12: 21.
Example 6. If p: q = 5: 7 and p – q = – 4, then find the value of (3p+ 4q).
Solution: We have, p: q = 5: 7
or, \(\frac{p}{q}\) = \(\frac{5}{7}\) = \(\frac{5k}{7k}\)[k≠0]
∴ Let p = 5k and q = 7k.
Also, p- q =-4 or, 5k – 7k = – 4
or, -2k =-4 or, k = \(\frac{-4}{-2}\)= 2.
∴ p = 5k = 5 x 2 = 10 and q = 7k = 7 x 2 = 14.
∴ 3p+ 4q= 3 x 10 + 4 x 14 = 30 + 56 = 86.
Hence the required value = 86.
Example 7. If x: y = 5: 7, then find (2y – x) : (3x + y).
Solution: We have, x : y = 5 : 7
or, \(\frac{x}{y}\) = \(\frac{5}{7}\)
⇒ \(\frac{x}{y}\) = \(\frac{5k}{7k}\)
∴ Let x = 5k and y =7k
Now, (2y-x):(3x+ y) =
= \(\frac{2 y-x}{3 x+y}=\frac{2 \times 7 k-5 k}{3 \times 5 k+7 k}\)
= \(\frac{14 k-5 k}{15 k+7 k}=\frac{9 k}{22 k}=\frac{9}{22}=9: 22\)
Hence (2y-x):(3x+y) = 9:22
Maths Solutions Class 10 Wbbse
Algebra Chapter 2 Ratio And Proportion Short Answer Type Questions
Example 1. If (5x- 3y) : (2x+ 4y) = 11 : 12, then find x: y
Solution: Given that, (5x – 3y) : (2x+ 4y)= 11 : 12
or, \(\frac{5 x-3 y}{2 x+4 y}=\frac{11}{12}\)
or, 60x – 36y = 22x + 44y
or, 60x – 22x = 44y + 36y
or, 38x = 80y
or, \(\frac{x}{y}=\frac{80}{38} \quad \text { or, } \quad \frac{x}{y}=\frac{40}{19}\)
∴x: y = 40: 19
Example 2. What term should be subtracted from each term of the ratio a : b to make the ratio mini
Solution: Let x should be subtracted from each term.
As per question, (a – x) : (b – x) = m : n
or, \(\frac{a-x}{b-x}=\frac{m}{n}\)
or, mb – mx = na – nx .
or, nx – mx = na – mb
or, x (n – m) = na – mb
or, \(x=\frac{n a-m b}{n-m}=\frac{b m-a n}{m-n}\)
Here \(\frac{b m-a n}{m-n}\) should be subtracted
Example 3. What term should be added to the antecedent and subtracted from the consequent of ratio 4:7. to make a compound ratio of 2 : 3 and 5:4?
Solution: Let the number be x
As per question, (4 + x) : (7 – x) = 2 x5 : 3 x 4.
[the compound ratio of the ratios 2 : 3 and 5:4 = 2×5:3×4]
or, \(\frac{4+x}{7-x}=\frac{2 \times 2}{3 \times 4}\)
or, \(\frac{4+x}{7-x}=\frac{5}{6}\)
or, 24+6x = 35-5x
or, 6x+5x = 35-24 or, 11x = 11
or, \(\frac{11}{11}\) = 1
Hence the required number = 1
Maths Solutions Class 10 Wbbse
Example 4. If (10x + 3y) : (5x + 2y)= 9:5, then show that (2x+y) : (x + 2y) = 11 : 13.
Solution: (10x + 3y6) : (5x + 2y)= 9:5
or, \(\frac{10 x+3 y}{5 x+2 y}=\frac{9}{5}\)
or, 50x+ 15y = 45x + 18y
or, 50x-45x = 18y – 15y
or, 5x = 3y or, \(\frac{x}{y}\)= \(\frac{3}{5}\)
or, \(\frac{x}{y}\)= \(\frac{3k}{5k}\) [k≠0] .
∴ let x = 3k and y = 5k.
Now, (2x+y):(x+2y) = \(\frac{2 x+y}{x+2 y}\)
= \(\frac{2 \times 3 k+5 k}{3 k+2 \times 5 k}\)
= \(\frac{6 k+5 k}{3 k+10 k}=\frac{11 k}{13 k}=\frac{11}{13}\)
Hence (2x+y):(x+2y) = 11: 13
Algebra Chapter 2 Ratio And Proportion Long Answer Type Questions
Example 1. If a: b = 3: 4 and x: y – 4: 5, then find the value of \(\frac{3 a x-b y}{5 b y-7 a x}\)
Solution: Given that, a: b = 3: 4,
∴ \(\frac{a}{b}\) = \(\frac{3}{4}\)
Again, x: y = 4: 5 or, \(\frac{x}{y}\) = \(\frac{4}{5}\)
Now, Given quantity
= \(\frac{3 a x-b y}{5 b y-7 a x}=\frac{\frac{3 a x}{b y}-1}{5-\frac{7 a x}{b y}}\) [Dividing by]
= \(\frac{3 \cdot \frac{a}{\dot{b}} \cdot \frac{x}{y}-1}{5-7 \cdot \frac{a}{b} \cdot \frac{x}{y}}\)
= \(\frac{3 \times \frac{3}{4} \times \frac{4}{5}-1}{5-7 \times \frac{3}{4} \times \frac{4}{5}}\)
= \(\frac{\frac{9}{5}-1}{5-\frac{21}{5}}=\frac{\frac{9-5}{5}}{\frac{25-21}{5}}=\frac{\frac{4}{5}}{\frac{4}{5}}=1\)
Hence the requires value = 1
Example 2. What number should be added to each term of the ratio 2a: 3b so that the ratio of the additions will be c : d?
Solution: Let the number x should be added to each term.
As per question, (2a + x) : (3b + x) = c : d
or, \(\frac{2 a+x}{3 b+x}=\frac{c}{d}\)
or, 2ad + dx = 3 bc + cx
or, dx – cx = 3 bc – 2ad
or, x (d – c) = 3 bc – 2ad
or, \(x=\frac{-(2 a d-3 b c)}{d-c}\)
or, x= \(\frac{-(2 a d-3 b c)}{-(c-d)}\)
or, \(x=\frac{2 a d-3 b c}{c-d}\)
Hence the required number = \(x=\frac{2 a d-3 b c}{c-d}\)
Example 3. For what value of x, the duplicate ratio of \(\frac{x+a}{x+b} \text { is } \frac{a}{b}\)
Solution: Duplicate ratio of
\(\frac{x+a}{x+b} \text { is } \frac{(x+a)^2}{(x+b)^2}=\frac{x^2+2 x a+a^2}{x^2+2 x b+b^2}\)Maths Solutions Class 10 Wbbse
As per question, \(\frac{x^2+2 x a+a^2}{x^2+2 x b+b^2}\) = \(\frac{a}{b}\)
or, ax2 + 2 abx + ab2 = bx2 + 2abx +a2b
or, ax2 – bx2 = a2b – ab2 or, x2 (a – b) = ab (a – b)
or, \(x^2=\frac{a b(a-b)}{(a-b)}=a b\)
∴ x2= ab
∴ x = ±√ab
Value of x = ±√ab
Example 4. If the triplicate of the ratio (x + a): (x + b) is a : 6, then prove that x3– 3abx – ab (a + b) = 0.
Solution: The triplicate of (x + a): (x+b) is \(\frac{(x+a)^3}{(x+b)^3}\)
As per question, \(\frac{(x+a)^3}{(x+b)^3}\) = \(\frac{a}{b}\)
or, a(x + b)3 =b(x + a)3
or, a(x3 +3x2b + 3xb2 + b3)= b(x3 +3x2a + 3xa2 +a3)
or, ax3 + 3 abx2 + 3 ab2x + ab3 = bx3 + 3 abx2 + 3 a2bx + a3b
or, ax3 -bx3 + 3ab2x – 3a2bx + ab3 -a3b = 0.
or, x3(a-b)-3abx(a-b)-ab(a2-b2) = 0
or, x3 (a – b) – 3abx (a-b)- ab (a +b)(a -b) = 0
or, (a-b){x3 – 3abx – ab (a + b)} = 0
or, x3 – 3abx-ab(a + b) = [a≠b, a-b≠0]
∴ x3 – 3abx – ab(a + b) = 0. (Proved)
Maths Solutions Class 10 Wbbse
Algebra Chapter 2 Ratio And Proportion Proportion
If four quantities be such that the ratio between first and second is equal to the ratio between the third and fourth, then the four quantities form a proportion and the quantities are called proportionate,
i.e., if four quantities a, b, c, and d be such that \(\frac{a}{b}\) = \(\frac{c}{d}\) or, a: b = c : d, then a, b, c, d are called proportional.
The first and fourth terms of this proportion are called extreme terms and the second and the third terms are called middle terms or means. The fourth term is also known as fourth proportional.
∴ \(\frac{a}{b}\)= \(\frac{c}{d}\) or, ad = bc, the product of the extreme terms of four proportional quantities is equal to the product of its middle terms.
This mathematical operation is known as cross-multiplication.
It is easy to calculate the rest term among the four quantities if any three terms are given.
Since any ratio when multiplied or divided by any non-zero real number does not change its value, so the value of any proportion does not change if it is multiplied or divided by any non-zero real number.
Algebra Chapter 2 Ratio And Proportion Continued Proportion
If amongst the three quantities, the ratio between the first and the second quantity is equal to the ratio between the second and the third quantity, then the quantities are called continued proportional.
Mathematically, three quantities a, b, and c will be continued proportional if a: b = b: c or, \(\frac{a}{b}\)= \(\frac{c}{d}\) be
or, b2 = ac.
Here the middle term b is said to be the mean proportional of the other two terms a and c.
Also, the third term c is said to be third proportional of the others two.
Algebra Chapter 2 Ratio And Proportion Formulae Related To Proportion
Alternendo
If a, b, c and d are in continued proportional,
i.e., if \(\frac{a}{b}\)= \(\frac{c}{d}\) = then \(\frac{a}{c}\)= \(\frac{b}{d}\)
This process is known as alternendo.
Invertendo
If a, b, c, and d are in continued proportional,
i.e., if \(\frac{a}{b}\)= \(\frac{c}{d}\) then \(\frac{b}{a}\)= \(\frac{d}{c}\)
This process is known as invertendo.
Proof: a, b, c, d are in continued proportion,
∴ \(\frac{a}{b}\)= \(\frac{c}{d}\)
or, \(1 \div \frac{a}{b_i}=1 \div \frac{c}{d} \text { or, } 1 \times \frac{b}{a}=1 \times \frac{d}{c} \text { or, } \frac{b}{a}=\frac{d}{c}\)
Componendo
If a, b, c, d are in continued proportion or if \(\frac{a}{b}\) = \(\frac{c}{d}\)
then \(\frac{a+b}{b}=\frac{c+d}{d}\)
This process is known as componendo.
Proof:
\(\frac{a}{b}=\frac{c}{d} \text { or, } \frac{a}{b}+1=\frac{c}{d}+1 \text { or, } \frac{a+b}{b}=\frac{c+d}{d}\)(Proved)
Dividendo
If a, b, c, d are in continued proportion or if \(\frac{a}{b}\) = \(\frac{c}{d}\)
then \(\frac{a-b}{b}=\frac{c-d}{d}\)
This process is known as dividendo.
Proof:
\(\frac{a}{b}=\frac{c}{d} \text { or, } \cdot \frac{a}{b}-1=\frac{c}{d}-1 \text { or, } \frac{a-b}{b}=\frac{c-d}{d}\)(Proved)
Componendo and Dividendo
If a, b, c, d are in continued proportion or if \(\frac{a}{b}\) = \(\frac{c}{d}\),
then \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
This process is known as componendo and dividendo.
Proof: \(\frac{a}{b}=\frac{c}{d}\), ∴ \(\frac{a+b}{b}=\frac{c+d}{d}\) (by componendo)
Again, \(\frac{a-b}{b}=\frac{c-d}{d}\)[by dividendo)
Now, \(\frac{a+b}{b} \div \frac{a-b}{b}=\frac{c+d}{d} \div \frac{c-d}{d}\)
or, \(\frac{a+b}{b} \times \frac{b}{a-b}=\frac{c+d}{d} \times \frac{d}{c-d}\)
or, \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
∴ \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (Proved)
Algebra Chapter 2 Ratio And Proportion Formulae Related To Proportion Multiple Choice Questions
Example 1. The fourth proportion of 2, 3, and 4 is
- 6
- 8
- 10
- 12
Solution: Let the fourth proportional = x.
∴ \(\frac{2}{3}=\frac{4}{x}\)
or, 2 x=12
or, \(x=\frac{12}{2}\)
∴ 1. 6
The fourth proportion of 2, 3, and 4 is 6
Example 2. Third proportional of 4 and 6 is
- 6
- 9
- 12
- 18
Solution: Let the third proportional = x.
∴ 4, 6, and x are in continued proportion.
∴ \(\frac{4}{6}\) = \(\frac{6}{x}\)
or, 4x = 36
or, x = \(\frac{36}{4}\)
or, x = 9
∴ 2. 9
Third proportional of 4 and 6 is 9.
Example 3. The mean-proportional of 32 and 50 is
- 35
- 40
- 45
- 48
Solution: Let the mean-proportional = x
∴ 32, x, and 50 are in continued proportion.
∴ \(\frac{32}{x}\) = \(\frac{x}{50}\)
or, x2= 1600
or, x = √1600 = 40
∴ 2. 40
The mean-proportional of 32 and 50 is 40
Example 4. a is a positive number and if a: \(\frac{27}{64}\) = \(\frac{3}{4}\): a, then the value of a will be
- 9
- \(\frac{9}{16}\)
- \(\frac{16}{9}\)
- None of these
Solution: Given that a: \(\frac{27}{64}\) = \(\frac{3}{4}\): a
or, \(\frac{a}{\frac{27}{64}}=\frac{\frac{3}{4}}{a}\)
or, \(a^2=\frac{27}{64} \times \frac{3}{4}\)
or, \(a^2=\frac{81}{256}\)
or, \(a=\sqrt{\frac{81}{256}}=\sqrt{\left(\frac{9}{16}\right)^2}=\frac{9}{16}\)
∴ 2. \(\frac{9}{16}\)
The value of a will be \(\frac{9}{16}\)
Wbbse Class 10 Maths Solutions
Example 5. If 2a = 3b = 4c, then a: b: c will be
- 3 : 4: 6
- 4: 3: 6
- 3 : 6: 4
- 6: 4: 3
Solution: Given that 2a = 3b = 4c
or, \(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{4}}\)
∴ a: b: c = \(\frac{1}{2}\): \(\frac{1}{3}\): \(\frac{1}{4}\)
[multiplying by 12]
∴ 4. 6: 4: 3
a: b: c will be 6: 4: 3
Example 6. If A: B = 5: 7 and B: C = 8: 9, then a: b: c will be
- 40: 56: 63
- 56: 40: 63
- 63: 56: 40
Solution: Two values of B are 7 and 8, their L.C.M. is 56
A:B = 5:7 = 5×8:7×8 = 40:56
B : C = 8 : 9 = 8 x 7 : 9×7 = 56 : 63
∴ A : B : C = 40 : 56 : 63
Algebra Chapter 2 Ratio And Proportion Formulae Related To Proportion State Whether True Of False
Example 1.The compound or mixed ratio of the ratios ab: c2, bc: a2, and ca: b2 = 1: 2.
Solution: The compound ratio of the ratios ab: c2, bc: a2, and ca: b2
= (ab x bc x ca) : (c2 x a2 x b2)
= a2b2c2 : a2b2 c2 = 1:1
Hence the statement is false.
Example 2. x3y, x2y2and xy2 are in continued proportional.
Solution: The given three quantities are x3y, x2y2and xy3.
Now, \(\frac{x^3 y}{x^2 y^2}=\frac{x}{y}\)
Also, \(\frac{x^2 y^2}{x y^3}=\frac{x}{y}\)
i.e., \(\frac{x^3 y}{x^2 y^2}=\frac{x^2 y^2}{x y^3}\)
∴ The given quantities are in continued proportional.
Hence the statement is true
Example 3. If (2x + 3y) : (6x -3y)= \(\frac{5}{2}\) then the value of x: y = 21: 26
Solution : (2x + 3y) : (6x -3y)= \(\frac{5}{2}\)
or, \(\frac{2 x+3 y}{6 x-3 y}=\frac{5}{2}\)
or, 2 (2x + 3y) = 5 (6x – 3y)
or, 4x+6y=30x-15y
or, 4x – 30x = – 15y – 6y
or, -26x = -21y
or, \(\frac{x}{y}\) = \(\frac{21}{26}\)
∴ x: y = 21: 26
Hence the statement is true
Algebra Chapter 2 Ratio And Proportion Formulae Related To Proportion Fill In The Blanks
Example 1. If x,y, and z are in continued proportion, then y is called the ____ proportion of x and z.
Solution: If x, y, and z are in continued proportion,
\(\frac{x}{y}\) = \(\frac{y}{z}\) ∴ y2 = xz
Here y is called the mean proportional of x and z.
Example 2. If x : 2= y : 5 = z : 8, then 50% of x = 20% of y = — % of z.
Solution: Given that x : 2 = y : 5 = z : 8.
or, \(\frac{x}{2}=\frac{y}{5}=\frac{z}{8}\)
or, \(\frac{x}{2} \times 100 \%=\frac{y}{5} \times 100 \%=\frac{z}{8} \times 100 \%\)
or, 50% of x = 20% of y = \(\frac{25}{2}\)% of z.
or, 50% of x = 20% of y = \(12 \frac{1}{2} \%\) of z.
Example 3. If the mean-proportional of (x-4) and (x-5) be then the value of x is _____
Solution: The- mean-proportional of (x – 4) and (x – 5) is x
∴ by definition, \(\frac{x-4}{x}=\frac{x}{x-5}\)
or, x2-4x -5x + 20 = x2
or, – 9x + 20 = 0
or, -9x = -20
or, x = \(\frac{-20}{-9}=2 \frac{2}{9}\)
Hence the value of x is \(2 \frac{2}{9}\)
Example 4. 3rd proportional of 3 and 6 is ____
Solution: The 3rd proportional be x
∴ 3, 6, and x are in continued proportion.
So, \(\frac{3}{6}\) = \(\frac{6}{x}\)
or, 3x = 6 x 6 or, x = \(\frac{6 \times 6}{3}\)
∴ x = 12
Hence the 3rd proportion of 3 and 6 is 12.
Algebra Chapter 2 Ratio And Proportion Formulae Related To Proportion Short Answer Type Questions
Example 1. If \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{2 a-3 b+4 c}{p}\) then find the value of P.
Solution: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
= \(\frac{a \times 2-b \times 3+c \times 4}{2 \times 2-3 \times 3+4 \times 4}\)
= \(\frac{2 a-3 b+4 c}{4-9+16}=\frac{2 a-3 b+4 c}{11}\)
∴ \(\frac{a}{2}\) = \(\frac{b}{3}\) = \(\frac{c}{4}\)
= \(\frac{2 a-3 b+4 c}{11}=\frac{2 a-3 b+4 c}{p}\)
∴ p=11 .
Example 2. If \(\frac{3 x-5 y}{3 x+5 y}=\frac{1}{2}\) then find the value of \(\frac{3 x^2-5 y^2}{3 x^2+5 y^2}\)
Solution: Given that \(\frac{3 x-5 y}{3 x+5 y}=\frac{1}{2}\)
or, 6x = 10y = 3x + 5y or, 6x – 3x = 5y + 10y
or, 3x = 15y or, x = \(\frac{15y}{3}\) or, x = 5y
∴ Given qunatity
= \(\frac{3 x^2-5 y^2}{3 x^2+5 y^2}\)
= \(\frac{3 \times(5 y)^2-5 y^2}{3 \times(5 y)^2+5 y^2}\)
= \(\frac{75 y^2-5 y^2}{75 y^2+5 y^2}=\frac{70 y^2}{80 y^2}=\frac{7}{8}\)
Hence the required value = \(\frac{7}{8}\)
Wbbse Class 10 Maths Solutions
Example 3. If x,12,y,27 are in continued proportion then find the positive value of x and y.
Solution: x,12,y,27 are in continued proportion
∴ \(\frac{x}{12}=\frac{12}{y}\) or, xy = 144 …(1)
Again, 12, y, 27 are in continued proportion,
∴ \(\frac{12}{y}=\frac{y}{27}\)
or, y2 = 12 x 27
or, y2= 324 or, y = √324 = ±18
But y>0, y = 18
∴ from(1) we get, x X 18 = 144
or, \(\frac{144}{18}\) = 8
Hence x = 8 and y = 18
Example 4. If a: b = 3: 2 and b: c=3:2 then find the value of the ration(a+b): (b+c)
Solution: a: b = 3: 2
⇒ \(\frac{a}{b} ={3}{2}\)
∴ Let a = 3 k1 and b= 2k1 [k1≠ 0]
Also, b: c =3: 2
⇒ \(\frac{b}{c} ={3}{2}\)
∴ Let b = 3 k2 and c= 2k2 [k2≠ 0]
Now, (a+b):(b+c)
= \(\frac{a+b}{b+c}=\frac{3 k_1+2 k_1}{3 k_2+2 k_2}\)
= \(\frac{5 k_1}{5 k_2}=\frac{k_1}{k_2}\)….(1)
Again, \(\frac{a}{b}=\frac{3}{2}\)
⇒ \(\frac{3 k_1}{3 k_2}=\frac{3}{2}\)
⇒ \(\frac{k_1}{k_2}=\frac{3}{2}\)
∴ from (1) we get, \(\frac{a+b}{b+c}=\frac{3}{2}\)
Hence (a+b) : (b+c) = 3: 2
Example 5. If a : b = 3 : 4 and x: y = 5 : 7, then find the value of (3ax-by) : (4by -7ax)
Solution: Given that a : b = 3 : 4
Wbbse Class 10 Maths Solutions
or, \(\frac{a}{b}=\frac{3}{4}\) or, \(a=\frac{3b}{4}\) …(1)
Again, x:y = 5: 7
or, \(\frac{x}{y}=\frac{5}{7}\)
or, \(x=\frac{5 y}{7}\)…(2)
Now, (3ax-by):(4 b y-7 a x)
= \(\frac{3 a x-b y}{4 b y-7 a x}\)
= \(\frac{3 \times \frac{3 b}{4} \times \frac{5 y}{7}-b y}{4 b y-7 \times \frac{3 b}{4} \times \frac{5 y}{7}}\)
= \(\frac{\frac{45}{28} b y-b y}{4 b y-\frac{15 b y}{4}}\)
=\(\frac{\frac{45 b y-28 b y}{28}}{\frac{16 b y-15 b y}{4}}\)
= \(\frac{\frac{17 b y}{28}}{\frac{b y}{4}}\)
= \(\frac{17 b y}{28} \times \frac{4}{b y}=\frac{17}{7}\)
Hence the required value = \(\frac{17}{7}\)
Aliter: Given that a : b = 3 : 4
∴ Let a = 3k1, b = 4k1
Again, x : y = 5 : 1
∴ Let x = 5k2, y= 7k2. [k1, k2 ≠0]
∴ Given quantity = (3 ax – by) : (4by – 7ax)
= \(\frac{3 a x-b y}{4 b y-7 a x}\)
= \(\frac{3 \times 3 k_1 \times 5 k_2-4 k_1 \times 7 k_2}{4 \times 4 k_1 \times 7 k_2-7 \times 3 k_1 \times 5 k_2}\)
= \(\frac{45 k_1 k_2-28 k_1 k_2}{112 k_1 k_2-105 k_1 k_2}=\frac{17 k_1 k_2}{7 k_1 k_2}=\frac{17}{7}\)
Hence the required value = \(\frac{17}{7}\)
Example 6. Find the mean-proportional of (a + b)2 and (a – b)2.
Solution: Let the mean-proportional of (a+b)2 and (a -b)2 be x.
∴ \(\frac{(a+b)^2}{x}=\frac{x}{(a-b)^2}\)
or, x2 = (a + b)2 x (a – b)2
or, x2 = {{a + b)(a – b)}2 or, x2 = (a2 – b2)2
or, x = ± (a2 – b2)
Hence the required mean proportional = ± (a2 – b2)
Algebra Chapter 2 Ratio And Proportion Formulae Related To Proportion Long Answer Type Questions
Example 1. If x: a = y: b = z: c, then prove that
1. \(\frac{x^3}{a^2}+\frac{y^3}{b^2}+\frac{z^3}{c^2}=\frac{(x+y+z)^3}{(a+b+c)^3}\)
Solution: Given that x: a = y: b = z: c
or, \(\frac{x}{a}\)= \(\frac{y}{b}\)= \(\frac{z}{c}\) =k (k≠0) (let)
∴ x = ak, y= bk and z = ck
L.H.S \(=\frac{x^3}{a^2}+\frac{y^3}{b^2}+\frac{z^3}{c^2}\)
= \(\frac{(a k)^3}{a^2}+\frac{(b k)^3}{b^2}+\frac{(c k)^3}{c^2}\)
= \(\frac{a^3 k^3}{a^2}+\frac{b^3 k^3}{b^2}+\frac{c^3 k^3}{c^2}\)
= \(a k^3+b k^3+c k^3\)
= \(k^3(a+b+c)\)
RHS = \(\frac{(x+y+z)^3}{(a+b+c)^2}\)
= \(\frac{(a k+b k+c k)^3}{(a+b+c)^2}\)
= \(\frac{\{k(a+b+c)\}^3}{(a+b+c)^2}\)
= \(\frac{k^3(a+b+c)^3}{(a+b+c)^2}=k^3(a+b+c)\)
∴ L.H.S = R.H.S (proved)
2. (a2 + b2 + c2) (x2 + y2 + z2) = (ax + by + cz)2
Solution: Given that x: a = y: b = z: c
or, \(\frac{x}{a}\) = \(\frac{y}{b}\) = \(\frac{z}{c}\) =k (k≠0) (let)
∴ x = ak, y= bk and z = ck
LHS = (a2 + b2 + c2) (x2 + y2 + z2)
= (a2 +b2 +c2){(ak)2 + (bk)2 + (ck)2}
= (a2 +b2 +c2)(a2k2+b2k2 +c2k2)
= (a2 + b2 +c2).k2(a2 +b2 + c2) = k2(a2 +b2 + c2)
RHS = (ax + by + cz)2 = (a.ak + b.bk + c.ck)2
= (a2k + b2k + c2k)2 ={k (a2 +b2 + c2)}
= k2(a2+b2+c2)
∴ LHS = RHS
Example 2. If a : b = c : d, then show that \(\sqrt{a^2+c^2}: \sqrt{b^2+d^2}\)= (pa+ qc): (pb + qd)
Solution: Given that a: b = c: d
⇒ \(\frac{a}{b}\) = \(\frac{c}{d}\) = k(Let) [k≠0]
∴ a = bk and c=dk
Now, LHS = \(\sqrt{a^2+c^2}: \sqrt{b^2+d^2}\)
= \(\frac{\sqrt{a^2+c^2}}{\sqrt{b^2+d^2}}=\frac{\sqrt{(b k)^2+(d k)^2}}{\sqrt{b^2+d^2}}\)
=\(\frac{\sqrt{b^2 k^2+d^2 k^2}}{\sqrt{b^2+d^2}}\)
= \(\frac{\sqrt{k^2\left(b^2+d^2\right)}}{\sqrt{b^2+d^2}}\)
= \(\frac{k \sqrt{b^2+d^2}}{\sqrt{b^2+d^2}}\)=k
RHS = \((p a+q c):(p b+q d)=\frac{p a+q c}{p b+q d}\)
= \(\frac{p \times b k+q \times d k}{p b+q d}=\frac{k(p b+q d)}{(p b+q d)}\)=k .
∴ LHS = RHS
Example 3. If a: b = c: d = e: f then prove that (a2 + c2 + e2)(b2 + d 2 + f2)= (ab + cd + ef)2
Wbbse Class 10 Maths Solutions
Solution: Given that a: b = c: d = e: f
or, \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{e}{f}\) = k(let) (k≠0)
∴ a =bk, c= dk and e = fk
Now, LHS = (a2+c2+e2)(b2+d2+f2)
= {(bk)2+(dk)2+(fk)2}(b2+d2+f2)
= (b2k2 +d2k2 + f2k2)(b2 +d2 +f2)
= k2(b2 +d2 + f2)(b2 +d2 +f2)
= k2(b2+d2+f2)2.
RHS= (ab + cd + ef)2 = (bk.b + dk.d+ fk.f)2
= (b2k + d2k + f2k)2 ={k(b2+d2+f2)}2
= k2(b2+d2+f2)2
LHS = RHS (proved)
Example 4. If a: b= b: c, then prove that
1. \(a^2 b^2 c^2=\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=a^3+b^3+c^3\)
Solution: Given that a: b = b :c
⇒ \(\frac{a}{b}\) = \(\frac{a}{b}\) =k(let), [k≠0]
∴ a=bk = ck.k = ck and b= ck2 and b = ck
LHS = \(a^2 b^2 c^2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
= \(\frac{b^2 c^2}{a}+\frac{c^2 a^2}{b}+\frac{a^2 b^2}{c}\)
= \(\frac{(c k)^2 \cdot c^2}{c k^2}+\frac{c^2\left(c k^2\right)^2}{c k}+\frac{\left(c k^2\right)^2 \cdot(c k)^2}{c}\)
= c3+ c3k3+c3k6 = c3(1-k+k6)
RHS = a3 +b3 + c3 = (ck2)3 + (ck)3 +c3
= c3 +c3k3 +c3k6 =c3(1+ k3+k6)
∴ LHS = RHS (proved)
2. \(\frac{a b c(a+b+c)^3}{(a b+b c+c a)^3}\) = 1
Solution: Given that a: b = b :c
⇒ \(\frac{a}{b}\) = \(\frac{a}{b}\) =k(let), [k≠0]
∴ a=bk = ck.k = ck and b= ck2 and b = ck
LHS = \( \frac{a b c(a+b+c)^3}{(a b+b c+c a)^3}=\frac{c k^2 \cdot c k \cdot c\left(c k^2+c k+c\right)^3}{\left(c k^2 \cdot c k+c k \cdot c+c \cdot c k^2\right)^3}\)
= \(\frac{c^3 k^3\left\{c\left(k^2+k+1\right)\right\}^3}{\left(c^2 k^3+c^2 k+c^2 k^2\right)^3}=\frac{c^6 k^3\left(k^2+k+1\right)^3}{c^6 k^3\left(k^2+k+1\right)^3}\)=1
RHS = 1
∴ LHS = RHS(proved)
Example 5. If a,b,c,d are in continued proportion, then prove that (b – c)2 + (c – a)2 + (b-d)2 = (a-d)2
Solution: Since a,b,c,d are in continued proportion,
\(\frac{a}{b}\) = \(\frac{b}{c}\) = \(\frac{c}{d}\) = k(let) [k≠0]
∴ a = bk,
= ck.k
= ck2
= dk.k2
= dk3
∴ b = ck,
= dk.k
= dk2
∴ c = dk
Now, LHS = (b- c)2+ (c- a)2 + (b – d)2
= (dk2 – dk)2+ (dk – dk3)2 + (dk2 – d)2
= d2k4 – 2d2k3 + d2k2 + d2k2– 2d2k4 + d2k6 + d2k4 – 2d2k2+ d2 = d2k6 – 2d2k3 + d2
RHS =(a-d)2
= (dk3 -d)2
= d2k6 -2d2k3 + d2
∴ LHS = RHS. (Proved)
Example 6. 1. If \(\frac{a}{b}\) = \(\frac{x}{y}\), then show that (a +b)(a2 + b2)x3 = (x + y)(x2 + y2) a3
Solution: \(\frac{a}{b}\) = k(let)[k≠0]
∴ a = bk and x = yk
Now, LHS = (a + b)(a2 + b2)x3
= (bk + b){(bk)2 + b2}.(yk)3 = b(k+ 1). b2 (k2 + 1).y3k3
= b3 (k + 1)(k2 + 1). y3k3
RHS = (x + y)(x2 + y2)a3
= (yk + y){(yk)2+y2}.(bk)3
= y(k + 1).y2(k2 + 1) .b3k3
= y3(k + 1)(k2 + 1) .b3k3
= b3(k + 1)(k2 + 1). y3k3
∴ LHS = RHS. (Proved)
2. If \(\frac{x}{l m-\dot{n}^2}=\frac{y}{m n-l^2}=\frac{z}{n l-m^2}\) then prove that lx + my + nz = 0
Solution: \(\frac{x}{l m-\dot{n}^2}=\frac{y}{m n-l^2}=\frac{z}{n l-m^2}\) = k(let)[k≠0]
∴ x = k (lm – n2), y=k(mn – l2), z = k(nl – m2)
or, lx – k(l2m – n2l), my = k (m2n – l2m), nz = k (n2l – m2n)
or, Ix + my + nz = k(l2m-n2l + m2n – l2m + n2l-m2n)
= k x 0 = 0
∴ lx + my + nz = 0(proved)
3. If \(\frac{x}{b+c-a}=\frac{y}{c+a-b}=\frac{z}{a+b-c}\) then show that (b-c)x + (c- a) y + (a – b) z = 0.
Solution: \(\frac{x}{b+c-a}=\frac{y}{c+a-b}=\frac{z}{a+b-c}\) = k(let)[k≠0]
∴ x = k(b + c- a), or, (b -c)x= k(b -c)(b + c-a)
or, (b – c)x= k (b2 – c2) – ak(b – c) ….(1)
y = k(c + a – b), or, (c- a)y = k(c – a)(c + a – b)
or, (c-a)y = k(c2– a2) -bk(c- a) …(2)
z = k(a + b-c), or, (a-b)z= k(a – b)(a + b-c)
or, (a- b)z = k (a2– b2) -ck(a- b) …(3)
∴ adding (1), (2) and (3) we get,
(b – c)x -K (c-a)y + (a – b)z = k(b2 -c2 + c2 -a2 + a2 – b2)- k (ab -ac + bc-ab+ ca- bc)
= k x 0 – k x 0 =0-0=0
∴ (b – c)x + (c- a)y + (a – b)z = 0 (Proved)
Class 10 Maths Wbbse Solutions
4. If \(\frac{x}{y}\) = \(\frac{a + 2}{a – 2}\) then show that \(\frac{x^2-y^2}{x^2+y^2}=\frac{4 a}{a^2+4}\)
Solution: Given that, \(\frac{x}{y}\) = \(\frac{a + 2}{a – 2}\)
or, \(\frac{x^2}{y^2}=\frac{(a+2)^2}{(a-2)^2}\) (Squaring)
or, \(\frac{x^2-y^2}{x^2+y^2}=\frac{(a+2)^2-(a-2)^2}{(a+2)^2+(a-2)^2}\) [Dividendo-componendo process]
or, \(\frac{\dot{x}^2-y^2}{x^2+y^2}=\frac{4 \cdot a \cdot 2}{2\left(a^2+2^2\right)}\)
or, \(\frac{x^2-y^2}{x^2+y^2}=\frac{4 a}{a^2+4}\)
∴ \(\frac{x^2-y^2}{x^2+y^2}=\frac{4 a}{a^2+4}\)(Proved)
Wbbse Class 10 Maths Solutions
5. If x = \(\frac{8ab}{a+b}\) then find the value of \(\left(\frac{x+4 a}{x-4 a}+\frac{x+4 b}{x-4 b}\right)\)
Solution: Given that x = \(\frac{8ab}{a+b}\)
or, \(\frac{x}{4a}\) = \(\frac{2b}{a+b}\)
or, \(\frac{x+4 a}{x-4 a}\)=\(\frac{2 b+a+b}{2 b-a-b}\)=\(\frac{a+3 b}{b-a}\) …(1)
Again, \(x=\frac{8 a b}{a+b}\)
or, \(\frac{x}{4 b}=\frac{2 a}{a+b}\)
or, \(\frac{x+4 b}{x-4 b}=\frac{2 a+a+b}{2 a-a-b}=\frac{3 a+b}{a-b}\)…(2)
∴ adding (1) and (2) we get,
\(\frac{x+4 a}{x-4 a}+\frac{x+4 b}{x-4 b}=\frac{a+3 b}{b-a}+\frac{3 a+b}{a-b}\)Class 10 Maths Wbbse Solutions
= \(\frac{-a-3 b+3 a+b}{a-b}=\frac{2 a-2 b}{a-b}=\frac{2(a-b)}{(a-b)}=2\)
∴ \(\frac{x+4 a}{x-4 a}+\frac{x+4 b}{x-4 b}=2\).
6. 1. If \(\frac{a}{q-r}=\frac{b}{r-p}=\frac{c}{p-q}\) then prove that a+b+c = 0 = pq+qb+rc
Solution: \(\frac{a}{q-r}=\frac{b}{r-p}=\frac{c}{p-q}\) = k(let) [k≠0]
∴ a – k(q – r); b = k (r -p); c – k(p-q)
∴ a + b + c=k(q-r) + k(r-p) + k(p-q)
= k(q-r+r-p+p-q) = k x 0 = 0
Again, pa + qb + rc – p. k(q – r) + q. k (r – p) + r.k (p – q)
= k (pq – pr + qr – pq + pr – qr)
= k x 0 = 0.
∴ a + b + c = 0 = pa + qb + rc (Proved)
2. If \(\frac{ax + by}{a}\) = \(\frac{bx-ay}{b}\) then show that each ratio is equal to x.
Solution: Given that, \(\frac{ax + by}{a}\) = \(\frac{bx-ay}{b}\)
= \(\frac{a^2 x+a b y+b^2 x-a b y}{a^2+b^2}\) [by addendo process]
= \(\frac{x\left(a^2+b^2\right)}{\left(a^2+b^2\right)}=x\)
∴ each ratio = x
Example 8. 1. If \(\frac{a+b}{b+c}\) = \(\frac{c+d}{d+a}\) then prove that c =a or, a + b + c + d = 0
Solution: Given that \(\frac{a+b}{b+c}\)
or, \(\frac{a+b-b-c}{b+c}=\frac{c+d-d-a}{d+a}\) [by dividendo]
or, \(\frac{a-c}{b+c}=\frac{c-a}{d+a}\)
or, \(\frac{-(c-a)}{b+c}=\frac{c-a}{d+a}\)
or, \(\frac{-(c-a)}{b+c}-\frac{c-a}{d+a}=0\)
or, \(-(c-a)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)=0\)
or, \(-(c-a)\left\{\frac{d+a+b+c}{(b+c)(d+a)}\right\}=0\)
or, \(\quad-(c-a)\left\{\frac{a+b+c+d}{(b+c)(d+a)}\right\}=0\)
∴ either c-a=0 or, \(\frac{a+b+c+d}{(b+c)(d+a)}=0\)
⇒ c = a or, a + b + c + d= 0 .
∴ either c = a or, a + b + c + d=0
Class 10 Maths Wbbse Solutions
2. If \(\frac{x}{b+c}\) = \(\frac{y}{c+a}\) = \(\frac{z}{a+b}\) then show that \(\frac{a}{y+z-x}\) = \(\frac{b}{z+x-y}\) = \(\frac{c}{x+y-z}\)
Solution: \(\frac{x}{b+c}\) = \(\frac{y}{c+a}\) = \(\frac{z}{a+b}\)
= \(\frac{y+z-x}{c+a+a+b-b-c}\) [applying addebdo process]
= \(\frac{y+z-x}{2a}\)
∴ each ratio = \(\frac{y+z-x}{2a}\) …(1)
Again, \(\frac{x}{b+c}\) = \(\frac{y}{c+a}\) = \(\frac{z}{a+b}\)
= \(\frac{z+x-y}{a+b+b+c-c-a}\) [applying addebdo process]
= \(\frac{z+x-y}{2b}\)
∴ each ratio = \(\frac{z+x-y}{2b}\)…(2)
Also, \(\frac{x}{b+c}\) = \(\frac{y}{c+a}\) = \(\frac{z}{a+b}\)
= \(\frac{x+y-z}{b+c+c+a-a-b}\) [applying addebdo process]
= \(\frac{x+y-z}{2c}\) …(3)
Now, from(1),(2) and(3) we get, \(\frac{y+z-x}{2a}\)=\(\frac{z+x-y}{2b}\)=\(\frac{x+y-z}{2c}\)
or, \(\frac{y+z-x}{a}\)=\(\frac{z+x-y}{b}\)=\(\frac{x+y-z}{c}\)
∴ \(\frac{a}{y+z-x}\) = \(\frac{b}{z+x-y}\) = \(\frac{c}{x+y-z}\) (proved)
3. If \(\frac{x+y}{3 a-b}=\frac{y+z}{3 b-c}=\frac{z+x}{3 c-a}\) then show that \(\frac{x+y+z}{a+b+c}=\frac{a x+b y+c z}{a^2+b^2+c^2}\)
Solution: \(\frac{x+y}{3 a-b}=\frac{y+z}{3 b-c}=\frac{z+x}{3 c-a}\)
= \(\frac{x+y+y+z+z+x}{3 a-b+3 b-c+3 c-a}\) [by addendo process]
= \(\frac{2(x+y+z)}{2(a+b+c)}=\frac{x+y+z}{a+b+c}\)
∴ each ratio \(\frac{x+y+z}{a+b+c}\) …(1)
Again, \(\frac{x+y}{3 a-b}=\frac{y+z}{3 b-c}=\frac{z+x}{3 c-a}\)
= \(\frac{x+y-y-z+z+x}{3 a-b-3 b+c+3 c-a}\) [by addendo process]
= \(\frac{2 x}{2 a-4 b+4 c}=\frac{x}{a-2 b+2 c}\)
= \(\frac{a x}{a^2-2 a b+2 c a}\) …(2)
Similarly, \(\frac{x+y}{3 a-b}=\frac{y+z}{3 b-c}=\frac{z+x}{3 c-a}\)
= \(\frac{b y}{2 a b + b^2-2 b c }\) …(3)
and \(\frac{x+y}{3 a-b}=\frac{y+z}{3 b-c}=\frac{z+x}{3 c-a}\)
= \(\frac{c z}{c^2-2 c a+2 b a}\) …(4)
Now, applying on (2) (3) and (4) we get
\(\frac{x+y}{3 a-b}=\frac{y+z}{3 b-c}=\frac{z+x}{3 c-a}\)= \(\frac{a x+b y+c z}{a^2-2 a b+2 c a+2 a b+b^2-2 b c+c^2-2 c a+2 b c}\)..(5)
So, from (1) and (5) we get
\(\frac{x+y+z}{a+b+c}=\frac{a x+b y+c z}{a^2+b^2+c^2}\) (proved)
4. If \(\frac{x}{b}=\frac{y}{b}={z}{c}\) then show that \(\frac{x^2-y z}{a^2-b c}=\frac{y^2-z x}{b^2-c a}=\frac{z^2-x y}{c^2-a b}\)
Solution: \(\frac{x}{b}=\frac{y}{b}={z}{c}\) = k(let) [k≠0]
∴ x = ak, y = bk and z =ck
Now, \(\frac{x^2-y z}{a^2-b c}=\frac{(\dot{a} k)^2-(b k)(c k)}{a^2-b c}\)
= \(\frac{a^2 k^2-b c k^2}{a^2-b c}=\frac{k^2\left(a^2-b c\right)}{\left(a^2-b c\right)}=k^2\)….(1)
\( \frac{y^2-z x}{b^2-c a}=\frac{(b k)^2-c k \cdot a k}{b^2-c a}\)= \(\frac{b^2 k^2-k^2 c a}{b^2-c a}=\frac{k^2\left(b^2-c a\right)}{b^2-c a}=k^2\) ….(2)
= \(\frac{z^2-x y}{c^2-a b}=\frac{(c k)^2-(a k)(b k)}{c^2-a b}\)
= \(\frac{c^2 k^2-a b k^2}{c^2-a b}=\frac{k^2\left(c^2-a b\right)}{\left(c^2-a b\right)}=k^2\)…(3)
∴ We get from (1), (2), and (3)
\(\frac{x^2-y z}{a^2-b c}=\frac{y^2-z x}{b^2-c a}=\frac{z^2-x y}{c^2-a b}\) (proved)
Class 10 Maths Wbbse Solutions
Example 9. If (a + b + c + d): (a + b – c – d) = (a- b + c – d) : (a – b – c + d), then prove that a: b = c:d.
Solution: (a + b + c + d) : (a + b – c-d)=(a – b + c – d) : (a – b – c + d)
or, \(\frac{a+b+c+d}{a+b-c-d}=\frac{a-b+c-d}{a-b-c+d}\)
or, \(\frac{a+b+c+d+a+b-c-d}{a+b+c+d-a-b+c+d}=\frac{a-b+c-d+a-b-c+d}{a-b+c-d-a+b+c-d}\)
[by componendo and dividendo process]
or, \(\frac{2(a+b)}{2(c+d)}=\frac{2(a-b)}{2(c-d)}\)
or, \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
or, \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\) [by alternative process]
or, \(\frac{a+b+a-b}{a+b-a+b}=\frac{c+d+c-d}{c+d-c+d}\) [by componendo and dividendo process]
or, \(\frac{2 a}{2 b}=\frac{2 c}{2 d}\)
or, \(\frac{a}{b}=\frac{c}{d}\)
∴ a: b = c: d(proved)
Example 10. 1. If \(\frac{a^2}{b+c}=\frac{b^2}{c+a}=\frac{c^2}{a+b}=1\) then show that \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=1\)
Solution: \(\frac{a^2}{b+c}\) = 1
or, \(\frac{a}{b+c}\) = \(\frac{1}{a}\) [Dividing by a]
or, \(\frac{a}{a+b+c}\) = \(\frac{1}{a}\) [by componendo process]
∴ \(\frac{1}{1+a} =\frac{a}{a+b+c}\) …(1)
Similarly, \(\frac{1}{1+b} =\frac{b}{a+b+c}\) …(2)
and, \( \frac{1}{1+c}=\frac{c}{a+b+c}\)….(3)
Now, adding (1), (2) and (3) we get
\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\)Class 10 Maths Wbbse Solutions
= \(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)
= \(\frac{a+b+c}{a+b+c}=1\)
∴ \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\) = (proved)
2. If x2: (by + cz) = y2: (cz + ax) = z2: (ax + by) = 1 then show that \(\frac{a}{a+x}+\frac{b}{b+y}+\frac{c}{c+z}=1\)
Solution: x2: (by + cz) = y2: (cz + ax) = z2: (ax + by) = 1
or, \(\frac{x^2}{b y+c z}=\frac{y^2}{c z+a x}=\frac{z^2}{a x+b y}=1\)
∴ \(\frac{x^2}{b y+c z}=1\) ⇒\(\frac{x}{b y+c z}=\frac{1}{x}\) [Dividing by x]
⇒ \(\frac{a x}{b y+c z}=\frac{a}{x}\)[Multiplying by a]
⇒ \(\frac{a x}{a x+b y+c z}=\frac{a}{a+x}\) [by componendo process]
∴ \(\frac{a x}{a x+b y+c z}=\frac{a}{a+x}\) ….(1)
Similarly, it can be proved that
\(\frac{b y}{a x+b y+c z}=\frac{b}{b+y}\) ….(2)
and \(\frac{c z}{a x+b y+c z}=\frac{c}{c+z}\) ….(3)
Now, adding (1), (2) and(3) we get
\(\frac{a x}{a x+b y+c z}+\frac{b y}{a x+b y+c z}+\frac{c z}{a x+b y+c z}\)Class 10 Maths Wbbse Solutions
= \(\frac{a}{a+x}+\frac{b}{b+y}+\frac{c}{c+z}\)
\(\begin{aligned}& \frac{a x+b y+c z}{a x+b y+c z}=\frac{a}{a+x}+\frac{b}{b+y}+\frac{c}{c+z} \\
& 1=\frac{a}{a+x}+\frac{b}{b+y}+\frac{c}{c+z} \\
& \frac{a}{a+x}+\frac{b}{b+y}+\frac{c}{c+z}=1 . \quad \text { (Proved) }
\end{aligned}\)
Example 11. 1. If \(\frac{x}{x a+y b+z c}=\frac{y}{y a+z b+x c}=\frac{z}{z a+x b+y c}\) and x+y+z ≠0, then show that each ratio = \(\frac{1}{a + b + c }\)
Solution: \(\frac{x}{x a+y b+z c}=\frac{y}{y a+z b+x c}=\frac{z}{z a+x b+y c}\)
= \(\frac{x+y+z}{x a+y b+z c+y a+z b+x c+z a+x b+y c}\)
= \(\frac{x+y+z}{x(a+b+c)+y(a+b+c)+z(a+b+c)}\)
= \(\frac{x+y+z}{(a+b+c)(x+y+z)}\)
= \(\frac{1}{a+b+c}\) [because x+y+z ≠0]
Hence each ratio = \(\frac{1}{a + b + c }\) (proved)
Class 10 Maths Wbbse Solutions
2. If \(\frac{a}{y+z}=\frac{b}{z+x}=\frac{c}{x+y}\) then prove that \(\frac{a(b-c)}{\dot{y}^2-z^2}=\frac{b(c-a)}{z^2-\dot{x}^2}=\frac{c(a-b)}{x^2-y^2}\)
Solution: \(\frac{a}{y+z}=\frac{b}{z+x}=\frac{c}{x+y}\)
or, \(\frac{a}{y+z}=\frac{b-c}{z+x-x-y}\)
=\(\frac{b-c}{z-y}\)
∴ \(\frac{a}{y+z}=\frac{b-c}{z-y}\) ….(1)
Similarly, it can be proved that \(\frac{b}{z+x}=\frac{c-a}{x-z}\) ….(2)
and, \(\frac{c}{x+y}=\frac{a-b}{y-x}\) ….(3)
Now, expressioris on the LHS (1), (2) and (3) are equal (Given).
∴ All the 6 expressions of (1), (2) and (3) of both the sides are equal.
∴ \(\frac{a}{y+z} \times \frac{b-c}{z-y}=\frac{b}{z+x} \times \frac{c-a}{x-z}=\frac{c}{x+y} \times \frac{a-b}{y-x}\)
or, \(\frac{a(b-c)}{-(y+z)(y-z)}=\frac{b(c-a)}{-(z+x)(z-x)}=\frac{c(a-b)}{-(x+y)(x-y)}\)
or, \(\frac{a(b-c)}{y^2-z^2}=\frac{b(c-a)}{z^2-x^2}=\frac{c(a-b)}{x^2-y^2}\)
∴ \(\frac{a(b-c)}{y^2-z^2}=\frac{b(c-a)}{z^2-x^2}=\frac{c(a-b)}{x^2-y^2}\) (proved)
3. If \(\frac{b}{a+b}=\frac{a+c-b}{b+c-a}=\frac{a+b+c}{2 a+b+2 c}\)(where a+b+c≠0) then prove that \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
Solution: \(\frac{b}{a+b}=\frac{a+c-b}{b+c-a}=\frac{a+b+c}{2 a+b+2 c}\)
or, \(\frac{2 b}{2(a+b)}=\frac{a+c-b}{b+c-a}=\frac{2(a+b+c)}{2(2 a+b+2 c)}\)
= \(\frac{2 b+a+c-b+2 a+2 b+2 c}{2 a+2 b+b+c-a+4 a+2 b+4 c}\)
= \(\frac{3 a+3 b+3 c}{5 a+5 b+5 c}\)
= \(\frac{3(a+b+c)}{5(a+b+c)}=\frac{3}{5}\) [because a+b+c ≠0]
∴ \(\frac{b}{a + b}\)=\(\frac{3}{5}\)
or, 5b = 3a+3b or, 5b-3b = 3a
or, 2b = 3a
or, \(\frac{a}{b}\) = \(\frac{2}{3}\)
or, \(\frac{a}{2}\) = \(\frac{b}{3}\) ….(1)
Again, \(\frac{a + c – b}{b + c – a}\) = \(\frac{3}{5}\)
or, 5a + 3a -5b -3b = 3c -5c
or, 8a – 8b = – 2c or, 8a – 12a = – 2c [2b=3a]
or, -4ac = -2c
or, \(\frac{a}{-2}\) = \(\frac{c}{-4}\) or, \(\frac{a}{2}\) = \(\frac{c}{4}\) ….(2)
From (1), (2) we get \(\frac{a}{2}\) = \(\frac{b}{3}\) = \(\frac{c}{4}\)
Hence \(\frac{a}{2}\) = \(\frac{b}{3}\) = \(\frac{c}{4}\) (proved)
4. If \(\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}\) then prove that the value of each ration is equal to \(\frac{1}{2}\) or, (-1)
Solution: \(\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}\) = k(let) [k≠0]
∴ x = k (y + z); y = k (z + x); z = k (x + y).
Now, x + y + z = k (y + z) + k (z + x) + k (x + y) = k(y + z+ z+ x +x + y)
= k (2x + 2y + 2z) = 2 k (x + y + z)
or, x + y + z – 2k (x + y + z) = 0
or, (x + y + z)( 1 – 2k) = 0.
∴ either x + y + z = 0 or, 1 – 2k = 0
⇒ 2k = 1 ⇒ k = \(\frac{1}{2}\)
∴ each ratio = \(\frac{1}{2}\)
Again, x + y + z ⇒ y + z = -x
⇒ \(\frac{x}{y+z}=\frac{x}{-x}=-1\)
Similarly, z + x = -y
⇒ \(\frac{y}{z+x}=\frac{y}{-y}=-1\)
and x + y = -z
⇒ \(\frac{z}{x+y}=\frac{z}{-z}=-1\)
∴ \(\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}\) implies that the value of each ratio is equal to \(\frac{1}{2}\) or (-1) (proved)