WBBSE Notes For Class 6 Maths Arithmetic Chapter 5 Multiplication And Division Of A Number And By Fraction

Arithmetic Chapter 5 Multiplication And Division Of A Number And By Fraction

Arithmetic Chapter 5 the Rule Of Multiplication Of A Fraction By Whole Number

1. Multiplication of a proper fraction by the whole number

  1. We know that 2/7 is a proper fraction (v the numerator < the denomination).
  2. Suppose we have to multiply this proper fraction by any whole number say 7.
  3. So the mathematical problem is  2/7 x 7 = What is the value?
  4. Here the rule is:

A proper fraction x the whole number = \(\frac{The number of the proper fraction x whole number}{The denominator of the proper fraction}\)

According to the above rule, \(\frac{2}{7} \times 7\)

= 2

1. Similarly \(\frac{5}{6} \times 8\)

= \(\frac{5 \times 8}{6}\)

= \(\frac{5 \times 4}{3}\)

= 20/3

= \(6 \frac{2}{3}\)

\(\frac{5}{6} \times 8\) = \(6 \frac{2}{3}\)

WBBSE Class 6 Multiplication and Division Notes

2. similarly  \(\frac{11}{14} \times 21\)

= \(\frac{11}{14} \times 21\)

= \(\frac{11 \times 21}{14}\)

= \(\frac{11 \times 3}{2}\)

= 33/2

= \(16 \frac{1}{2}\)

\(\frac{11}{14} \times 21\) = \(16 \frac{1}{2}\)

 

3. similarly \(\frac{17}{25} \times 35\)

= \(\frac{17}{25} \times 35\)

= \(\frac{17 \times 35}{25}\)

= \(\frac{17 \times 7}{5}\)

= 119/5

= \(23 \frac{4}{5}\)

\(\frac{17}{25} \times 35\) = \(23 \frac{4}{5}\)

Understanding Multiplication of Fractions

2.  Multiplication of an improper fraction by the whole number :

  1. We know that “ is an improper fraction (v the numerator > the denominator).
  2. Suppose we have to multiply this improper fraction by any whole number say 15.
  3. So the mathematical problem is:
\(\frac{7}{18} \times 15\)

Here also the rule is: The fraction x whole number = \(\frac{The numerator of the fraction x whole number}{The denominator of the fraction}\)

According to the above rule,

= \(\frac{8}{5} \times 15\)

= \(\frac{8 \times 15}{5}\)

= 8 x 3

= 24

Short Questions on Division of Fractions

1. Similarly \(\frac{11}{7} \times 4\)

= \(\frac{11}{7} \times 4\)

= \(\frac{11 \times 4}{7}\)

= 44/7

= \(4 \frac{2}{7}\)

\(\frac{11}{7} \times 4\) = \(4 \frac{2}{7}\)

 

2. Similarly \(\frac{15}{4} \times 9\)

= \(\frac{15}{4} \times 9\)

= \(\frac{15 \times 9}{4}\)

= 135/2

= \(33 \frac{3}{4}\)

\(\frac{15}{4} \times 9\) = \(33 \frac{3}{4}\)

 

3. Similarly \(\frac{24}{8} \times 14\)

= \(\frac{24}{8} \times 14\)

= \(\frac{21 \times 14}{8}\)

= 147/4

= \(36 \frac{3}{4}\)

\(\frac{24}{8} \times 14\) = \(36 \frac{3}{4}\)

Common Questions About Multiplying Fractions

3. Multiplication of a mixed fraction or a complex fraction by a whole number :

  1. To multiply a mixed fraction or a complex fraction by a whole number, first, we have to convert the given fraction to the improper fraction and then according to the rule of 5.1.B.
  2. The multiplication is to be completed.

1. For Example \(5 \frac{1}{3} \times 7\)

= \(5 \frac{1}{3} \times 7\)

= \(\frac{16}{3} \times 7\)

= \(\frac{16 \times 7}{3}\)

= 112/3

= \(37 \frac{1}{3}\)

\(5 \frac{1}{3} \times 7\) = \(37 \frac{1}{3}\)

 

2. For Example \(7 \frac{1}{2} \times 12\)

= \(7 \frac{1}{2} \times 12\)

= \(\frac{15}{2} \times 12\)

= \(\frac{15 \times 12}{2}\)

= 15 x 6

= 90

\(7 \frac{1}{2} \times 12\) = 90

Practice Problems on Fraction Multiplication and Division

3. For Example \(\frac{\frac{3}{4}}{\frac{5}{7}} \times 14\)

= \(\frac{\frac{3}{4}}{\frac{5}{7}} \times 14\)

= \(\left(\frac{3}{4} \times \frac{7}{5}\right) \times 14\)

= \(\frac{21}{20} \times 14\)

= \(\frac{21 \times 14}{20}\)

= \(\frac{21 \times 7}{10}\)

= 147/10

= \(14 \frac{7}{10}\)

\(\frac{\frac{3}{4}}{\frac{5}{7}} \times 14\) = \(14 \frac{7}{10}\)

 

 

 

Leave a Comment