Semiconductor Devices And Communication Systems Synopsis
Conductivity (σ) of a conductor: This is given by
∴ \(\sigma=\frac{\text { current density }(j)}{\text { electric field }(E)}=\frac{n e v}{E}=n e \mu\)
where μ = mobility of electrons and v = drift speed of electrons.
The conductivity of a semiconductor: This is given by
∴ [laytex]\sigma=n_{\mathrm{e}} e \mu_{\mathrm{e}}+n_{\mathrm{h}} e \mu_{\mathrm{h}}[/latex]
where the subscripts e and h respectively represent electrons and holes.
Resistance of a p-n junction:
- Static (or DC) resistance = \(R=\frac{V}{I}\), where V = operating voltage.
- Dynamic (or AC) resistance = \(r=\frac{\Delta V}{\Delta I}\)
This is the reciprocal of the slope of the I-V characteristic.
The emitter, collector, and base currents in a transistor are related by the equation Ie = Ic + Ib.
α- and β-parameters of a transistor: These two parameters are given by
∴ \(\alpha=\frac{I_{\mathrm{c}}}{I_{\mathrm{e}}} \text { and } \beta=\frac{I_{\mathrm{c}}}{I_{\mathrm{b}}}=\frac{\alpha}{1-\alpha}\)
Voltage gain = \(\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{I_{\mathrm{c}} R_{\mathrm{L}}}{I_{\mathrm{b}} R_{\mathrm{BE}}}=\beta\left(\frac{R_{\mathrm{L}}}{\dot{R}_{\mathrm{BE}}}\right)\)
Power gain = (voltage gain)(current gain)
⇒ \(\beta\left(\frac{R_{\mathrm{L}}}{R_{\mathrm{BE}}}\right)\left(\frac{I_{\mathrm{c}}}{I_{\mathrm{b}}}\right)=\beta^2\left(\frac{R_{\mathrm{L}}}{R_{\mathrm{BE}}}\right)\)
A logic gate is an electric device that performs a logical operation on one or more binary inputs and produces a single binary output.
Symbols and Boolean expressions for basic logic gates and their truth tables:
(1) OR gate:
(2) AND gate:
(3) NOT gate:
(4) NOR gate:
(5) NAND gate:
Range: The maximum distance from the transmitter (which sends the signals) to the receiving station (where the signals are received) with sufficient strength is called the range. It is given by
⇒ \(d=\sqrt{2 R_{\mathrm{E}} h}\)
where RE = the earth’s radius and h = height of the antenna.
Maximum line-of-sight (LoS) distance:
⇒ \(d=\sqrt{2 R h_1}+\sqrt{2 R h_2}\)
where h1 and h2 are the heights of the transmitting and receiving antennas.
Modulated and carrier waves:
(1) Carrier wave: ec = Ec cos ωct.
(2) Modulating signal: em = Em cos ωmt.
(3) Amplitude of the modulated wave = Ec + Em cos ωmt.
(4) Modulated wave:
e = (Ec + Em cos ωmt) cos ωct
⇒ \(E_{\mathrm{c}}\left(1+\frac{E_{\mathrm{m}}}{E_{\mathrm{c}}} \cos \omega_{\mathrm{m}} t\right) \cos \omega_{\mathrm{c}} t\)
⇒ Ec (1 + m cos ωmt) cos ωct,
where \(m=\frac{E_m}{E_c}\) is the modulation index
∴ \(E_{\mathrm{c}} \cos \omega_{\mathrm{c}} t+\frac{m E_{\mathrm{c}}}{2} \cos \left(\omega_{\mathrm{c}}-\omega_{\mathrm{m}}\right) t+\frac{m E_{\mathrm{c}}}{2} \cos \left(\omega_{\mathrm{c}}+\omega_{\mathrm{m}}\right) t\)