Radioactivity
Question 1. The half-life of a radioactive material is 3 h. If the initial amount is 300 g then after 18 h it will remain
- 4.68 g
- 9.375 g
- 48.8 g
- 93.75 g
Answer: 1. 4.68 g
Given that total time = t =18 h and half-life = T1/2 = 3 h.
∴ the number of half-lives is
⇒ \(n=\frac{t}{T_{1 / 2}}=\frac{18 \mathrm{~h}}{3 \mathrm{~h}}=6\)
Now, the amount of active material left after 6 half-lives is
∴ \(N=\left(\frac{1}{2}\right)^6 N_0=\frac{300 \mathrm{~g}}{64}=4.68 \mathrm{~g}\)
radioactive activity
Alternative method
⇒ \(\begin{aligned}
300 \mathrm{~g} \stackrel{T_{1 / 2}}{\longrightarrow} 150 \mathrm{~g} \stackrel{T_{1 / 2}}{\longrightarrow} 75 \mathrm{~g} \stackrel{T_{1 / 2}}{\longrightarrow} 37.5 \mathrm{~g} \\
\stackrel{T_{1 / 2}}{\longrightarrow} 18.75 \mathrm{~g} \stackrel{T_{1 / 2}}{\longrightarrow} 9.37 \mathrm{~g} \stackrel{T_{1 / 2}}{\longrightarrow} 4.68 \mathrm{~g}
\end{aligned}\)
After 6 half-lives, 4.68 g of active nuclei remains
Question 2. The half-lives of two radioactive elements A and B are respectively 20 min and 40 min. Initially, the samples of A and B have equal numbers of nuclei. After 80 minutes, the ratio of the remaining numbers of the A and B nuclei will be
- 1:16
- 1:4
- 1 :1
- 4: 1
Answer: 2. 1:4
For A, half-life = TA = 20 min, and for B, half-life = TB = 40 min.
Total time = 80 min = 4TA = 2TB
∴ \(N_{\mathrm{A}}=\left(\frac{1}{2}\right)^4 N_0 \text { and } N_{\mathrm{B}}=\left(\frac{1}{2}\right)^2 N_0\)
Hence, the ratio between the numbers of active nuclei of A and B is
∴ \(\frac{N_{\mathrm{A}}}{N_{\mathrm{B}}}=\frac{\left(\frac{1}{2}\right)^4}{\left(\frac{1}{2}\right)^2}=\frac{4}{16}=\frac{1}{4} \Rightarrow N_{\mathrm{A}}: N_{\mathrm{B}}=1: 4\)
Question 3. The half-life of radium is 1600 y. The fraction of a sample of radium that would remain active after 6400 y is
- \(\frac{1}{4}\)
- \(\frac{1}{2}\)
- \(\frac{1}{8}\)
- \(\frac{1}{16}\)
Answer: 4. \(\frac{1}{16}\)
For radium, half-life = T1/2 = 1600 y.
Total time = t = 6400 y = 4T1/2.
⇒ \(N=\left(\frac{1}{2}\right)^4 N_0\)
Hence, the fraction of nuclei which remain active will be
∴ \(\frac{N}{N_0}=\left(\frac{1}{2}\right)^4=\frac{1}{16}\)
Question 4. The activity of a radioactive sample is measured as 9750 counts min-1 at t = 0 and 975 counts min-1 at t = 5 min. The decay constant is approximately
- 0.92 mm-1
- 0.69 min-1
- 0.46 min-1
- 0.23 min-1
Answer: 3. 0.46 min-1
Activity (A) is measured as the rate of disintegration.
∵ \(N=N_0 \mathrm{e}^{-\lambda .}\)
∴ \(A=\left|\frac{d N}{d t}\right|=N_0 \lambda \mathrm{e}^{-\lambda t}=A_0 \mathrm{e}^{-\lambda t}\)
where AQ is the activity at t = 0.
“what is radioactivity in chemistry “
Given that A0 = 9750 counts min-1 at t = 0, and A = 975 counts min-1 at t = 5 min.
∴ \(A=A_0 \mathrm{e}^{-\lambda t} \Rightarrow \frac{A_0}{A}=\frac{9750}{975}=\mathrm{e}^{\lambda t}\)
∴ In 10 = λ(5 min)
∴ decay constant = \(\lambda=\frac{\ln 10}{5 \min }=\frac{2.3}{5 \mathrm{~min}}=0.46 \mathrm{~min}^{-1}\)
Question 5. The relation between disintegration constant (λ) and half-life (T1/2) is
- \(\lambda=\frac{\log _{10} 2}{T}\)
- \(\lambda=\frac{\log _2 \mathrm{e}}{T}\)
- \(\lambda=\frac{\log _{\mathrm{e}} 2}{T}\)
- \(\lambda=\frac{\log _{\mathrm{e}} T_{1 / 2}}{2}\)
Answer: 3. \(\lambda=\frac{\log _{\mathrm{e}} 2}{T}\)
Since the radioactive decay follows the exponential law, N = N0e-λt.
After one half-life, N0 changes to N0/2
⇒ \(\frac{N_0}{2}=N_0 \mathrm{e}^{-\lambda T} \Rightarrow 2=\mathrm{e}^{\lambda T}\)
∴ \(\lambda T=\ln 2 \Rightarrow \lambda=\frac{\ln 2}{T}=\frac{\log _e^2}{T}\)
Question 6. A sample of a radioactive element contains 4 x 1010 active nuclei. If the half-life of the element is 10 days, the number of decayed nuclei after 30 days is
- 0.5 x l010
- 2 x l010
- 3.5 x l010
- 1 x l010
Answer: 3. 3.5 x l010
Given that N0 = 4 x l010, half-life = T1/2=10 days, and total time = t = 30 days.
number of half-lives = n = \(\frac{t}{T_{1 / 2}}=\frac{30 \text { days }}{10 \text { days }}=3\)
Hence, the number of active nuclei after 3 half-lives is
⇒ \(N=\left(\frac{1}{2}\right)^3 N_0=\frac{N_0}{8}\)
∴ the number of decayed nuclei is
∴ \(N_0-N=N_0\left(1-\frac{1}{8}\right)=\frac{7}{8} N_0=\frac{7}{8}\left(4 \times 10^{10}\right)=3.5 \times 10^{10}\).
Question 7. The half-life of a radioactive sample is 6 h. After 24 h, its activity is 0.01 μCi. What was the initial activity?
- 0.04 Ci
- 0.08 μCi
- 0.16 μCi
- 0.24 Ci
Answer: 3. 0.16 μCi
The activity at the time t is
⇒ \(A(t)=A_0 \mathrm{e}^{-\lambda t}\),
where A0 = initial activity.
“radioactivity and half life “
Given that half-life = T1/2 = 6 h and total time = t = 24 h.
The activity at the time t is 0.01 μCi.
∴ \(0.01 \mu \mathrm{Ci}=A_0 \mathrm{e}^{-(\ln 2)(t / T)}\)
∴ initial activity = \(A_0=(0.01 \mu \mathrm{Ci}) \mathrm{e}^{(\ln 2)(24 / 6)}\)
= (0.01 (μCi)e41n 2 = (0.01 μCi)(16) = 0.16 μCi.
Question 8. The half-life of radium is 1600 y. What fraction of the same remains undecayed after four half-lives?
- \(\frac{1}{8}\)
- \(\frac{1}{4}\)
- \(\frac{1}{16}\)
- \(\frac{1}{24}\)
Answer: 3. \(\frac{1}{16}\)
Given that half-life = T1/2 = 1600 y and total time = t = 4T1/2 = 4 half-lives.
∴ the number of undecayed (active) nuclei after 4 half-lives will be
⇒ \(N=\left(\frac{1}{2}\right)^4 N_0=\frac{N_0}{16}\)
∴ required fraction = \(\frac{N}{N_0}=\frac{1}{16}\)
Question 9. M alpha particles per second are emitted from N atoms of a radioactive element. The half-life of the radioactive element is
- \(\frac{M}{N} \mathrm{~s}\)
- \(\frac{N}{M} \mathrm{~s}\)
- \(\frac{N(0.693)}{M} \mathrm{~s}\)
- \(\frac{M(0.693)}{N} \mathrm{~s}\)
Answer: 3. \(\frac{N(0.693)}{M} \mathrm{~s}\)
For a nuclear disintegration,
⇒ \(N=N_0 \mathrm{e}^{-\lambda t} \text { and } A=\frac{d N}{d t}=\lambda N_0 \mathrm{e}^{-\lambda t}=\lambda N\)
Given that disintegration rate = A = M s-1
∴\(M=\lambda N \Rightarrow \lambda=\frac{M}{N}\)
∴ half life \(T_{1 / 2}=\frac{\ln 2}{\lambda}=\frac{\ln 2}{M / N} \mathrm{~s}=\frac{N}{M}(0.693) \mathrm{s}\)
Question 10. The half-life of a radioactive element is 5 y. What percentage of it will remain active after 25 y?
- 25%
- 6.25%
- 1.25%
- 3.125%
Answer: 4. 3.125%
Given that half-life = T1/2 = 5 y and total time = t = 25 y = 5(5 y) = 5T1/2.
After 5 half-lives, the number of active (undecayed) nuclei will be
⇒ \(N=\left(\frac{1}{2}\right)^5 N_0=\frac{N_0}{32}\)
∴ \(\frac{N}{N_0}=\frac{1}{32}=\frac{100 \%}{32}=3.125 \%\)
Question 11. Two radioactive substances A and B have their decay constants 5λ. and A respectively. At t = 0, they have the same number of nuclei. The ratio of the number of active nuclei of A to those of B will be 1/e2 after a time period of
- 4λ
- 2λ
- \(\frac{1}{2 \lambda}\)
- \(\frac{1}{4 \lambda}\)
Answer: 3. \(\frac{1}{2 \lambda}\)
The number of active nuclei of element A is NA = N0e-5λt and that of element B is NB = N0e-λt.
Given that \(\frac{N_{\mathrm{A}}}{N_{\mathrm{B}}}=\frac{1}{\mathrm{e}^2}=\frac{\mathrm{e}^{-5 \lambda t}}{\mathrm{e}^{-\lambda t}}=\frac{1}{\mathrm{e}^{4 \lambda t}}\)
4λt = 2.
Hence, the required time is t = \(t=\frac{1}{2 \lambda}\)
Question 12. Nl atoms of a radioactive element emit N2 beta particles per second. The decay constant of the element is
- \(\frac{N_1}{N_2}\)
- \(\frac{N_2}{N_1}\)
- N1 In 2
- N2 In 2
Answer: 2. \(\frac{N_2}{N_1}\)
Activity = \(A=\left|\frac{d N}{d t}\right|=\lambda N_0 \mathrm{e}^{-\lambda t}=\lambda N\) → (1)
Since N2 beta particles are emitted from N1 nuclei, we have
A = N2 S-1 and N = N1
From (1), N2= N1.
Hence, decay constant = \(=\lambda=\frac{N_2}{N_1}\)
Question 13. The half-life of a radioactive substance is 30 min. The time taken between the 40% decay and the 85% decay of this radioactive substance is
- 45 min
- 15 min
- 60 min
- 30 min
Answer: 3. 60 min
∵ 40% decay = 60% active nuclei,
∴ \(N_1=\frac{60}{100} N_0\)
∵ 85% decay =15% active nuclei,
∴ \(N_2=\frac{15}{100} N_0\)
∴ \(\frac{N_2}{N_1}=\frac{1}{4}=\left(\frac{1}{2}\right)^2\)
Thus, the time duration is 2 half-lives = 2(30 min) = 60 min
Class 11 Physics | Class 12 Maths | Class 11 Chemistry |
NEET Foundation | Class 12 Physics | NEET Physics |
Question 14. A mixture consists of two radioactive substances A1 and A2 having the half-lives 20 s and 10 s respectively. Initially, the mixture has 40 g of A1 and 160 g of A2. The amount of the two in the mixture will become equal after a period of
- 60 s
- 80 s
- 40 s
- 20 s
Answer: 3.
For A1, half-life = 20 s.
For A2, half-life = 10 s.
Let A1 be reduced to N from N0 in the time t = (t/T1/2) half-lives
“examples of radioactive elements “
∴ \(N=N_0\left(\frac{1}{2}\right)^{\frac{t}{T_{1 / 2}}}=(40 \mathrm{~g})\left(\frac{1}{2}\right)^{t / 20 \mathrm{~s}}\)
Similarly, for A2,
⇒ \(N=(160 \mathrm{~g})\left(\frac{1}{2}\right)^{t / 10 \mathrm{~s}}\)
∴ \(\left(\frac{1}{2}\right)^{t / 20 s}=4\left(\frac{1}{2}\right)^{t / 10 s}\)
⇒ \(\frac{t}{20 \mathrm{~s}}+2=\frac{t}{10 \mathrm{~s}}\)
⇒ \(\frac{t}{20 \mathrm{~s}}=2 \Rightarrow t=40 \mathrm{~s}\)
Question 15. A sample of a radioactive element has a mass of 10 g at the instant t = 0. The approximate mass of the element in the sample after two mean lives is
- 3.70 g
- 1.35 g
- 6.30 g
- 2.50 g
Answer: 2. 1.35 g
At f = 0, M0 = 10 g.
Mean life = \(\tau=\frac{1}{\lambda}\)
∴ the active mass after 2 mean lives (= 2/λ) will be
∴ \(M=M_0 \mathrm{e}^{-\lambda(2 / \lambda)}=M_0 \mathrm{e}^{-2}=\frac{10 \mathrm{~g}}{\mathrm{e}^2}=\frac{10 \mathrm{~g}}{7.39}=1.35 \mathrm{~g}\)
Question 16. If the half-lives of a radioactive substance for its α- and β -decays are 4 y and 12 y respectively, the ratio of the initial activity to that after 12 y will be
- 6.25%
- 12.5%
- 25%
- 50%
Answer: 1. 6.25%
For the α-decay, Tα= 4 y.
For the β-decay, Tβ =12 y
∴ net activity = \(\frac{d N_{\mathrm{A}}}{d t}=\frac{d N_{\mathrm{B}}}{d t}+\frac{d N_{\mathrm{C}}}{d t}\)
∴ \(\lambda_{\text {eff }} N_{\mathrm{A}}=\lambda_1 N_{\mathrm{A}}+\lambda_2 N_{\mathrm{A}}\)
⇒ \(\lambda_{\text {eff }}=\lambda_1+\lambda_2\)
⇒ \(\frac{1}{\lambda_{\text {eff }}}=\frac{1}{T_1}+\frac{1}{T_2}=\frac{T_1+T_2}{T_1 T_2}\)
∴ effective half-life = \(T_{\text {eff }}=\frac{T_1 T_2}{T_1+T_2}=\frac{4 \times 12}{16} \mathrm{y}=3 \mathrm{y}\)
∴ number of half-lives = n = \(n=\frac{12 y}{3 y}=4\)
∴ \(\frac{N}{N_0}=\left(\frac{1}{2}\right)^n=\left(\frac{1}{2}\right)^4=\frac{1}{16}=6.25 \%\)
Question 17. The half-life of a substance is 20 min. What is the time interval between its 33% decay and 67% decay?
- 40 min
- 25 min
- 20 min
- 30 min
Answer: 3. 20 min
Given that half-life = T1/2 = 20 min.
Assume that at a time t1, undecayed nuclei = (100- 33)%.
∴ N1 = (67%)N0.
Similarly, assume that at a time t2,
N2 = (100- 67)%. N0 = (33%)N0.
∴ \(\frac{N_1}{N_2}=\frac{N_0 \mathrm{e}^{-\lambda t_1}}{N_0 \mathrm{e}^{-\lambda t_2}} \Rightarrow \frac{67}{33}=\mathrm{e}^{\lambda\left(t_2-t_1\right)}\)
Taking \(\frac{67}{33}=2\), we have
⇒ \(2=\mathrm{e}^{\left(t_2-t_1\right) \ln 2 / T}=\mathrm{e}^{\ln 2^{\Delta t / T}}=2^{\Delta t / T}\)
∴ \(\frac{\Delta t}{T}=1\).
Hence, the required time interval is Δt = T1/2 = one half-life = 20 min
Question 18. A radioisotope X with a half-life of 1.4 x l09 y decays to Y, which is a stable isotope. A sample of a rock from a cave was found to contain X and Y in a ratio 1:7. The age of the rock is
- 1.96 x l09 y
- 3.92 x l09 y
- 8.40 x l09 y
- 4.20 x l09 y
Answer: 4. 4.20 x l09 y
Let us assume that at t = 0, the total number of active X nuclei = N0 which decay to Y nuclei such that Nx : NY =1: 7.
∴ \(N_{\mathrm{X}}=\frac{N_0}{8} \text { and } N_{\mathrm{Y}}=\frac{7 N_0}{8}\)
Now, \(N_{\mathrm{X}}=\frac{N_0}{8}=\left(\frac{1}{2}\right)^3 N_0\)
This occurs after 3 half-lives. Thus,
required time = t = \(3 T_{1 / 2}=3\left(1.4 \times 10^9 \mathrm{y}\right)=4.2 \times 10^9 \mathrm{y}\).
Alternative method
⇒ \(N_{\mathrm{X}}=\frac{N_0}{8}=N_0 \mathrm{e}^{-\lambda t}\)
⇒ \(8=2^3=\mathrm{e}^{\lambda t}\)
∴ \(\ln 2^3=\ln \mathrm{e}^{\lambda t} \Rightarrow 3 \ln 2=\lambda t\)
⇒ \(t=3\left(\frac{\ln 2}{\lambda}\right)=3 T=3\left(1.4 \times 10^9 \mathrm{y}\right)=4.2 \times 10^9 \mathrm{y}\)
Question 19. A sample of a radioactive material decays at the rate of 500 per second at a certain time. The activity falls to 200 per second after 50 min. What is the decay constant (λ) of the sample? (Given that In 2.5 = 0.916.)
- 6.10 x l0-4 s-1
- 3.05 x l0-4 s-1
- 5.0 x 10-4 s-1
- 1.0 x l0-4 s-1
Answer: 2. 3.05 x l0-4 s-1
Initial decay rate = A0 = 500 s-1.
⇒ A(t) = A0e-λt
⇒ 200 s-1 = (500 s-1 )e-λ(5° min)
2.5 = eλ(50 min)
∴ In 2.5 = In eλ(50 min)
⇒ In 2.5 = λ(50 min).
Hence, decay constant = \(\frac{\ln 2.5}{50 \times 60 \mathrm{~s}}=\frac{0.916}{30} \times 10^{-2} \mathrm{~s}^{-1}\)
= \(3.05 \times 10^{-1} \mathrm{~s}^{-1}\).
20. In a radioactive material, the activity at a time t1 is R1, and at a later time t2, it is R2. If the decay constant of the material is λ then
- \(R_1=R_2 \mathrm{e}^{-\lambda\left(t_1-t_2\right)}\)
- \(R_1=R_2 \mathrm{e}^{\lambda\left(t_1-t_2\right)}\)
- \(R_1=R_2\left(\frac{t_2}{t_1}\right)\)
- R1 = R2
Answer: 1. \(R_1=R_2 \mathrm{e}^{-\lambda\left(t_1-t_2\right)}\)
We know that A(t) = A0e-λt.
∴ at \(t=t_1, R_1=R_0 \mathrm{e}^{-\lambda t_1} \text { and at } t=t_2, R_2=R_0 \mathrm{e}^{-\lambda t_2}\)
Hence, \(\frac{R_1}{R_2}=\mathrm{e}^{-\lambda\left(t_1-t_2\right)}\)
⇒ \(R_1=R_2 \mathrm{e}^{-\lambda\left(t_1-t_2\right)}\).
21. The half-life of a radioactive isotope X is 20 y. It decays to another element Y, which is stable. The two elements X and Y were found to be in the ratio 1: 7 in a sample of a given rock. The age of the rock is estimated to be
- 40 y
- 100 y
- 60 y
- 80 y
Answer: 3. 60 y
The solution is similar to that of Q.18.
Only the half-life is changed to T1/2 = 20 y.
Hence, the age of the rock will be 3 half-lives, i.e., T1/2 = 3(20 y) = 60 y
22. The activity of a radioactive sample is measured as N0 counts per minute at t = 0 and N0/e counts per minute at t = 5 min. The time period at which the activity reduces to half its value is
- \(\ln \frac{2}{5} \min\)
- \(\frac{5}{\ln 2} \min\)
- \(5 \log 2 \mathrm{~min}\)
- \(5 \ln 2 \mathrm{~min}\)
Answer: 4. \(5 \ln 2 \mathrm{~min}\)
At t = 0, activity = N0.
At t = 5 min,
activity = \(\frac{N_0}{\mathrm{e}}=N_0 \mathrm{e}^{-\lambda(5 \mathrm{~min})}\)
⇒ \(\lambda(5 \mathrm{~min})=1 \Rightarrow \lambda=\frac{1}{5 \mathrm{~min}}\)
When the activity reduces to half, the time taken is one half-life. Thus,
∴ \(t=T_{1 / 2}=\frac{\ln 2}{\lambda}=\frac{\ln 2}{1 / 5 \mathrm{~min}}=(5 \ln 2) \mathrm{min}\).
Question 23. A radioactive isotope is being produced at a constant rate α per second. Its decay constant is λ. If N0 is the number of nuclei at a time t = 0, the maximum possible number of nuclei is
- \(N_0+\frac{\alpha}{\lambda}\)
- \(N_0\)
- \(\frac{\lambda}{\alpha}+N_0\)
- \(\frac{\alpha}{\lambda}\)
Answer: 4. \(\frac{\alpha}{\lambda}\)
The number of nuclei present will be maximum when the decay rate is equal to the rate at which isotopes are being produced.
Now, rate of decay = \(=\left|\frac{d N}{d t}\right|=N_0 \lambda e^{-\lambda t}=\lambda N\) and rate of formation = a.
∴ λN = α
Hence, the maximum number of nuclei is N = α/λ.
Question 24. If the half-life of a radioactive sample is 69.3 h, how much of the initial number will decay between the tenth and eleventh hours?
- 1%
- 2%
- 3%
- 4%
Answer: 1. 1%
The number of active nuclei at the time t1 = 10 h is N1 = N0e-10λ, and that at the time t2 =11 h is N2 = N0e-11λ.
∴ percentage decay = \(\frac{N_1-N_2}{N_1} \times 100 \%\)
⇒ \(\frac{N_0 \mathrm{e}^{-10 \lambda}-N_0 \mathrm{e}^{-11 \lambda}}{N_0 \mathrm{e}^{-10 \lambda}} \times 100 \%=\left(1-\frac{1}{e^\lambda}\right) \times 100 \%\)
Given that half-life = \(T_{1 / 2}=69.3 \mathrm{~h}=\frac{\ln 2}{\lambda}=\frac{0.693}{\lambda}\)
∴ decay constant = λ = 0.01 h-1 .
∴ \(\% \text { decay }=\left(1-\frac{1}{\mathrm{e}^{0.01}}\right) \times 100 \%=(1-0.99) \times 100 \%=1 \%\)
Question 25. Two radioactive materials A and B have their decay constants 10λ and λ respectively. If initially they have the same number of nuclei, the ratio of the number of nuclei of A and B will be 1/e after a time period of
- \(\frac{1}{9 \lambda}\)
- \(\frac{1}{11 \lambda}\)
- \(\frac{1}{10 \lambda}\)
- \(\frac{11}{10 \lambda}\)
Answer: 1. \(\frac{1}{9 \lambda}\)
For the element A, \(N_{\mathrm{A}}=N_0 \mathrm{e}^{-10 \lambda t}\)
For the element B, \(N_{\mathrm{B}}=N_0 \mathrm{e}^{-\lambda t}\)
∴ \(\frac{N_{\mathrm{A}}}{N_{\mathrm{B}}}=\frac{1}{\mathrm{e}}=\frac{\mathrm{e}^{-10 \lambda t}}{\mathrm{e}^{-\lambda t}}=\frac{1}{\mathrm{e}^{9 \lambda t}}\)
∴ \(9 \lambda t=1 \Rightarrow t=\frac{1}{9 \lambda}\)
“types of radioactive decay “
Question 26. A sample of a radioactive material A that has an activity of 10 mCi (given that 1 Ci = 3.7 x 1010 decays per second) has twice the number of nuclei as another sample of a different radioactive material B, which has an activity of 20 mCi. The correct choices for the half-lives of A and B would then be respectively
- 20 d and 10 d
- 5 d and 10 d
- 10 d and 40 d
- 20 d and 5 d
Answer: 4. 20 d and 5 d
The activity (A) of a radioactive sample is the rate of disintegration. So,
⇒ \(A=\left|\frac{d N}{d t}\right|=\lambda N=\left(\frac{\ln 2}{T}\right) N\),
where T is the half-life of the material.
∴ \(\frac{A_{\mathrm{A}}}{A_{\mathrm{B}}}=\frac{N_{\mathrm{A}}}{N_{\mathrm{B}}} \cdot \frac{T_{\mathrm{B}}}{T_{\mathrm{A}}} \Rightarrow \frac{10 \mathrm{mCi}}{20 \mathrm{mCi}}=\frac{2 N_{\mathrm{B}}}{N_{\mathrm{B}}} \cdot \frac{T_{\mathrm{B}}}{T_{\mathrm{A}}}\)
∴ \(\frac{T_{\mathrm{A}}}{T_{\mathrm{B}}}=\frac{4}{1}\)
This is true for the option (4).
Question 27. Using a nuclear counter, the count rate of particles emitted from a radioactive source is measured. At t = 0, it was 1600 per second, and at t = 8 s, it was 100 per second. The count rate observed at t = 6 s is close to
- 400 s-1
- 200 s-1
- 150 s-1
- 300 s-1
Answer: 2. 200 s-1
The count rate is the same as the activity, i.e., A = \(A=\left|\frac{d N}{d t}\right|\)
But \(N=N_0 \mathrm{e}^{-\lambda t}\)
So, \(A=\left|\frac{d N}{d t}\right|=\lambda N_0 \mathrm{e}^{-\lambda t}\)
A(t) = A(0)e-λt.
Given that A(0) = 1600 s-1 and A(8) = 100s-1.
⇒ \(\frac{A(0)}{A(8)}=\frac{1600}{100}=\mathrm{e}^{\lambda .8} \Rightarrow 2^4=\left(\mathrm{e}^{2 \lambda}\right)^4\)
⇒ \(\mathrm{e}^{2 \lambda}=2 \Rightarrow \lambda=\frac{1}{2} \ln 2=\ln \sqrt{2}\)
At t = 6 s,
∴ \(A(t)=A(6 \mathrm{~s})=N_0 \mathrm{e}^{-6 \lambda}=\left(1600 \mathrm{~s}^{-1}\right) \mathrm{e}^{-6 \ln \sqrt{2}}=\frac{1600 \mathrm{~s}^{-1}}{8}=200 \mathrm{~s}^{-1}\).
Question 28. Two radioactive samples A and B have their decay constants 5λ and λ respectively. At a time t = 0, the samples have equal numbers of active nuclei. The time taken for the ratio of the numbers of nuclei to become 1/e2 will be
- \(\frac{2}{\lambda}\)
- \(\frac{1}{\lambda}\)
- \(\frac{1}{4 \lambda}\)
- \(\frac{1}{2 \lambda}\)
Answer: 4. \(\frac{1}{2 \lambda}\)
⇒ \(\frac{N_{\mathrm{A}}}{N_{\mathrm{B}}}=\frac{N_0 \mathrm{e}^{-5 i t}}{N_0 \mathrm{e}^{-\lambda, t}}=\mathrm{e}^{-4 i t}\) → (1)
Bur \(\frac{N_{\mathrm{A}}}{N_{\mathrm{B}}}=\frac{1}{\mathrm{e}^2}=\mathrm{e}^{-2}\) → (2)
From (1) and (2)
∴ \(4 \lambda t=2 \Rightarrow t=\frac{1}{2 \lambda}\)
Question 29. The half-lives of two radioactive samples A and B are 10 min and 20 min respectively. If initially a sample has equal numbers of the nuclei of A and B then after 60 min the ratio of the decayed numbers of the nuclei A and B will be
- 1: 8
- 9: 8
- 8: 1
- 3: 8
Answer: 2. 9: 8
The number of active nuclei at a time t is N = \(N_0 \mathrm{e}^{-\lambda t}\)
⇒ \(\Delta N=N_0-N=N_0\left(1-\mathrm{e}^{-\lambda t}\right)\)
∴ \(\frac{\Delta N_{\mathrm{A}}}{\Delta N_{\mathrm{B}}}=\frac{1-\mathrm{e}^{-\lambda_{\mathrm{A}} t}}{1-\mathrm{e}^{-\lambda_{\mathrm{B}} t}}=\frac{1-\mathrm{e}^{-\left[(\ln 2) / T_{\mathrm{A}}\right] t}}{1-\mathrm{e}^{-\left[(\ln 2) / T_{\mathrm{B}}\right] t}}\)
⇒ \(\frac{1-\mathrm{e}^{-[(\ln 2) / 10] \times 60}}{1-\mathrm{e}^{-[(\ln 2) / 20] \times 60}}=\frac{1-\frac{1}{2^6}}{1-\frac{1}{2^3}}=\frac{63}{64} \times \frac{8}{7}=\frac{9}{8}\)
∴ \(\Delta N_{\mathrm{A}}: \Delta N_{\mathrm{B}}=9: 8\).
Question 30. At a time t = 0, the activity of two radioactive elements A and B are equal. After a time t = T, the ratio of their activities decreases according to e-3t. If the half-life of A is In 2, the half-life of B will be
- 4 In 2
- \(\frac{1}{4} \ln 2\)
- \(\frac{1}{2} \ln 2\)
- 2 In 2
Answer: 2. \(\frac{1}{4} \ln 2\)
For the given samples of A and B,
⇒ \(A_{\mathrm{A}}=A_0 \mathrm{e}^{-\lambda_{\mathrm{A}} t} \text { and } A_{\mathrm{B}}=A_0 \mathrm{e}^{-\lambda_{\mathrm{B}} t}\)
∴ \(\frac{A_{\mathrm{B}}}{A_{\mathrm{A}}}=\mathrm{e}^{\left(\lambda_{\mathrm{A}}-\lambda_{\mathrm{B}}\right) t}\)
Given that \(\frac{A_{\mathrm{B}}}{A_{\mathrm{A}}}=\mathrm{e}^{-3 t}\)
Hence, \(\left(\lambda_{\mathrm{A}}-\lambda_{\mathrm{B}}\right) t=-3 t\)
But \(\lambda_{\mathrm{A}}=\frac{\ln 2}{T_{\mathrm{A}}}=\frac{\ln 2}{\ln 2}=1\)
So, \(\lambda_{\mathrm{B}}=4\)
∴ \(T_{\mathrm{B}}=\frac{\ln 2}{\lambda_{\mathrm{B}}}=\frac{1}{4} \ln 2\).
Question 31. The (9/16)th part of a radioactive sample remains active after a time t. What fraction of the same remains undecayed after a time t/2?
- \(\frac{9}{16}\)
- \(\frac{5}{8}\)
- \(\frac{3}{4}\)
- \(\frac{4}{7}\)
Answer: 3. \(\frac{3}{4}\)
In the first case,
⇒ \(\frac{9}{16} N_0=N_0 \mathrm{e}^{-\lambda t} \Rightarrow \frac{9}{16}=\mathrm{e}^{-\lambda t}\)
In the second case,
⇒ \(x N_0=N_0 \mathrm{e}^{-\lambda t / 2} \Rightarrow x^2=\mathrm{e}^{-\lambda t}\)
∴ \(x^2=\frac{9}{16} \text { and } x=\frac{3}{4}\)
Question 32. A radioactive nucleus A decays into B (having a half-life of 10 s) and into C (having a half-life of 100 s). The equivalent half-life for both emissions is
- 6 s
- 9 s
- 2 s
- 3 s
Answer: 2. 9 s
The rate of disintegration is given by
⇒ \(-\frac{d N}{d t}=\lambda_1 N+\lambda_2 N=\left(\lambda_1+\lambda_2\right) N\)
∴ \(\lambda_{\text {eq }} N=\left(\lambda_1+\lambda_2\right) N\)
⇒ \(\lambda_{\text {eq }}=\lambda_1+\lambda_2 \Rightarrow \frac{\ln 2}{T}=\frac{\ln 2}{T_1}+\frac{\ln 2}{T_2}\)
∴ \(T=\frac{T_1 T_2}{T_1+T_2}=\frac{(10 \mathrm{~s})(100 \mathrm{~s})}{110 \mathrm{~s}}=\frac{100}{11} \mathrm{~s} \approx 9 \mathrm{~s}\).
33. The activities of three radioactive samples A, B, and C are represented by the lines A, B, and C in the figure. Their half-lives \(T_{1 / 2}(\mathrm{~A}), T_{1 / 2}(\mathrm{~B}), T_{1 / 2}(\mathrm{C}) \) are in the ratio
- 2: 1 : 3
- 4 : 3: 1
- 3 : 2: 1
- 2: 1: 1
Answer: 1. 2: 1 : 3
Activity = \(|R|=R_0 \mathrm{e}^{-\lambda t}\)
∴ \(\ln R=\ln R_0-\lambda t=\ln R_0-\left(\frac{\ln 2}{T}\right) t\)
The slope of the given graph is -X.
∴ \(\lambda_{\mathrm{A}}=\frac{6}{10}, \lambda_{\mathrm{B}}=\frac{6}{5} \text { and } \lambda_{\mathrm{C}}=\frac{2}{5}\)
∴ \(T_{\mathrm{A}}: T_{\mathrm{B}}: T_{\mathrm{C}}=\frac{10}{6}: \frac{5}{6}: \frac{5}{2}=2: 1: 3\)